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Abstract
‘Mapping accounts’ of applied mathematics hold that the application
of mathematics in physical science is best understood in terms of ‘map-
pings’ between mathematical structures and physical structures. In this
paper, I suggest that mapping accounts rely on the assumption that the
mathematics relevant to any application of mathematics in empirical
science can be captured in an appropriate mathematical structure. If we
are interested in assessing the plausibility of mapping accounts, we must
ask ourselves: how plausible is this assumption as a working hypothe-
sis about applied mathematics? In order to do so, we examine the role
played by mathematics in the multiscalar modelling of sea ice melting
behaviour and examine whether we can indeed capture the mathematics
involved in the kind of mathematical structure employed by the mapping
account. Along the way, we note that the cases of applied mathematics
that appear in discussions of mapping accounts almost exclusively in-
volve the employment of a single clearly circumscribed mathematical
field or domain (e.g. ‘the use of arithmetic in counting physical objects’).
While the core assumption of mapping accounts may appear plausible in
such situations, we ultimately suggest that the mapping account is not
able to handle the important added complexities involved in our sea ice
case study. In particular, the notion of mathematical structure around
which such accounts are framed does not seem to be able to capture
the way in which some applications of mathematics require that very
different pieces of mathematics be related to one another on the basis of
both mathematical and empirical information.

1 Introduction

In recent years, appeals to various notions of ‘structure’ have become common-
place in discussions of the application of mathematics in empirical science.

† I would like to thank Bob Batterman, Mark Wilson, Erica Shumener, Marco Maggiani,
Stephen Mackereth and James Shaw for their helpful comments on various iterations of this
paper. I would also especially like to thank two anonymous reviewers for their patient and
insightful feedback.
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According to ‘mapping accounts’ of applied mathematics, the application
of mathematics is best understood in terms of mappings between physical
structures on the one hand and mathematical structures on the other. Pro-
ponents of mappings accounts have spent considerable time attending to
complexities surrounding, amongst other things, the kind of mappings that
such a view ought to countenance and the best way to understand the (often
mathematised) ‘physical structures’ in which empirical science deals.

Very little attention, however, has been paid to the role played by the notion
of a ‘mathematical structure’ in such proposals. While the notions of ‘mapping’
and ‘physical structure’ are taken by proponents of such accounts to stand in
need of at least some clarification, the notion of a ‘mathematical structure’ is
treated as relatively self-explanatory. Bueno and Colyvan, for instance, simply
declare that “a structure is usually taken to be a set of objects (or nodes or
positions) and a set of relations on these” (Bueno and Colyvan, 2011, 347)
before noting that they will adopt this standard account and discussing the
difficulties that might arise in attempting to identify such ‘structures’ in the
physical world (or at least in the realms of physical science).

If we are interested in assessing the capacity of mapping accounts to pro-
vide us with a plausible picture of applied mathematics, however, we must
pay closer attention to the mathematical side of the ledger. In particular, map-
ping accounts seem to rely on the assumption that the mathematics relevant
to any particular application in empirical science can be captured in a single
self-standing ‘mathematical structure’. Given that the strategies that applied
mathematicians develop for tackling problems in empirical science often in-
volve stitching together a diverse assemblage of tools from disparate areas of
mathematics, we must ask ourselves: how plausible is this assumption as a
working hypothesis about applied mathematics? Posing and answering this
question will be the focus of this paper.

There are, however, two issues we must get clear on before we are in a
position to answer this question. First, we must consider what kind of cases
of applied mathematics are most relevant to testing the plausibility of this
assumption. We will suggest that discussions of mapping accounts have thus
far focussed on examples from empirical science in which there is already an
obvious candidate for the ‘mathematical structure’ in question. If we are to
test the plausibility of the mapping account’s key assumption, then we must
see how this assumption fares in light of more complex examples. Second, we
must think about what it is for a mathematical structure to be ‘of the right kind’,
given some application. At various points, proponents of the mapping account
have specified in formal terms what the mathematical structures in question
must look like. If we are to consider more complex examples, however, we
should ask: what aspects of the role played by mathematics in some empirical
scientific situation should we expect the structure to capture? We will put
forward two requirements that any specification of the mathematical structure
at hand should meet. These are that the structure should at least capture (i) all
of the pieces mathematics relevant to the application and (ii) the connections
between those pieces of mathematics that are required for the application.

Having clarified these two issues, we will find ourselves in a position to
address our original question: is the assumption relied upon by mapping
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accounts a plausible working hypothesis about applied mathematics? We do
so simply by presenting a case of the relevant kind and asking whether we
can provide a corresponding mathematical structure that meets the two re-
quirements indicated above. We will suggest that the notion of ‘mathematical
structure’ employed by the proponents of mapping accounts makes it difficult
to see how such a structure can meet our two requirements given some aspects
of the case we present. When we venture into more complicated territory, the
assumption on which the mapping account relies appears more like wishful
speculation than a plausible working hypothesis.

This paper, then, will proceed as follows. In §2, I will outline the details of
the mapping account as well as a key assumption on which it relies, which I
call the MATHEMATICAL STRUCTURE ASSUMPTION. In §3, I will suggest that
discussions of mapping accounts in the literature typically focus on a restricted
class of examples in which this MATHEMATICAL STRUCTURE ASSUMPTION

is easily satisfied, and that considering the viability of the mapping account
will require that we venture beyond this restricted class of examples. In §4,
I outline two requirements that should be met by attempts to accommodate
more complex cases on behalf of the mapping account. In §5, I present the
central case study of the paper, examining the way in which climate scientists
and applied mathematicians model the permeability of sea ice as it features in
large scale climate models. In §6, I argue that this more complex case presents
a serious challenge for the MATHEMATICAL STRUCTURE ASSUMPTION, and in
§7 I consider various ways a proponent of a mapping account might try to
meet this challenge. Finally, in §8 I offer some concluding remarks.

2 Mapping Accounts and the Mathematical Structure
Assumption

The central claim of the mapping account is that the utility of mathematics
in application can be explained by the existence of some kind of mapping
between the physical world and the ‘mathematical structure’ employed.1 On
this view, mathematics furnishes us with a rich variety of structures, some
of which by chance or design mirror structural features of the world. These
structural similarities allow us to employ mappings in order to investigate
physical systems by working with corresponding mathematical structures. As
long as the mappings preserve structure in the right way, we can simply read
facts about our empirical system off the mathematics. According to mapping
accounts, then, “the explanation of the utility of mathematics is no different
from explaining the utility of street maps” (Bueno and Colyvan, 2011, 346).

The mapping account in this form was first put forward by Pincock
(2004a,b). In this original formulation, Pincock did not specify any particular
constraints on the mappings involved, suggesting that different applications
may require different kinds of mappings. Bueno and Colyvan (2011) in turn

1For ease of expression, I will occasionally speak generically of ‘the mapping account’
instead of ‘mapping accounts’, but this is merely stylistic. There are, of course, a variety of
mapping accounts in the literature, united by their commitment to the claim articulated in
this section. These include Bueno and Colyvan (2011); Bueno (2016); Bueno and French (2018);
Pincock (2004a,b, 2007, 2011); Nguyen and Frigg (2017)
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suggest that this is a shortcoming of Pincock’s account, and that “until the
central notion of mapping is clarified, the account is little more than a gesture
at an account” (Bueno and Colyvan, 2011, 348). That is to say that while
Bueno and Colyvan agree that Pincock’s mapping account as outlined above
is “right as far as it goes,” they believe that it will remain incomplete until it
is augmented by more detailed consideration of the mappings that might be
involved. Their own ‘inferential conception of applied mathematics’ attempts
to do exactly that, by clarifying the central notion of mapping and addressing
some of the specific issues that Pincock’s account leaves open. Bueno and
Colyvan explicitly state that their account should be seen as “an extension of
the latter [Pincock’s] account, in that it agrees that mappings of a variety of
sorts are crucial to applied mathematics.” (Bueno and Colyvan, 2011, 352)

There are two reasons that we will examine Bueno and Colyvan’s account
in particular detail and treat it for our purposes as a helpful prototype represen-
tative of mapping accounts in general. This augmented inferential conception
has come to occupy a prominent place in discussions of mapping accounts
in the contemporary literature. It thus forms the backbone, for instance, of
the account provided more recently by Bueno and French (2018), as well as
the extension offered by Nguyen and Frigg (2017). By and large, discussion
of mappings accounts in the recent philosophical literature revolve around
some form or another of Bueno and Colyvan’s inferential conception. The
second reason is that it provides an explicit account of how the mappings
between physical systems and mathematical structures are supposed to work.
This means that it is possible to consider in more detail how exactly a map-
ping account might deal with the complexities of some given case of applied
mathematics. This will be important later when we want to ask whether the
mapping account has any resources by way of which it can defend its central
claim. In short, the inferential conception is both the most prominent mapping
account on the market and the one that provides the most in the way of explicit
suggestions on how more complex cases of applied mathematics might be
construed in terms of mappings, and thus will occupy a central place in the
argument to come.

Rather than invoking single mappings back and forth between some math-
ematical structure and physical structure, the inferential conception suggests
that the interplay between mathematical structure and physical structure takes
place across several steps. We first establish a mapping from some empirical
set up to our mathematical structure (the immersion step). Having immersed
our empirical set up in some mathematical structure, we then draw conse-
quences from our mathematical formalism (the derivation step). With these
consequences in hand, we then interpret our results in terms of our empir-
ical set up (the interpretation step). This interpretation takes the form of a
mapping back from our mathematical structure to our physical structure, and
importantly this mapping need not simply be the inverse of the mapping that
featured originally in the immersion step.

Roughly, then, the application of mathematics in empirical scientific con-
texts is to be explained by way of this process of immersing some empirical
set up, broadly construed, into a mathematical structure where results can be
obtained deductively with more ease, at which point we interpret these results
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Figure 1: The Inferential Conception of Applied Mathematics.

by mapping back into our empirical set up. It is important to ask: what kind
of mathematical structures are at play here? In framing their own amendment
to the inferential conception, Nguyen and Frigg offer a helpful statement of
the kinds of structure at play in the mapping account. They write:

“[...] it is important to be clear on the nature of the objects and
relations that make up a set-theoretic structure. The important
point is that it does not matter what the objects are intrinsically.
The only thing that matters from a structural point of view is that
there are so and so many of them. All we need are dummies
or placeholders. Likewise for relations. It is irrelevant what the
relation “in itself” is. All that matters from a structural point of
view is between which objects it holds. For this reason, a relation is
specified purely extensionally, that is, as class of ordered n-tuples
and the relation is assumed to be nothing over and above this
class. Thus understood, relations have no properties other than
those that derive from this extensional characterization, such as
transitivity, reflexivity, and symmetry.” (Nguyen and Frigg, 2017,
5)

The mathematical structures employed by the mapping account are nothing
more than the extensionally-specified set-theoretic structures of model theory.
The results obtainable within some mathematical domain will simply follow
from facts about the relations that hold over the elements of that domain.

For the most part, discussions of mapping accounts in the literature have
focussed on issues related either to the nature of the mappings involved or
the kind of physical structure required. Natural questions arise regarding
the kinds of mappings that the account requires (isomorphisms? homomor-
phisms? monomorphisms? isomorphic embeddings? etc.), what kind of
structure the account assumes the physical world to have, the role played by
scientific theories in generating that structure, and so on (Nguyen and Frigg,
2017; Bueno and Colyvan, 2011; Bueno, 2016; Bueno and French, 2018; Pincock,
2004a,b, 2007, 2011; Stemeroff, 2021).2

2Exceptions to this trend include Kasirzadeh (2021), Batterman (2010) and Rizza (2013),
though they do not pursue the line of criticism we develop here.
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If we are interested in assessing the plausibility of the mapping account as
an account of applied mathematics, however, there is another issue that we
must consider. The mapping account relies on the following assumption:

MATHEMATICAL STRUCTURE ASSUMPTION: Given any application
of mathematics in empirical science, there is a mathematical struc-
ture of the right kind that captures the mathematics relevant to
that application.

If the reason that we are able to usefully apply mathematics to physical systems
is that mappings obtain between the world and some mathematical structure,
then there must be some appropriate mathematical structure for each useful
application of mathematics in empirical science. In short, for the mapping
account to work, we require a mathematical structure for each application.3

Why is it that proponents of mapping accounts are committed to the
MATHEMATICAL STRUCTURE ASSUMPTION? Recall that the central claim of
the mapping account, affirmed both by Pincock’s original account and the
inferential conception that has come to dominate the recent landscape, is that
the utility of mathematics in application can be explained by the existence
of some kind of mapping between the physical world and some appropriate
mathematical structure. Suppose, then, that the MATHEMATICAL STRUCTURE

ASSUMPTION were false. Then there would be at least one case of applied
mathematics for which there is no structure of the right kind to capture the
mathematics relevant to the application. Such a state of affairs would clearly
threaten the central claim of the mapping account – after all, how can the
utility of mathematics in this application be explained by mappings between
the physical world and some appropriate mathematical structure if no such
appropriate mathematical structure exists? In other words, the reason that
mapping accounts rely on the mathematical structure assumption outlined
above is that it is required by the central claim to which they are all committed
despite their differences.

It may seem at this stage as though I am being uncharitable to proponents
of the mapping account: surely they need not hold that all the mathematics
involved be crammed into a single structure? Why can’t multiple mathematical
structures play a role without needing to be lumped together into a single
behemoth? There are two things worth saying here. The first is that propo-
nents of mappings accounts speak overwhelmingly in terms of ‘the structure’
into which our physical system is mapped. For instance, Bueno and Coly-
van’s inferential conception clearly conceives of applications in terms of a
single empirical set-up and a single mathematical structure. The second is that
when proponents of mapping accounts do talk about multiple structures being
employed, they typically opt to construe the broader application in terms of
several sub-applications. that is, what might on the face of it look like a single
application of mathematics is decomposed into several applications, and in

3Although the mapping account falls pretty naturally out of a broadly structuralist philos-
ophy of mathematics, its proponents do not intend for it to depend on any particular view
about the foundations of mathematics. In fact, both Bueno and Colyvan (2011) and Nguyen
and Frigg (2017) suggest that it is a strength of their mapping accounts that they do not depend
on any particular philosophy of mathematics.
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each case there is a single structure into which we map. In short, the main strat-
egy by way of which mapping accounts bring more than one mathematical
structure into play is by construing some case as a series of applications, of
which the MATHEMATICAL STRUCTURE ASSUMPTION is all the while true. We
will discuss such strategies in §7. For now, it is enough simply to note that such
strategies do not represent an abandonment of the MATHEMATICAL STRUC-
TURE ASSUMPTION or an indication that it is too simplistically rendered, but
rather an attempt to save the assumption by construing one broad application
in terms of several separate ones.

We might also ask: given that applications of mathematics appear to serve
a variety of purposes in the realm of empirical science, what purposes in par-
ticular are relevant to our assessment of the viability of the mapping account?4

There seems on the face of it to be a difference, for instance, between using
mathematics to represent some aspect of a system and using mathematics to
run some numerical algorithm which might predict the future value of some
parameter in a system. Be that as it may, proponents of the mapping account
do not delineate a particular set of purposes for which they take their accounts
to be primarily responsible. Rather, they market their account as capable of
handling more or less any application of mathematics in the investigation
of the physical world. Pincock, for instance, writes that his account aims
at the task of articulating in general “what connection there is between the
physical world and mathematics that can explain the successful application of
mathematics in scientific reasoning” (Pincock, 2004b, 137). Bueno and Coly-
van note that mathematics plays a variety of roles in empirical science, from
unifying scientific theories to providing novel predictions to facilitating expla-
nations, before declaring that “all of these roles, however, are ultimately tied
to the ability to establish inferential relations between empirical phenomena
and mathematical structures, or among mathematical structures themselves”
(Bueno and Colyvan, 2011, 352).

The upshot of the this appears to be that the MATHEMATICAL STRUCTURE

ASSUMPTION should be construed in an analogously general fashion. If, for
instance, it were the case that the mapping account was intended to cap-
ture only the application of mathematics in representative contexts, then the
MATHEMATICAL STRUCTURE ASSUMPTION would only need to hold in those
contexts as well, and we would have to take care to ensure that any purported
counterexample did not stray into applicational contexts the mapping account
was not designed to cover. As it happens, the stated aim of the mapping
account means that we need not be quite so concerned.5 That is to say that if
we find a case that the mapping account does not seem capable of construing
in the way it requires, then it is no less a counterexample to the view for being,
for instance, a case of mathematics used for predictive purposes rather than
explanatory purposes (or representational purposes, or whichever).6

4Thank you very much to anonymous reviewer for raising this point.
5This is helpful, all things considered, since once we begin to think about more complex uses

of mathematics than those that have heretofore featured in discussions of mapping accounts,
we might find that it is more and more difficult to clearly distinguish exactly what single
purpose some particular piece of mathematics is serving at some particular point in time.

6It may well be open to the proponent of the mapping account to respond to a purported
counterexample by narrowing their account such that it only applies properly to some particular
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3 Parcels of Mathematical Structure

If we are interested in the broader viability of the mapping account of applied
mathematics, then we must ask ourselves: how plausible is the MATHEMATI-
CAL STRUCTURE ASSUMPTION? One natural way to go about answering this
question would be to consider how well the assumption holds up in light
of various real life scientific applications of mathematics. Of course, in de-
fending and articulating their accounts, proponents of mapping acounts have
considered a variety of such real life cases. Indeed, the literature on mapping
accounts features discussions of examples of applied mathematics ranging
from the simple (counting rabbits, the Bridges of Königsberg) to the more
complex (group theory and quantum mechanics).

There is, however, one sense in which proponents of mapping accounts
appear to have confined themselves to the consideration of a restricted class
of examples of applied mathematics. Almost exclusively, the examples that
appear in discussions of mapping accounts are scientific situations that involve
(or appear to involve at first glance) the employment of self-contained fields
of mathematics in isolation. That is to say that we are very often asked to
“consider the use of [mathematical field X] in [scientific theory Y].” In outlining
the way in which the inferential conception (along with some additional
formalism surrounding ‘partial structures’) allows us to understand the real
world application of mathematics, Bueno and French choose as their flagship
case study “the introduction of group theory into quantum mechanics” (Bueno
and French, 2018, 73). (Bueno and Colyvan, 2011, 359) cite the use of analysis
in neo-classical economics, while in discussing applications of mathematics in
his original articulation of structuralism Shapiro himself considers “the use of
real analysis or geometry in physics” (Shapiro, 1997, 252).7 Pincock (2004a)
primarily discusses the use of arithmetic in counting physical objects and
discussing their magnitude, while in a later paper (Pincock, 2007) he mentions
the application of graph theory to the bridges of Königsberg problem. In
detailing the application of their extended account, Nguyen and Frigg consider
the use of arithmetic in counting populations of rabbits and representational
measurement theory in assessing the length of various metal rods (Nguyen
and Frigg, 2017, 16).

There are, however, two important respects in which such cases are not
representative of the applications of mathematics that feature in scientific
practice. First, the practical requirements of scientific investigation often
ensure that the mathematics involved ‘overflows’ the domain that it might

restricted class of uses. There are, it seems to me, two reasons that this is unlikely to represent
an attractive option to proponents of the mapping account. The first is that, as mentioned in the
previous footnote, complex cases of applied mathematics may involve questions of prediction,
explanation and representation dovetailing in ways that might make the question of what
single purpose some mathematical construction is serving at some particular time somewhat
difficult to untangle. Perhaps more importantly, the case we will discuss later on at the very
least includes mathematics used both for the purpose of representation and the purpose of
facilitating predictions. Amongst the purposes for which mathematics is used in empirical
science these seem particularly central, and it seems unlikely that proponents of mapping
accounts would want to abandon the claim that their account is intended to cover them.

7Of course, Shapiro is not offering a full-blown account of applied mathematics in the way
that Bueno, Colyvan, French and others are.
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at first glance have appeared restricted to. We might, for instance, observe a
situation in which a scientist exploits their knowledge of some physical system
in order to generate some partial differential equations (PDEs) describing its
behaviour. It may then seem clear that the mathematical structure at play in
such a case is, as Bueno and Colyvan conclude in the example we saw above,
“certain mathematical structures of analysis” (Bueno and Colyvan, 2011, 359).

The problem is this: writing down a set of PDEs is one thing, and solving
them is often another thing entirely. Analytic solutions are often difficult if
not impossible to find, in which event scientists must rely upon a variety of
numerical techniques in order to extract workable information about their
system from their set of equations.8 These techniques are often classified
in quasi-experimental terms according to their computational performance,
probabilistic error bounds, general dynamic behaviour, and so on.9 It is not
clear that such techniques will always lie within the reaches of “the resources
of analysis” (to use Bueno and Colyvan’s phrasing). The lesson: just because
we can frame (i.e. we can write down the equations for) some model of our
system in terms of some neat mathematical structure does not always mean
that all the mathematics involved in that application can be confined to that
structure.

A brief analogy may help to illustrate what I mean by this distinction
between the mathematics required to frame some model of our system and
the mathematics required to work with the model. Building the foundation
and frame of a house might only require wood and cement, plus perhaps
some nails and other bits and pieces. With the frame in place, we can see the
structure of the house, how the rooms fit together, where and how it is secured
to the foundation, and so on. But this does not mean that constructing the whole
house only requires wood and cement. Turning the frame and foundation into
something that people can actually live in requires tiles, plumbing, insulation,
gyprock, and so on. There is a marked difference between the ‘resources’ we
need to build the central structural frame of the house and those required to
turn this frame into a livable domicile. The point of the analogy here is that the
central equations around which we organise our model of our system in this
context may be something like the wooden frame of our house. We may only
need a relatively simple array of mathematical resources to make sense of this
central frame, but actually extracting information from our model (building a
house someone can live in) may demand an entirely different set of resources.

One might wonder at this point whether framing a model in this sense and
extracting helpful information from it might represent two separate purposes

8As an example, Fourier’s Law for heat conduction can be written using relatively simple
differential operators:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 =

ρcp

k
∂T
∂t

.

However this PDE can only be solved directly in the most simple cases. As such, solutions are
typically approximated by powerful software packages that employ numerical methods and
algorithms which are not properly part of analysis itself. See Bergman et al. (2011).

9A helpful presentation of the technical details of some of these methods can be found in
Süli (2015). Discussion of some of the philosophical and conceptual issues arising out of the
increasing prevalence of such computation methods can be found it Fillion and Corless (2014);
Fillion (2019)
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for which mathematics might be used in application. Either way, as we
examine our case study later on there is a sense in which it will be important to
keep track of the difference between the mathematics required to write down
the equations for a model and the mathematics required to actually work with
that model, and a sense in which it will not be. Insofar as proponents of the
mapping account, as discussed in §2, do not distinguish between the different
purposes for which mathematics might be used in application, we do not
necessarily need to keep track of whether the case we present relates to the
purpose of ‘framing a model’ or ‘working with a model.’ On the other hand,
it will be important to pay attention to the distinction between framing and
working with a model in the sense that although we can write down the key
equations of our case study in a way that might lead us to believe that we
only need ‘the resources of analysis’ to appear in the relevant mathematical
structure, actually working with the model as applied mathematicians do
requires many more tools than this.10

The second respect in which the class of cases described is unrepresentative
of broader scientific practice is this: scientific application of mathematics often
involve not just the kind of ‘overflow’ noted above but also the conscious
stitching together of various dissonant pieces of mathematics. It is often
the case that the mathematics appropriate for investigating the behaviour
of some part of our physical system is very different from that required for
dealing with some other part of the system. As Batterman, Wilson and others
have emphasized, scientists must commonly embrace exactly this dynamic
in dealing with the behaviour of physical systems at different scales (Wilson,
2017; Batterman, 2013; Green and Batterman, 2017).

Suppose we find that some mathematical representationR1 is appropriate
for describing the behaviour of our system at some length scale `1. We might
find, however, that the system’s behaviour on the scale of `1 depends on
some aspect of its behaviour at some lower length scale, `2, for which some
completely different mathematical representation, R2, is appropriate. If we
are very lucky, our R2 might capture the lower scale behaviour in such a
way that the relevant information can be directly ‘plugged into’ our larger
scale R1. More often, however, we are not so lucky, and finding a way to
get our two dissonant representations to harmonise fruitfully is a difficult
problem. Solving this problem may well require that we rely on additional
physical information not properly relevant to either R1 or R2. Processing
this additional physical information may well call for fresh mathematical
techniques. In any event, the information that we finally extract may be the
result of various different mathematical tools which are made to work together
as the result of both empirical and mathematical considerations.

Laying out the ways in which applications of mathematics in physical
science routinely differ from those commonly considered by proponents of
mapping accounts helps us to see the following: it is precisely in the kind of
case typically considered in the literature that the MATHEMATICAL STRUC-
TURE ASSUMPTION looks most plausible. Given that discussions of mapping
accounts in the philosophical literature feature plenty of examples drawn from
different areas of empirical science, it might appear as though the account has

10Thanks to an anonymous reviewer for pushing me on this.
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been tested against a selection of cases that is representative of the complexity
of modern scientific methodology. What I have argued is that this appearance
is misleading. Although the cases that feature in the literature do indeed come
from diverse areas of empirical science, they otherwise have tended to cluster
within a particular part of the applied mathematical landscape. Moreover,
the part of the landscape within which these cases cluster is one in which the
terrain is particularly favourable to the mapping account’s core assumption.

If we are interested in whether it is true that we can find a mathematical
structure of the kind required given any applications of mathematics, then we
are not going to learn very much if we focus on cases in which there is a clear
and obvious candidate for said ‘mathematical structure’. The foregoing discus-
sion demonstrates that if we want to investigate the plausibility of mappings
accounts of applied mathematics, then we must examine the MATHEMATICAL

STRUCTURE ASSUMPTION in light of a case of applied mathematics of a more
complicated character. That is, we require a case in which there is not a clear
and obvious candidate for the relevant mathematical structure. Before we can
present such a case, however, we must address one final issue.

4 Two Requirements

The proposal we have so far developed is that we should not consider the
MATHEMATICAL STRUCTURE ASSUMPTION to have been properly tested until
we expand our gaze beyond the restricted class of examples typically consid-
ered by proponents of the account. The natural next step, then, is to present a
case of applied mathematics from somewhere outside of this restricted class
and see how the assumption fares. Since the key assumption holds that there
is a mathematical structure of the right kind given any application of mathe-
matics, we simply need to see if we can find such a structure given our more
complicated case.

But what exactly is a “mathematical structure of the right kind”? As we
have seen, proponents of mapping accounts tend to fill in the ‘mathematical
structure’ side of the ledger by citing the broad field or subfield in which
the salient mathematics appears to fall. Given that we want to consider
precisely those cases in which the salient mathematics cannot be contained
in a neat mathematical fiefdom, it will help to be clear about exactly what we
expect the ‘structure’ on the mathematical side of the ledger to capture. For
instance, could the proponent of a mapping account very simply circumvent
the problem by declaring the relevant mathematical structure to be some
model-theoretic surrogate for the entirety of mathematics? In short, we want
to think what constraints should apply to our hypothetical mapping account
proponent’s attempts to fill in the ‘mathematical structure’ side of the ledger.

A natural first thought is that at a minimum the mathematical structure
provided must contain all of the mathematics employed in the application
under consideration. We should note here that, as outlined earlier, there is
often a marked difference between the mathematics required to frame some
set of equations or model of a system and the mathematics that we must
eventually employ to extract reliable information about our target system
from that model. Given that the mapping account attempts to explain why



Structure and Applied Mathematics 12 of 33

mathematics is so useful to us in application, our mathematical structure
should include the full gamut of mathematical tools that we actually use to
investigate the behaviour of our system.

This requirement, however, does not rule out that a mapping account
proponent might respond by simply suggesting that the relevant structure
is some model-theoretic surrogate for the entirety of mathematics, as we
mentioned above. Consider the kind of multiscalar modelling situation that
we described in §4. Suppose that we can capture all of the mathematics
required to frame and work with our larger scale model in some structure
S1, and similarly for our lower scale model and some structure, S2. Can we
not simply say that the relevant overall mathematical structure is something
like S1 ∪ S2? The problem here is that we sometimes require both additional
mathematics and additional empirical information in order to understand
how our upper and lower scale model can co-operate to provide a picture
of the system’s overall behaviour. Our models often need to be ‘stitched’
together, and understanding the mathematical and empirical character of this
stitching is key to understanding what mathematics helps us to achieve in
such applications.

Such multiscalar challenges suggest another requirement: the mathemat-
ical structure singled out must capture the connections between the vari-
ous pieces of mathematics that allow them to work together in application.
Applied mathematicians take great care to ensure that the threads that run
through their various modelling tools are woven in such a way as to produce
reliable results.11 If we respond to the challenge of ensuring that our structure
contains all of the mathematics employed in application by gesturing at a
structure that does not allow us to articulate the complicated relationships
between those mathematical tools, then we have met the first requirement
at the expense of overlooking a vital part of the application in question. If
mapping accounts are to succeed in explaining the utility of mathematics
beyond a limited range of examples, then the structures to which they appeal
must be able to capture these more complicated dynamics.

The above considerations put us in a position to suggest two requirements
that the mathematical structures referenced in the MATHEMATICAL STRUC-
TURE ASSUMPTION must meet.

SCOPE: The structure captures all of the mathematics relevant to the applica-
tion.

STITCHING: The structure captures the relevant relationships between the
pieces of mathematics employed in the application.

In short, the SCOPE requirement states that all of the mathematics should be
found somewhere in the structure. The STITCHING requirement emerges from
the fact that the mapping account claims to explain the utility of mathematics
in actual scientific practice. The weaving together of various pieces of mathe-

11This point has been made in different ways elsewhere by several philosophers of science.
These include Batterman (2013, 2021); Green and Batterman (2017); Bursten (2018, 2021); Wilson
(2017); Winsberg (2006, 2010).
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matical machinery is core to many applications of mathematics in scientific
practice, and so our structure must be able to handle this dynamic.12

Let’s recap. If the mapping account is right, then we are able to employ
mathematics in empirical scientific contexts because there exist mappings
between the physical world and some mathematical structure. This claim
relies on the assumption that there is a mathematical structure of the right kind
for each application of mathematics. If we want to evaluate this assumption
properly, we must consider a case in which there is not a clear and obvious
candidate for such a structure and see if one can nonetheless be provided. Not
just any structure will do, however. If the mapping account is truly to explain
the utility of applied mathematics, then the structure put forward must be able
to handle the fact that applications of mathematics can involve a wide and
open-ended variety of mathematical tools (SCOPE) that are woven together in
complicated ways to secure results (STITCHING). Now that we know what we
are looking for, we can turn our attention to a case of the relevant kind.

5 Sea Ice Permeability and Climate Models

The interaction between large scale climate models and the lower scale mi-
crostructure of sea ice provides a vivid example of the kinds of complexities
we have so far mentioned. In rough outline, the values of some parameters
that feature in large scale models of the Earth’s climate depend on the fluid per-
meability of sea ice (that is, more or less, how easily pockets of fluid can move
within large blocks of ice). This fluid permeability is in turn influenced largely
by the structure and arrangement of liquid brine inclusions on a scale much
smaller than that of the original climate models. This presents two challenges:
characterising the lower scale behaviour of the ice-brine microstructure, and
finding a way to incorporate this information into our large-scale climate
model. In examining the way in which applied mathematicians go about
tackling these challenges, we will pay special attention to exactly what pieces
of mathematics are relevant to the application and how these pieces are related
to one another.

5.1 Climate Models and Sea Ice

Suppose we are interested in modelling large-scale fluctuations in the Earth’s
climate.13 As it happens, an important part of this process involves under-
standing the way that sea ice behaves at various scales. On the whole, solar
radiation that hits sea water tends to be absorbed, while solar radiation that
hits sea ice tends to be reflected. The ratio of reflected sunlight to incident
sunlight is known as albedo, and so we might rephrase the above by saying
that the albedo of sea ice (0.8) is much larger than that of water (< 0.1). Sea

12It is worth noting that the proponents of mapping accounts that we have considered appear
to take themselves to be bound by requirements like these, although they do not consider the
question as explicitly as we have done. In particular, both (Pincock, 2011, 212) and (Bueno, 2016,
2597) consider the expectations we might apply to mapping accounts of applied mathematics.
The standards they put forward seem to me closely related the two requirements outlined here.

13The presentation in this section draws largely from Golden (2015, 2009, 1997).
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ice thus both prevents solar radiation from warming the water beneath and
prevents ocean heat from escaping and contributing to atmospheric warming.
As warming temperatures melt sea ice, fewer surfaces are available to reflect
sunlight and more ocean heat escapes to warm the atmosphere, which causes
more ice to melt. This leads to a decrease in the albedo of the polar oceans,
which leads to more solar absorption and warming, which leads to further
decreases in albedo, and so on and so forth. This dynamic is called ice-albedo
feedback and it plays an important role in the global temperature system.

The above is to say that understanding the dynamics of ice pack albedo is
a key ingredient in any attempt to predict the future trajectory of the Earth’s
climate. In turn, the albedo of an ice pack is determined by the presence of melt
ponds which form on the surface of the ice. Whether these melt ponds spread,
deepen, or drain is for the most part determined by how easily pockets of fluid
can move through the ice below. This is known as the ice’s fluid permeability.
Sea ice differs from glacial ice in some important respects. When salt water
freezes, the resulting material is a composite of pure ice with inclusions of
liquid brine, air pockets and solid salts. As the temperature increases, so does
the volume fraction of brine (φ). Below a certain critical volume fraction, the
sea ice is more or less impermeable to fluid flow. Above this critical volume
fraction, the ice’s fluid permeability depends not only on the fraction of brine
inclusions, but also on the structure of those inclusions.

The upshot of the above is that the task of understanding and predicting
the large scale behaviour of sea ice relevant to climate models is connected to
our ability to understand and characterise the much smaller scale structure of
(amongst other things) liquid brine inclusions. In other words, our ability to
model sea ice on the scale of hundreds of kilometres depends on our ability to
effectively characterise behaviour that takes place on the scale of centimetres
and metres (the size of the brine inclusions). The challenge, then, is to work
out how we can model the ice-brine microstructure in a way that allows us to
fill in the details required by our large scale climate models.

5.2 Homogenization

On the whole, global climate models are made up of systems of partial differ-
ential equations. These PDEs are solved using extremely powerful computers
that split the Earth’s surface into three dimensional grids with horizontal grid
sizes in the order of tens of kilometres. Several of these equations contain
parameters whose behaviour is influenced by facts about sea ice systems, such
as the ice thickness distribution. The equation in which the behaviour of our
brine flow plays an important role is the one describing the temperature field
(T(x, t)) inside our sea ice. Coupling the sea ice to the ocean above and the
atmosphere below through the right kind of boundary condition yields:

∂T
∂t

= ∇ · (D(T)∇T)− v · ∇T, (1)

where D is the thermal diffusivity of the sea ice and v is an averaged brine
velocity field in the sea ice.

The difficulty here is that the velocity of our brine flow oscillates wildly
as we move through the sea ice, given that the flow is going to be (more or
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less) zero at any point that is ice and not a brine inclusion. Moreover, these
velocities are going to depend in some way on the geometrical properties of
the brine microstructure. As a result, there is not really any straightforward
way to calculate the value of the parameter v that features in equation (1).

In cases like this, it is sometimes possible to approximate the value of the
parameter in question by way of a method known as homogenization. When
we are faced with some kind of heterogeneous medium which exhibits impor-
tant microscale structure, such as our ice-brine composite, homogenization
techniques allow us to:

“take into account the structure of the heterogeneous medium by
calculating an equivalent homogeneous ‘effective medium’ and to
use the equivalent medium in further calculations.” (McPhedran,
2015, 500)

The basic idea is that we want to replace the oscillating coefficient (our velocity
field) with an effective parameter that both takes into account the microstructure
of the heterogeneous medium and behaves in a more uniform fashion. If we
are able to find such an effective parameter, then we can replace our original
equation (or set of equations) with one that treats the material as though
it is homogeneous rather than heterogeneous. In short, these homogenized
equations describe a fictitious ‘effective medium’, the behaviour of which is
determined by our effective parameter and thus mirrors the behaviour of our
heterogeneous system.14

Unless our medium is nicely periodic,15 there is for the most part no gen-
eral method for arriving at these homogeneous equations (Santosa, 2015, 103).
Applied mathematicians have instead developed a wide variety of treatments
and techniques appropriate to different materials, most of which require de-
tailed empirical information about the system’s behaviour.16 In the case of our
ice-brine composite, the application of such homogenization techniques relies
on empirically measured properties such as the statistical distribution of the
inhomogeneities, the Reynolds number of the flow, and the identification of a
fast and slow time scale in the oscillations of our velocity field. In addition,
researchers must verify that a variety of other conditions of the geometry of
the medium are met (Golden, 1997; Torquato, 2002; McPhedran, 2015). With all
of this in hand, Golden (1997) was able to exploit several limiting relationships
(the homogenization limit) to show that the averaged velocity v(x) and the
pressure p(x) satisfy

14Batterman (2021) contains several helpful discussions and illustrations of the way that
homogenizations techniques allow us to extract information about the behaviour of heteroge-
neous composites by connecting continuum and mesoscale level descriptions. In this respect,
our sea ice example falls into a broader category of material scientific problems concerned with
heterogeneous materials, including that of understanding the behaviour of a mixed conductor,
for instance.

15A periodic medium is one that, although not homogeneous and thus composed of at least
two different kinds of material, is arranged in such a way it exhibits some periodic internal
structure (e.g. some characteristic or property of the materials involved varies periodically as
you traverse some path through the medium).

16A helpful overview of these can be found in McPhedran (2015)
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v = − 1
η

k∇p, ∇ · v = 0 (2)

Here k is called our permeability tensor and is our effective parameter, and η is
the viscosity of the brine inclusions.

There are three points worth stressing at this stage. The first is that ob-
taining our homogenized equations does not yet mean that we understand
the behaviour of the effective parameter that features therein. The process of
homogenization simply allows us to replace an intractable task (calculating
the velocity field over our entire system) with a more tractable one (investi-
gating the effective fluid permeability of ice-brine microstructures). Dealing
with this more tractable task will still involve constructing a model of the
processes taking place on the smaller scale and using a variety of techniques
to understand the behaviour of the effective parameter.

The second point is that the homogenization process then is best thought
of as what allows us to stitch together our large scale climate model and the
smaller scale model of the ice-brine microstructure that we will meet shortly.
Our climate model demands information about our sea ice that we simply
cannot calculate on the length scale required. Our smaller scale models of
sea ice, however, can provide us with computationally tractable information
about some other piece of information. Homogenization techniques serve to
mediate this mismatch, relying on a combination of empirical information and
mathematical manipulation to relate the information provided at the lower
scale to that required at the larger scale.

The final point worth emphasizing is that this process of homogeniza-
tion is not simply a purely mathematical operation that we perform on our
original set of equations. The homogenization process relies crucially both
on mathematical properties of the original PDEs and a variety of empirical
information about the system as a whole. We can only be sure that the relevant
homogenization limits exist, for instance, once we have collected additional
data about the structure of our ice-brine composite. The problem faced by
applied mathematicians in our sea ice case (and many others) is that the be-
haviour captured by our large scale model is influenced by much smaller
scale processes that cannot be tractably modelled in the way required by the
larger scale model. The process of homogenization allows us to relate the
requirements of the larger scale model to information we can extract from
lower scale models by way of an intermediary effective parameter. If we’d
like, we can in some broad sense think of this as allowing us to construct a
relation between two mathematical structures (i.e. our upper and lower scale
models). In this case, we can put the key point this way: the ‘relation’ that
emerges from such homogenization techniques is not purely mathematical,
but rather involves a mixture of mathematical properties of the respective
models and empirical features of the system at various scales.

5.3 Predicting Sea Ice Permeability

In the previous section, we noted that the homogenization process alone does
not always provide us with an understanding of the behaviour of the relevant
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effective parameter (in our case, k). Before we move on from our sea ice case,
it will be helpful to examine the details of some of the techniques employed
by applied mathematicians in order to obtain qualitative information on the
effective fluid permeability of our sea ice. When a full characterisation of the
behaviour of our effective parameter proves elusive, applied mathematicians
often focus instead on more restricted aspects of that behaviour, such as values
near criticality or upper bounds. Focussing on different aspects of our sys-
tem’s behaviour may require that we employ radically different mathematical
techniques. In what follows we will examine the way that lattice models are
used to investigate the value of our effective permeability parameter close to
observed critical volume fractions.

A lattice percolation model consists of a d-dimensional integer lattice, Zd,
along with a network of ‘bonds’ which join the lattice sites to their nearest
neighbours.17 The bonds are assigned ‘conductivities’ σo > 0 (the bond is
open) or 0 (the bond is closed) according to some probability p. In other words,
the probability that any particular bond is open is p and the probability that
it is closed is 1− p. These probability-driven assignments of conductivity
are intended to capture the ability of some particular bond to transport some
quantity between lattice sites. Groups of connected open bonds are called open
clusters.18

Figure 2: Examples of two-dimensional square lattices for probabilities on
either side of the percolation threshold (which, for two dimensional square
lattices is pc =

1
2 ).

As it happens, there is a choice of our probability p above which the
average size of these open clusters diverges and an infinite cluster (that is,
a cluster containing infinitely many lattice sites) first appears. This critical
probability (pc) is known as the percolation threshold. When p is below this
percolation threshold, the probability that the origin (or any point) is contained
in an infinite cluster (denoted p∞(p)) is 0, while once p > pc we have p∞(p) >
0 (Golden et al., 2006). That is, once we reach the percolation threshold there
is a non-zero probability that any given point of our lattice will sit within a

17An integer lattice in d dimensions is one in which the lattice sites are labelled according to
d-tuples of integers (for example, (1, 2, 3) is a site in a 3-dimensional integer lattice).

18Such lattice models were originaly developed in order to investigate the effective electrical
conductivity of composite materials, but may be repurposed to help us understand the fluid
permeability of our ice-brine composite. In fact, there are deep analogies between the way that
problems of electrical transport and fluid permeability are tackled by way of homogenization
techniques (McPhedran, 2015, 502).
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cluster of infinite size.
If we think of the bonds that connect the various sites of our lattice as

representing the path followed by the various channels of brine through
our sea ice, then it follows very naturally that the appearance of infinite
clusters should coincide with our ice-brine composite exhibiting some fluid
permeability. From this point of view, our infinite cluster density p∞(p) plays
the same role as our effective permeability k. As such, Golden et al. (2006)
were able to show that the vertical fluid permeability of our 3 dimensional
lattice behaves like

k∗(p) ∼ k0(p− pc)
e, (3)

Where e ≈ 2.0 is also a universal exponent and ko is called the permeability
scaling factor and depends on the velocity of the liquid brine and the radius
and connectedness of the channels (i.e. the brine microstructure) (Golden,
2009).

The result of the above is that we appear to have a workable model of the
lower scale structure that influences the behaviour of at least some aspect of
our homogenized parameter. Moreover, it seems like we can extract helpful
qualitative information about our homogenized parameter from this model.
We might be tempted on this basis to declare that our lattice model represents
a ‘mathematical structure’ that allows us, given the right mapping, to derive
the information contained in equation (3) in a purely mathematical fashion.

Things, unfortunately, are not so simple. Where our 3-dimensional lattice
model reaches its percolation threshold at pc ≈ .25, empirical measurement
indicates that the corresponding critical volume fraction of sea ice is φc ≈ 0.05.
As a result of this discrepancy, researchers concluded that it was “apparent
that key features of the geometry of the brine microstructure in sea ice were
being missed by lattices” (Golden, 2015, 700). In other words, while the lattice
percolation model provides a helpful framework for obtaining information
about the behaviour of our ice-brine composite, we require some additional
information about the microstructure involved before we can employ the
result in (3) in application. In particular, the mismatch in critical percolation
threshold prevents us from calculating the permeability scaling factor k0 in a
straightforward way.

Researchers have been able to identify a different set of percolation models
originally developed for compressed powders that exhibited the same percola-
tion threshold as that measured in our sea ice. The microstructure associated
with such compressed powder models also seems to resemble that associated
with our ice-brine microstructure in some topological respects. While these
compressed powders models are percolation models in the broad sense, they
differ from those we saw just above in that they do not employ a lattice struc-
ture. In this slightly different model, however, no straightforward derivation
analogous to (3) is possible. As it happens, aspects of the lattice structure are
integral to our ability to capture the permeability behaviour in some tractable
form (Torquato, 2002).

The challenge, then, is this: how can we use the more specific microstruc-
tural characterisation of the compressed powder model to fill in the details
required to actually extract applicable information from (3)? In particular,
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how can the compressed powder model help us to calculate the permeability
scaling factor, k0? The form of this problem is the same as the one we discussed
in more abstract terms in §3: how do we incorporate information captured by
a model using a certain mathematical machinery into a model built using very
different mathematical machinery? In short: how can we stitch together these
two models in order to obtain the information required for our application?

As in the case of our homogenization techniques, our two models cannot
be stitched together in purely mathematical terms. Relatively recent advance-
ments in techniques and technology for the detailed imaging of porous media
have allowed researchers to employ high resolution x-ray computed tomo-
graphical scans of sea ice samples in addressing this challenge. Powerful
software packages allow researchers to obtain highly detailed quantitative
characterisations of the brine microstructure of sea ice from these tomographi-
cal scans. Since the compressed powder model captures more specifically the
microstructural features of the ice-brine composite, we are able to combine
this extensive computationally-derived data with the compressed powders
model in a way that the lattice model does not allow (Golden, 2015). This
high resolution tomographical data allows us to do two things: (1) compute
approximate experimentally-derived relationships between the parameters
that appear in the compressed powders model and those that appear in the
lattice model, and then (2) exploit these relationships in using the compressed
powders model to numerically compute the permeability scaling factor that
appears in the lattice model. Researchers have achieved these tasks by ap-
plying techniques known as finite-size scaling and critical path analysis to the
tomographically-augmented compressed powder model. With our k0 thus de-
termined, we are finally in a position to understand (3) as telling us something
concrete about the permeability of our sea ice near criticality.

To summarise: the lattice percolation model allows us to obtain key in-
formation about the effective parameter that appears in our homogenized
equations as long as we can calculate the permeability scaling factor. Mis-
matches between the measured percolation threshold of sea ice samples and
that of the the 3D lattice mean that we cannot use the lattice model on its own
to calculate this k0. A different model allows us to calculate this k0 but only
insofar as we are able to combine the model with highly detailed computer-
generated scans that allow us to approximate the relationships between the
parameters that feature in the two models and then determine the k0 by more
or less brute force algorithmic computation. The chart in Figure 3 lays out
visually how these elements all combine to help us understand the behaviour
of our effective parameter, k. The arrows from one box to another indicate
roughly that the former provides input or is required to generate the latter.

The upshot here is that even when dealing with behaviour that takes
place at roughly a single scale, scientists must nonetheless sometimes stitch
a variety of mathematical tools together in order to obtain workable results.
Moreover, just as with our homogenization techniques, this stitching is not
purely mathematical. When we extract the result in (3) from our lattice model
and discover that we need information about the structure captured by the
compressed powders model to actually apply it, we do not simply construct
some mathematical bridge between the two structures. Rather, we exploit the
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fact that the compressed powders model is better placed to interface with the
X-ray computed tomographic data and thus that we can employ numerical
and computational algorithms to extract the information required. The lattice
model allows us to derive (3) and the compressed powder model allows us to
capture some of the microstructure missed by the lattices, but the connections
between the two required for the application are forged largely using empirical
data rather than purely mathematical relations.

Figure 3: A rough illustration of the final lay of the land. Blue boxes indi-
cate results and methods that involve a mixture of mathematical technique
and empirical data. Yellow boxes indicate mathematical representations,
methods, and results. Purple boxes indicate directly empirical information.
Red arrows indicate that certain elements cannot be connected in ta straight-
forward way. An arrow pointing from multiple elements to a single element
indicates that all of the elements are required to generate the result.

6 Evaluating the Mathematical Structure Assumption

We are now in a position to ask: how plausible does the key assumption of
the mapping account seem in cases such as the one we have just examined?
Recall that the MATHEMATICAL STRUCTURE ASSUMPTION holds that for any
application of mathematics in empirical science there exists a mathematical
structure of the appropriate kind. We suggested in §4 that for a structure
to be ‘of the appropriate kind’ it must allow us to capture both the range of
mathematical machinery involved and the relationships between those pieces
of mathematics that underpin the application in question. As we have seen,
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applied mathematicians sometimes obtain results by forging complicated
connections between different pieces of mathematics on the basis of both
empirical and mathematical considerations.19 If the mapping account is to
succeed in explaining the utility of mathematics in application, then there
must be appropriate structures for such applications. In short: if we take
seriously the suggestion that the requisite mathematical structure meet our
SCOPE and STITCHING requirements, then that structure must be capable of
handling the complexities of the application we have just met.

We must then ask: can the mathematics employed in our sea ice case be cap-
tured in the appropriate kind of structure? There are two particular difficulties
that such cases present. The first is that, as we mentioned earlier, the mathe-
matics required to frame a model of some system’s behaviour is not the same
as the mathematics required to apply or work with that model.20 Although we
may only need ‘some structures of analysis’ (in Bueno and Colyvan’s words)
to write down the PDEs that appear in our large scale climate models, we saw
that applying these equations to our sea ice system required appeal to geomet-
rical properties of our system, probabilistic correlation functions, numerical
and computational algorithms, and so on. Similarly, although we can frame
the result obtained in (3) in terms of the ‘structure’ of the lattice model, we saw
that applying this result required some additional computational machinery
and a new percolation model.

The problem here is that the additional mathematical machinery we must
employ to apply such models does not always seem as easy to capture in a
neat ‘structure’ as the mathematics used to frame the result or model applied.
If we restrict our attention to the mathematics required to frame our result
and thus by and large to fields that admit of axiomatic treatment such as
arithmetic, geometry, analysis, group theory, graph theory and so on, then we
might not see any problem with the suggestion that there is a mathematical
structure out there for every piece of mathematics that features. If we want
our mathematical structure to account in some sense for all of the mathematics
actually used in the application, however, then we may have cause for concern.
Many numerical and computational methods for dealing with complex PDEs
appeal as needed to a seemingly open-ended variety of mathematical notions
from different fields, as well as a variety of empirical and quasi-experimental

19To clarify, by ‘mathematical’ here I mean related to the formal relational properties of the
elements of some purported mathematical structure, whereas by ‘empirical’ I mean related to
some physical feature of the system in question.

20At this point one still might wonder: what kind of application of mathematics have we just
met? The mathematics in our sea ice case seems to serve a variety of purposes at once, such a
prediction, representation, and so on. In particular, is the mathematics in our case study used
for the purpose of working with the model involved or simply framing that model by way of a
set of equations? I am skeptical that there will be a definitive and clear way to assign a single
‘purpose’ to applications of mathematics that exhibit the kind of complexity we see in the case
just covered. Nonetheless, the point made in §2 bears reiterating: since proponents of mapping
accounts take their account to cover any application of mathematics, we need not worry about
whether the purpose for which the mathematics is employed in our case study is primarily
related to framing a model or working with it. The point is that whatever the various purposes
involved might be, the application that features in our case requires that we both frame a model
using some mathematical tools and then investigate the behaviour of that model in certain
tractable cases. If the mapping account is to handle such a case then we require a ‘mathematical
structure’ that can capture the mathematics relevant to both of these related tasks.
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notions from neighbouring disciplines such as computer science (for instance
classifications of computational performance). It is one thing to suggest that
we can easily capture things like symmetry groups, graphs, or number lines in
a ‘domain and relations’ structure, and quite another thing entirely to suggest
that we can do the same for things like spectral methods for dealing with
systems of PDEs or homogenization techniques for treating porous media.

Suppose, however, that this difficulty proves surmountable. That is, sup-
pose that we manage to catalogue all of the pieces of mathematics employed
in our application and associate each with a ‘domain and relations’-type struc-
ture. What is the ‘mathematical structure’ into which we eventually map?
Can we simply frame a structure by taking something like the union of all
these individual structures and mapping from some construal of our target
system into that? Recall that one of the constant refrains of our presentation
of the ice permeability case was that the utility or viability of applications
of mathematics often turns on our ability to forge meaningful connections
between the various pieces of mathematics we employ. It is not enough to
know how to model our system using the lattice percolation model on the one
hand and the compressed powders model on the other. We must understand
how it is that the latter allows us to apply a result that we can only obtain
within the framework provided by the former. That is to say that we need to be
understand the relationships between the various structures in our catalogue.

The second difficulty presented by cases such as our ice permeability model
is that, as we stressed in §5, the relations that allow us to employ various
pieces of mathematics in concert are often framed in empirical terms and
require empirical input. We cannot always construe in purely mathematical
terms the way that one model serves to refine, correct, or fill-in another. Our
lower scale lattice model is only able to relay information to our larger scale
climate model by way of a process of homogenization which appeals to both
mathematical features of our original equations and empirical features of the
system. We can use our compressed powders model to fill in details of the
lattice model because we can apply sophistical computational techniques to
high resolution tomographical scans and thus approximate the relationships
between the parameters that appear in either model. It is only in this way
that the compressed powder model can help us to determine the approximate
value of the parameter k0 which appears in the lattice model.

It is difficult to see how the kinds of ‘mathematical structures’ to which
the mapping account appeals can handle these kinds of combined empirical-
mathematical connections between the pieces of mathematics involved. Recall
that Nguyen and Frigg suggest that the only kind of relationships between
pieces of mathematics that such a notion of structure allows into the picture are
those that arise out of the structural arrangements specified by the extensions
of the various relations on our domain. Such an extensional characterisation
might allow us to consider relations such as “is greater than” or “is a factor
of”, but as we have repeatedly emphasised there is an important difference
between these and relations such as “equation (2) is an effect homogeniza-
tion of equation (1)” and “parameter µ can be computationally aligned with
parameter λ for the purpose of calculating the value of κ”. While we can
determine whether relations of the first kind hold by looking simply at the
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way that the elements of our mathematical structure are arranged, whether
relations of the second kind hold depends both on the mathematical features
of the relata and additional empirical features of our target system. There does
not seem to be any room for relations of the second kind within the kind of
structure countenanced by proponents of the mapping account.21

The upshot of all of this is that the key assumption of the mapping account
does not look particularly plausible in light of the more complex example we
have examined. The problem, at base, seems to be the notion of ‘mathematical
structure’ that lies at the heart of the mapping account. If we we want our
structure to meet the requirements we laid out in §4, then it will need to in
some way account for the more complex dynamics that we saw in our sea ice
case. Given these requirements, the MATHEMATICAL STRUCTURE ASSUMPTION

claims that there exists a mathematical structure that can capture (a) all of
the mathematics relevant to the application and (b) the relationships between
these pieces of mathematics.

In our sea ice case, (a) requires that the structure must capture not just the
mathematics used to frame the models involved but also the computational
and quasi-experimental methods used in working with those models, while
(b) requires that the structure be able to capture mixed mathematical-empirical
relationships between the pieces of mathematics that are integral to the success
of the application. It does not seem that a mathematical structure of the bare
‘set and relations’ variety outlined by Nguyen and Frigg is capable of tackling
(a) and (b). Recall that the MATHEMATICAL STRUCTURE ASSUMPTION claims
that the ‘right kind of structure’ exists given any application of mathematics
in empirical science. What emerges from the above then is that if ‘right kind
of structure’ means that the structure is of the bare ‘domain and relations’
variety described by proponents of the mapping account and meets the two re-
quirements outlined in §4, then such an assumption does not look particularly
plausible in light of cases such as our ice permeability model.

7 The Dynamics of the Mapping Account

It is worth considering a particular kind of reply to the line of argument devel-
oped above. Recall that Bueno and Colyvan’s inferential conception suggested
that the application of mathematics in empirical science involved several dif-
ferent steps, underpinned by two separate mappings. The proponent of a

21The point we develop here suggests a way of responding to the way that Bueno and
French (2018) dismiss the criticism of mapping accounts found in Batterman (2010). Batterman
suggests that scientific explanations often rely on asymptotic features of the mathematical
description of a system for which there is no physical analog. He further suggests that the
mathematical operations that allow us to understand these asymptotic features are not the
sort of thing that can be captured in a ‘mathematical structure’. Bueno and French simply
reply that insofar as these operations are run-of-the-mill mathematical operations, they “can
be characterized set-theoretically and hence represented within our framework” (Bueno and
French, 2018, 187). One way of paraphrasing Batterman’s point in the terms of this paper
is that the limiting relationships on which such asymptotic relationships rely are not purely
mathematical relationships. It is not because they are operations that Batterman suggests they
cannot be captured in the kind of structure required by the mapping acount, but rather because
we require both mathematical and empirical input to establish that the limiting relationship
exists.
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mapping account might suggest that the kind of difficulties we have discussed
can be handled by a more complex series of mapping steps. Rather than expect-
ing the bare mathematical structure itself to account for the thornier aspects
of some applications, we can instead construe such applications in terms of a
more complicated arrangement of immersion, derivation and interpretation
steps. In short, such a response argues that there is nothing wrong with the
MATHEMATICAL STRUCTURE ASSUMPTION, and that the key to understanding
cases such as the one we have presented lies in construing them as a series
of applications, each employing a different structure. In this section, we will
examine whether various ways of complicating the dynamics of the mapping
account can address the problems raised in the previous section.

7.1 Iterated Mappings

One way of complicating the dynamics of the mapping account might be
suggested by a remark made by Bueno and Colyvan in their original paper.
Bueno and Colyvan suggest that sometimes, our applications might require
multiple immersion steps. That is, we might immerse our empirical setup in
some mathematical structure, and then in turn immerse that mathematical
structure in another mathematical structure. To illustrate this, Bueno and
Colyvan consider a case in population ecology. We might map from some
population of rabbits to the natural numbers in order to make statements about
the size of the population at some particular time. However in investigating
this behaviour we might want to make use of some results about differential
equations, and so we may map our natural number structure into the real
numbers. Having availed ourselves of this second structure, we can easily map
back into the natural numbers (by rounding off in some way) and interpret
the result naturally from there.

Figure 4: Iterated Mappings.

Of course, not all situations are so simple. We may find that there is
no obvious way to interpret results found in further immersion steps as
physically significant. This is no matter, however. All we require, Bueno and
Colyvan suggest, is “an invertible mapping that is a conservative extension of
the mapping used at the immersion stage” (Bueno and Colyvan, 2011, 369).
Since such a mapping will agree with the immersion mapping on all cases,
we will be able to rely on the interpretation mapping from the first domain
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to our physical system to provide us with a physical interpretation of any
non-problematic cases.

The proponent of a mapping account might then suggest that the com-
plexity involved in our sea ice case can be dealt with in a similar way. We
start by mapping our system to some set of PDEs and then we map from
there into some other domain, and so on and so forth until we have all the
information we need. We then simply interpret our way back out through the
various mathematical domains we passed on the way in (since the immersion
mappings are each conservative extensions in turn) until we can interpret
finally from our original PDEs to our physical system once more. In our terms,
we might instead accommodate some case by providing a series of structures,
connected by iterated immersion steps. This series of structures would satisfy
SCOPE if all the relevant mathematics appeared in at least some structure and
STITCHING if the relevant relationships between those pieces of mathemat-
ics were captured either within some structure or in the mappings between
structures.

Promising as this approach may seem, it does not really succeed in avoid-
ing the difficulties faced by the simpler picture. In particular, we must still
find some structure for each piece of mathematics and we must still account
for the empirical connections established between the pieces of mathematics
employed.

Let’s begin with the first challenge. Supposed that we take the first im-
mersion step to somehow map our sea ice to the continuum scale PDEs that
govern the temperature field inside the sea ice. Recall that the next step in the
general approach involved employing homogenization techniques in order
to replace the parameter for averaged velocity with an effective fluid per-
meability tensor. What is the mathematical structure to which this second
immersion step might take us? Homogenization theory does not quite exist as
its own self-contained fiefdom of mathematics, but rather combines limiting
operations with computational methods specific to the nature of the medium.
In this sense it is more like a loose collection of methods and results sensitive
to the context of application (for instance, opportunities provided by the low
Reynolds number flow of our ice-brine composite). This allows us to, if we
are careful and lucky, reliably approximate rapidly varying parameters with a
better behaved effective parameter. It is not clear that there is an appropriate
way to represent homogenization methods so employed as a structure in the
way required.

Suppose that in spite of these difficulties, we succeed in finding a singular
relevant structure for the second immersion step to map into. We are still
left with the lower scale analog of STITCHING: saying something about how
these pieces fit together. In setting up some partial differential equation model
we almost always at first ignore a variety of physical processes that we must
later take into account somehow. Often these physical processes take place
at a variety of scales and so understanding the behaviour of our PDE in
light of them is a complicated matter. In practice, when we introduce new
mathematical tools into our model we are often correcting for precisely these
initially overlooked processes and so require not simply a mathematical bridge
between our tools but (as we have stressed) new physical information to make
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sense of this connection.
While our lattice percolation model provided a helpful way of character-

ising our brine flows, experimental discrepancies alerted us to the fact that
“key features of the geometry of the brine microstructure were being missed
by lattices” (Golden, 2015, 700). Taking account of these key features involved
making use of cutting edge imaging techniques to examine the microstructure
of the sea ice in such a way that we could more or less brute force the scaling
factor required in the lattice model by a combination of numerical techniques.
Once again, the task of constructing a thread through our assembled mathe-
matical tools demands that we not only exploit their mathematical relations
but import new physical information as well.

We can see how sharp a challenge this dynamic poses to the mapping
account if we recall Bueno and Colyvan’s suggestion that all we require
for further immersion stages is “an invertible mapping that is a conservative
extension of the mapping used at the immersion stage” (Bueno and Colyvan,
2011, 369). On such a picture, we immerse our physical system in some
mathematical structure and until it comes time to interpret our results we are
engaged solely in the task of exploiting mathematical relations of various kinds.
Within this picture, we can parse the conservative extension requirement as
the demand that any new mathematical tools introduced not strictly speaking
tell us anything new relative to the original bridge we established between
our physical system and mathematical domain.

This would appear to leave no room, however, for precisely the dynamic
that we have described. If we require, as we have seen in our ice melt case, that
we import fresh physical information in order to understand the connection
between newly introduced mathematical tools, then in fact we require that
the new machinery tell us about processes we have previously ignored. We
exploit numerical methods and imaging techniques applied to the compressed
powders model to allow us to correct for the microscale processes ignored by
our lattice-related tools. The model-theoretical demand that further immersion
be conservative extensions is not in any clear sense met in cases like these, and
that is precisely the point!

7.2 Sequential Mappings

If one of the problems with the iterative approach is that it makes it difficult
to see how fresh empirical information can enter the picture, the structuralist
might instead try to capture the kinds of processes described in our case study
in terms of a sequence of mappings. In this sense, we might think that our case
is better described as a sequence of applications of mathematics. According
to this response, our scientists perform the three steps outline by Bueno and
Colyvan, employing the appropriate mappings, and thereby learn something
about the physical system in question. With this augmented understanding of
our physical system, we may then map once again from our physical system
into some (possibly different) mathematical domain, carrying with us some
additional information if required. We may then follow the same process as
before, continuing to learn about our system.

That is to say that the task of characterising the behaviour of our system
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need not be confined to one set of mappings. We can progressively learn
more and more about our system by way of mappings between its physical
structure and the mathematical machinery appropriate to different scales and
dynamics. Eventually, so the response goes, we will begin to develop a picture
of the behaviour of our system as a whole.

Figure 5: Sequential Mappings.

The difficulty here is that in many cases, we are able to develop an im-
proved picture of our system’s behaviour only by stitching together the het-
erogeneous mathematical representations that we employ at different levels.
In the terms of our sequential strategy, we need to link together not just the
physical information that we extracts but also features of our various pieces of
mathematics which otherwise live in different sequential mapping situations.
For instance, using the compressed powder model to fill in details overlooked
by the lattice model, we do not simply map into some geometric domain and
back in order to obtain some physical information p1 (equation (3)) and then
map into some other domain and back in order to obtain some other pieces of
physical information p2 (the permeability scaling factor). Our ability to extract
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this p2 relies not just on p1 considered as a physical fact about our system
interpreted in some new mathematical domain but rather on intricate details
to do with the mathematical process by way of which we were able to obtain
p1 in the first place.

Similar considerations mean that such a sequential mapping approach is
ill-suited to capturing the interactions between the behaviours our system
displays at different scales. We might think that we can simply represent our
models at different scales as separate mapping applications, from which we
extract pieces of physical information that we can combine in order to provide
some more general picture of our system’s behaviour. But as above, the prob-
lem is that a proper understanding of how systems behave across scales rarely
involves the passing of purely physical information between different models.
In practice, we can fruitfully combine mathematical representations at differ-
ent scales often only by by exploiting mathematical relationships that obtain
between them and by using fresh empirical data to facilitate communication
between these representations.

Where the iterative strategy made it very difficult to see how the required
fresh physical information is able to enter into the picture at key moments, the
sequential strategy makes it hard to see how our heterogeneous mathematical
domains can interact with one another. If we wipe the mathematical slate
clean with every new mapping, how can our models interact with one another
mathematically? Leaving aside the issues regarding the SCOPE requirement
which affect the sequential approach as much as the iterative one, it is hard
to see how this kind of response is able to meet our STITCHING requirement
given that the various mathematical tools we employ are not really made to
work together in any meaningful sense.

7.3 A Hybrid Approach

To summarise the above, we might say: iterated mappings may (with serious
caveats regarding SCOPE) help us to get more mathematics into the picture as
we need it, but we face problems bringing fresh empirical information into
the picture. On the other hand, sequential mappings allow for fresh empirical
information to be brought to bear but close off our various mathematical tools
from interacting with one another. The natural next thought might be: why
wouldn’t some hybrid approach work? We could accommodate our sea ice
application in terms of a mix of iterated and sequential mappings, utilizing
mathematical connections between tools and empirical connections between
levels of description as appropriate. When we need fresh mathematical ma-
chinery, we iterate, and when we need fresh empirical information, we begin
a new sequence.

Yet as we saw above, our various mathematical tools are stitched together
in ways that rely on both mathematical connections and empirical information.
One of the constant refrains of this paper has been that the investigation of
complex scientific problems often demands that mathematical and empiri-
cal concerns be intertwined in intricate ways. The connections between our
various mathematical tools often only make sense in light of fresh empirical
detail, evidenced by the fact that we required the use of tomographical data
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and computational techniques to forge the right kind of connection between
our compressed powders model and our lattice model. Additionally, the
connections between empirical details of our model must often be mediated
according to the mathematical tools employed in securing them, as in the fact
that the information we obtain about our brine microstructure can only be
accommodated in our climate models by way of the relevant homogenization
limit. A hybrid approach allows us a limited capacity to bring new mathe-
matics into play and the ability to return to the drawing board in search of
fresh physical information, but it does not appear to allow these processes
to be intertwined in any meaningful way. Leaving aside the challenge of
finding some single structure within which we can house our various iterated
or sequential mappings (i.e. SCOPE), any approach which leaves no room
for the way that mathematics and empirical data combine to secure reliable
scientific results fails to satisfy our STITCHING requirement.

That is all to say that even this hybrid approach has trouble meeting our
STITCHING requirement in more complicated circumstances. The problem
lies in the assumption that the relationships between the different tools we
assemble after our first foray into some mathematical domain can be captured
in purely mathematical terms. As we have seen, a great deal of physical
information originally ignored must often be introduced in order to articulate
how these tools relate to one another. In fact, such new tools are often intro-
duced precisely because discrepancies at one level have demanded that we
find some way to account for information previously ignored. In short, it does
not look as though we can save the MATHEMATICAL STRUCTURE ASSUMPTION

by construing cases such as the one we have examined in terms of a series of
sequential, iterated, or hybrid mapping applications.

8 Concluding Remarks

Where does all of this leave the mapping account? The problem, we have
suggested, lies in the core notion of ‘mathematical structure’ around which it
is framed. One way of putting the upshot of this paper is this: in more compli-
cated cases, it is not at all clear that mathematical structures of the bare ‘set and
relations’ variety are able to meet two requirements we might plausible like
them to, given the explanatory ambitions of the mapping account. Applying
mathematics to the physical world involves more than simply finding the
right way to associate parts of some physical structure with elements in some
mathematical structure and letting a deductive inferential procedure unfold
and doing our best to interpret what comes out the other side. The inferen-
tial procedures that unfold once we have managed to find some appropriate
mathematical model of our physical system often rely on fresh empirical data
and mathematical manipulation in equal measure in a way that seems difficult
to capture within the bare formal landscape in terms of which the mapping
account is framed.

We might ask: if the mapping account does not work in more complex
cases, then how ought we to conceive of the application of mathematics in
empirical science? Of course, I can hardly present a fully formed account
here, but the problems we have outlined may hold some clues to answering
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this question. The main difficulty for mapping accounts as I have argued
is the fact that the complexities of real life application often require that we
employ a variety of pieces of mathematics, the relationships between which
are mediated by thoroughly empirical considerations. However we are to
understand applied mathematics, then, it cannot be in such a way that our
mathematical tools are siloed off from the empirical considerations that must
inevitably inform their use.

To frame a broad suggestion: perhaps the lesson to learn from the diffi-
culties encountered by the mapping account may be that mathematics plays
other roles in empirical application than the inferential one highlighted by
proponents of the mapping account. To be sure, mathematics does often
provide us with a domain of structures we can use to represent physical sys-
tems at some level of generality and within which inferences can be easier
to obtain. It also allows us to develop physically-informed techniques for
correlating variables and parameters in different mathematical models, find
effective parameters by exploiting patterns in the physical behaviour of a sys-
tem along with facts about its geometry, develop broad recipes for applying
computational methods to certain kinds of empirical systems, and so on. Most
importantly, intermingling empirical considerations with mathematical ones
is precisely what allows us to understand how all of these individual uses of
mathematics can coalesce into a helpful treatment of some system.

It may be true that the various pieces of mathematics that play the roles
canvassed above can be captured in isolation as the kind of extensionally-
defined structures favoured by proponents of the mapping account. Yet
as we have seen this does not necessarily shed light on the role that they
play in empirical application. If it is true, as I have argued, that mapping
accounts cannot capture the intermingling of mathematical and empirical
considerations characteristic of more complex scientific cases, then the upshot
of this may be that we require a broader appreciation of the various roles
played by mathematics in empirical application.22

At the very least, I hope to have shown that properly evaluating the plau-
sibility of mapping accounts of applied mathematics will involve venturing
beyond the restricted class of examples typically featured in the literature.
Modern scientific practice is increasingly characterised by multiscalar mod-
elling, computational and numerical methods and the use of a heterogeneous
array of mathematical tools. We should not accept any account of applied
mathematics as satisfying before we have given detailed consideration to its
ability to handle applications of this kind. In considering one such example, I
hope to have shown that the difficulties encountered by such accounts stem
not from complexities parochial to each account but rather from the common
way in which such accounts invoke the notion of mathematical structure.

22In fact it seems to me that both Batterman (2010) and Kasirzadeh (2021) are efforts in more
or less this vein.
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