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Abstract 
Our work explores the assistance dilemma: when should 
instruction provide or withhold assistance? In three separate 
but very similar studies, we have investigated whether worked 
examples, a high-assistance approach, studied in conjunction 
with tutored problems to be solved, a mid-level assistance 
approach, can lead to better learning. Contrary to prior results 
with untutored problem solving, a low-assistance approach, 
we found that worked examples alternating with isomorphic 
tutored problems did not produce more learning gains than 
tutored problems alone. On the other hand, the examples 
group across the three studies learned more efficiently than 
the tutored-alone group; the students spent 21% less time 
learning the same amount of material. Practically, if these 
results were to scale across a 20-week course, students could 
save 4 weeks of time – yet learn just as much. Scientifically, 
we provide an analysis of a key dimension of assistance: 
when and how often should problem solutions be given to 
students versus elicited from them? Our studies, in 
conjunction with past studies, suggest that on this example-
problem dimension mid-level assistance may lead to better 
learning than either lower or higher level assistance. While 
representing a step toward resolving the assistance dilemma 
for this dimension, more studies are required to confirm that 
mid-level assistance is best and further analysis is needed to 
develop predictive theory for what combinations of assistance 
yield the most effective and efficient learning. 

Keywords: Instruction and Teaching, Learning, Skill 
acquisition and learning 

Introduction 
Building on past notions like “zone of proximal 
development” (Vygotsky, 1978) and cognitive 
apprenticeship (Collins, Brown, & Newman, 1990), the 
assistance dilemma (Koedinger & Aleven, 2007) 
characterizes a long-standing unsolved problem in the 
learning sciences: when should instruction provide students 
with assistance and when should it be withheld? Some 
researchers have argued for providing maximal assistance 
(e.g., Kirschner, Sweller, & Clark, 2006) while others argue 
for minimal assistance (e.g., Steffe & Gale, 1995).  

In three studies in the domain of chemistry, we have 
explored the assistance dilemma, investigating whether two 
instructional devices – worked examples and personal/polite 
language – can provide learning support beyond what is 
provided by an intelligent tutoring system (McLaren et al, 
2006; 2007). In this paper we focus exclusively on the 
worked examples aspect of our studies. More specifically, 

we summarize the McLaren et al results in experimenting 
with an intelligent tutor supplemented with worked 
examples (a combination that has only recently been 
investigated) and discuss new analyses of these three 
studies. The worked example principle, as stated in Clark & 
Mayer (2003) is: “Replace some practice problems with 
worked examples”, i.e., provide students with an alternating 
combination of worked examples and problems. The theory 
behind the principle is that human working memory, which 
has a limited capacity, is taxed by strictly solving problems, 
which requires thinking, such as the setting of subgoals. 
Such mental work consumes cognitive resources that could 
be better used for learning (Sweller, Van Merriënboer, & 
Paas, 1998). The rationale, then, is that worked examples 
free those resources for learning processes, in particular, the 
induction of (or modifications to) knowledge components. 

But then why mix worked examples and problem solving, 
as suggested by the worked example principle? The theory 
seems to suggest that worked examples provided alone, a 
high-assistance approach, would be best for learning. What 
does empirical research say about this theory and the 
combination of worked examples and problem solving? 

One way of answering this question is to evaluate past, 
representative studies along an example-problem dimension 
of assistance, which represents different levels of assistance 
that students may receive while learning (see Figure 1). 
Arguably, problem solving with no tutoring is the least 
assistance approach (level “1” in Figure 1), followed by 
problem solving with tutoring (“2”), worked examples with 
no explanation of individual problem-solving steps (“3”), 
and, finally, the highest assistance case is worked examples 
with explanations of individual steps (“4”). The vertical 
arrows next to each of the studies on the dimension of 
assistance show the conditions compared in that study. 
Thick arrows indicate precise conditions on the continuum 
(e.g., the Paas, 1992 study  had one condition which was 
precisely level 1) or contiguous, combination conditions 
(e.g., the Schwonke et al, 2007 study had one condition 
which alternated assistance between levels 2 and 3), while 
thin arrows denote noncontiguous, combination conditions 
(e.g., the Paas, 1992 study had a second condition which 
alternated levels 1 and 3).  

Lovett’s study (bottom of Figure 1) compared all four 
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levels of assistance1 and found that problem solving without 
tutoring was best, with superior near and far transfer gains 
(indicated by the “+” and “#” signs), while worked 
examples with explanations, on the other end of the 
spectrum, also led to superior far transfer gains (indicated 
by the “+”), as compared to the middle two conditions 
(Lovett, 1992). 

 

 
Figure 1: The example-problem dimension of assistance and a 
variety of studies that have compared different levels of 
assistance, e.g., Paas & Van Merriënboer, 1994 compared 
problem solving with no tutoring to worked examples with no 
explanations, finding better near and far transfer for the latter. 

Paas found that students who studied eight unexplained 
worked examples and solved four untutored problems (a 
mixed condition indicated by the thin arrow pointing 
between “2” and “3”) worked for less time and scored 
higher on both near and far transfer tests than students who 
solved all 12 problems (Paas, 1992). Trafton and Reiser 
(1993) compared problem solving with no tutoring to 
interleaved worked examples and problem solving with no 
tutoring. They found statistically significant near transfer 
learning gains and learning efficiency for the alternating 
condition. Paas and Van Merriënboer (1994) compared 
problem solving with no tutoring to all worked examples 
with no explanations, finding the all examples condition to 
be significantly better in both far transfer learning and 
efficiency2. Kalyuga and colleagues (2001) compared 
untutored problem solving with alternating unexplained 
examples and untutored problem solving in an extended 

                                                             
1 Note, however, that “problem solving with tutoring” was not 
intelligent tutoring, but rather elaborated explanations provided by 
a human experimenter during problem solving.   
2 It is worth noting that in this study – as well as others, such as 
(Lovett, 1992; Trafton & Reiser, 1993) – examples and/or 
solutions were provided in the problems-only condition after a 
student unsuccessfully completes a problem.  Thus, there is an 
element of “worked examples” even in the pure problem solving 
condition.  

experiment with multiple stages and training sessions. They 
initially found a significant difference in normal learning 
gains and efficiency in favor of the mixed examples / 
problem solving condition (indicated as the “Early” study 
on the dimension of assistance) but, as students gained more 
expertise through training sessions, a significant near 
transfer (but not efficiency) advantage to problem solving 
was identified (indicated as the “Late” study). 

More recently, researchers have compared the region of 
this dimension of assistance that represents tutored problem 
solving with other forms of assistance. For instance, the 
study that Schwonke and colleagues (2007) conducted 
compared tutored problem solving with alternating worked 
examples and tutored problem solving. They got a null 
effect for normal learning gains in two separate studies, but 
learning was more efficient in both studies with transfer 
learning found in the second study. The studies discussed in 
this paper are similar to the Schwonke et al work, in that 
they compare alternating worked examples and tutored 
problem solving with tutored problem solving alone, but 
differ in that Schwonke et al explicitly leveraged the results 
of Kalyuga et al (2001) by “fading” examples from the 
materials, as students gained expertise. No example fading 
was done in the studies reported in this paper. 

Why Isn’t the Science Done? 
Taken together, the studies in Figure 1 give rise to a couple 
observations – and scientific questions – about the 
dimension of assistance and the assistance dilemma. First, 
notice that the results in Figure 1 are not definitive on the 
issue of whether more or less assistance is beneficial to 
learning. For instance, the Lovett study demonstrates that 
both a low and a high assistant approach could be beneficial, 
and the Kalyuga studies suggest that assistance should 
decline over time, as subjects gain expertise. Thus, there is 
clearly room for continued studies comparing levels of the 
example-problem dimension of assistance. Second, as 
already noted, until recently there had been little study of 
the comparative contributions of learning with intelligent 
tutored problem solving and other forms of assistance. 
Tutored problem solving is a mid-level assistance approach 
that provides more assistance than untutored problem 
solving but somewhat less than worked examples. Only the 
Schwonke et al study, as well as our own, have explored the 
combination of tutored problems and worked examples. 
Finally, and somewhat contrary to the first observation, 
notice that most of the results, beginning with Paas (1992), 
indicate a tendency for mid-level assistance being most 
beneficial to learning, and in particular the approach of 
alternating worked examples with problem solving. In fact, 
the worked examples principle is based on these findings 
(Clark & Mayer, 2003). Thus, it appears the example-
problem dimension of assistance may be represented as an 
inverted-U, in which the mid-level approaches yield the 
greatest learning benefits, while the lesser and greater 
assistance approaches yield somewhat lesser benefits (at 
least for the average student). A hypothesis that arises from 
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these observations – and the one we are interested in and 
have tested in the studies reported in this paper – is: 

The interleaving of worked examples with 
problems supported by an intelligent tutor will 
further improve learning beyond the benefits of 
the tutor itself  

Does the assistance provided by an intelligent tutor 
possibly replace the assistance of worked examples? 
Consider, for example, that a tutor could be seen as a way of 
converting a problem into an example by providing the next 
step, as a hint, when the student is stuck. In short, exploring 
the combined affect of worked examples and tutors – and 
how the two types of assistance differ from and/or 
complement one another – is still an open scientific 
question. 

In addition to exploring the above hypothesis and 
continuing to flesh out the example-problem dimension, 
continued worked examples studies are scientifically 
important because the worked example principle relies 
primarily on short-duration lab studies; it has rarely been 
tested in real classrooms over longer durations3. That is, 
most past studies have lacked ecological validity, since 
subjects were paid, worked with content outside a real 
academic curriculum, and studied the materials for short 
periods of time, often for less than an hour. The studies 
discussed in this paper were done for class credit (except for 
the first study), covered topics that are part of an intro to 
chemistry course, and took students from 1.5 to 6.5 hours to 
complete all materials (i.e., pretest, tutors, worked 
examples, videos, posttest, and questionnaires). 

The Stoichiometry Tutor and Examples 
Our studies involved the learning of stoichiometry and the 
use of the Stoichiometry Tutor (McLaren et al, 2006). 
Solving a stoichiometry problem involves understanding 
basic chemistry concepts (e.g., the mole, unit conversions) 
and applying those concepts in solving equations of ratios. 
The student must fill in the terms of an equation, correctly 
cancel numerators and denominators, provide reasons for 
each term (e.g., “Molecular Weight”), and calculate and fill 
in a final result. 

Applying the principles of cognitive tutoring (Anderson 
et al, 1995), the tutor provides the student with hints on 
request and also provides context-specific error messages 
when the student makes a mistake. For more description of 
both the stoichiometry problems and the Stoichiometry 
Tutor itself, see (McLaren et al, 2006). 

Worked examples in the studies are Flash videos in 
which a narrator solves a stoichiometry problem using the 
Stoichiometry Tutor, describing each of the steps taken. 
(Note that worked examples are higher assistance than tutor 
use, as intermediate steps and answers are provided in the 
worked examples without the student asking for hints.) 

                                                             
3 One exception is the Kalyuga et al study (2001). Although not a 
classroom study with intelligent tutors, they tested over periods of 
greater than 6 hours. 

After watching the video the student is prompted with 3 to 5 
multiple-choice, self-explanation questions. Their responses 
are “graded” (i.e., right or wrong) and the student cannot 
proceed until they have correctly answered all of the self-
explanation questions. Self-explanation is a robust learning 
principle that has been shown in many studies to promote 
deeper learning, beginning with the work of Chi et al 
(1989). 

Study Design and Procedure 
For all three studies a 2x2 factorial design was employed. 
The independent variable of primary interest in this paper is 
Worked Examples, with one level being Tutored Alone and 
the other Worked Examples + Tutored. In the former 
condition, which will be referred to as the “Problems 
Condition” henceforth, subjects only solved problems with 
the tutor; no worked examples were presented, as shown in 
the left column of Table 1. In the latter condition, which will 
be referred to as the “Examples Condition” and which is 
illustrated in the right column of Table 1, subjects alternated 
between observation and prompted self-explanation of a 
worked example (as previously described) and solving of an 
isomorphic problem with the aid of the Stoichiometry Tutor 
(i.e., Study Problems #1 and #2 are isomorphic to one 
another, #3 and #4 are isomorphic, and so on). Isomorphic 
problem solutions have the same number, type, and order of 
terms. The second independent variable, personalization, 
with one level personal problem statements the other 
impersonal problem statements, has not and will not be 
further discussed, since it is not the focus of the current 
paper.  Discussion of this variable and findings related to it 
can be found in McLaren et al (2006; 2007). 

All instructional materials were provided via the Internet. 
All subjects were given pre- and post-questionnaires, 
requesting demographic information, chemistry background, 
and – in the post-questionnaire – assessment of the tutors. 
All subjects were also given online pre and posttests, with 
the problems on the posttest isomorphic to the pretest 
problems. All pre and posttest problems involved the same 
type of problems as the study problems. The subjects 
worked on the 10 study problems, presented according to 
the conditions of Table 1, with the Problems Condition 
working only on tutored problems and the Examples 
Condition working on alternating (and isomorphic) 
examples and tutored problems (ala Trafton and Reiser 
(1993)). Instructional videos on chemistry content were 
intermingled with the study problems in both conditions. 

All individual steps taken by the students in the pretest 
and posttest were logged and automatically marked as 
correct or incorrect. A normalized score between 0 and 1.0 
was calculated for each student’s pre and posttest by 
dividing the number of correct steps by the total number of 
possibly correct steps. Pretest scores indicated that students 
were balanced across conditions (except for low pretest 
scores in the Problems Condition of study 2, see Figure 2). 

Table 2 summarizes the N value, target populations, and 
noteworthy characteristics of the three studies. 
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Table 1. Study Design for the independent var. Worked Examples4 

Problems Condition  
(i.e., Tutored Alone) 

Examples Condition 
(i.e.,Worked Examples 

+ Tutored)* 
Pre-Questionnaire < Same as on left > 

Videos: Introduction to Stoich 
Study, Intro to Pretest User 

Interface 

 
< Same as on left > 

5 Pretest Problems < Same as on left > 
Videos: Intro to Study 

problems, Stoichiometry Problem 
Solving Strategy, Dimensional 

Analysis & Avogadro’s #, 
Significant Figures 

< Same as on left > 

Study Problem # 1 Worked Ex. of Problem #1 
Study Problem # 2 < Same as on left > 

Video: Molecular Weight < Same as on left > 
Study Problem # 3 Worked Ex. of Problem #3 
Study Problem # 4 < Same as on left > 

Video: Comp. Stoichiometry < Same as on left > 
Study Problem # 5 Worked Ex. of Problem #5 
Study Problem # 6 < Same as on left > 
Study Problem # 7 Worked Ex. of Problem #7 
Study Problem # 8 < Same as on left > 
Study Problem # 9 Worked Ex. of Problem #9 

Study Problem # 10 < Same as on left > 
Post-Questionnaire < Same as on left > 

Video: Introduction to Post Test < Same as on left > 
5 Posttest Problems 

(Isomorphic to Pretest) 
< Same as on left > 

 

Table 2. Populations and Characteristics of the Three Studies 

St. 
# 

N Subject 
Pop. 

Notes 

1 63 College  o Intro to college chem class 
o Presented as optional study material  
o Subjects paid $25 for participation 
o High drop-out rate, over 100 started 
o Published in (McLaren et al, 2006). 

After outlier screening, N was adjusted 
from 69 to 63 

2 60 High 
School 

o Mix of intro and Advanced Placement 
(“AP”) chem students 

o Extra credit; very low dropout rate 
o Briefly cited in (McLaren et al, 2007) 

but otherwise unpublished. After 
outlier screening, N was adjusted from 
76 to 60 

3 81 High 
School  

o Mix of intro and AP chem students 
o Extra credit; very low dropout rate  
o Preliminary results with N=33 

published in (McLaren et al, 2007).  

                                                             
4 This is the design for studies 2 and 3. There were two differences 
between study 1 and studies 2 and 3. First, we had to shorten the 
intervention for use in high schools, the subject population of the 
latter two studies.  There were 9 Pre and Posttest problems and 15 
Study Problems in Study 1, instead of 5 and 10, respectively. 
Second, while there were prompted self-explanation questions after 
the worked examples in studies 1 and 2, there were none in study 
3. 

Results 
Repeated measure ANOVAs conducted on the pre / 
posttests in each study revealed significant learning across 
all conditions (Study 1: F(1,59)=68.18, p<.001; Study 2: 
F(1,56)=77.30, p<.001; Study 3: F(1,77)=95.71, p<.001). 
On the other hand, there were no statistically significant 
main effects in any of the studies due to worked examples, 
according to ANOVAs done on the difference (post - pre) 
scores between the Examples and Problems conditions 
(Study1: F(1, 61) = 0.005, n.s.; Study 2: F(1, 58) = .026, 
n.s.; Study 3: F(1.79) = 1.691, n.s.). In other words, the 
subjects in the Examples Condition did not learn more than 
those in the Problems Condition. These results can be seen 
visually in the graphs of Figure 2. 
 

 

 
Figure 2. Means of Adjusted Posttests of Studies 1-3 

However, subjects in the Examples Condition in all of the 
studies spent less time with the study problems (of those 
who did at least ½ of the problems), at a statistically 
significant level, as shown in Table 3. (This efficiency 
analysis, as well as the analyses shown in all of the 
remaining tables, was done after all of the studies were 
completed and thus is first reported here, i.e., these are new 
results, not reported in (McLaren et al, 2006; 2007).) 

Table 3. Average total time spent doing problems, Examples vs. 
Problems Conditions. Includes time spent on Study Problems 1 
through 10, in Table 1 (1 through 15 for study 1); excludes time 
spent on pretest, posttest, questionnaires, and videos. The P-value 
was calculated using ANOVA between the Examples and 
Problems Conditions’ time. Effect size was calculated using 
Cohen’s d, with following assumptions: d >= 0.8 (Large effect), d 
>= 0.5 (Medium effect), d >= 0.2 (Small effect) (Cohen, 1998). 

St. 
# 

Examples 
Condition 
Avg. Time 

Problems 
Condition  
Avg. Time 

P- 
P-val. 

Effect Size 
(Cohen’s d) 

1 48 min (sd = 14) 71 min (29) 0.000* 1.02 (Large) 

2 57 min (25) 72 min (25) 0.029* 0.59 (Medium) 

3 64 min (16) 73 min (18) 0.019* 0.54 (Medium) 

* - Significant result 
In other words, the subjects in the Examples Condition, 

while they did not learn more, they learned more efficiently 
than those in the Problems Condition. This can be seen in 
Table 4. In studies 1 and 3 the difference between the 
learning efficiency in the Examples and Problems 
Conditions was statistically significant in favor of 
Examples, while in study 2 the difference was not 
statistically significant but still favored the Examples 
Condition. 
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Table 4. Learning Efficiency, calculated, per subject, as z-score 
(learning gain) - z-score (instructional time) with z-score = (value 
– average) / standard dev. Values in Table 4 are averages across all 
subjects. The P-value was calculated using ANOVA between the 
Examples and Problems Conditions’ learning efficiency. 

St. 
# 

Examples 
Condition 
Learn. Eff. 

Problems 
Condition 
Learn. Eff. 

P- 
value 

 

Effect Size 
(Cohen’s d) 

1 0.47 -0.45 0.005* 0.75 (Medium) 
2 0.24 -0.26 0.146 0.39 (Small) 
3 0.40 -0.41 0.015* 0.56 (Medium) 

* - Significant result 

Discussion and Conclusions  
In all three of our studies, the results showed that students 
did not learn more in the alternating Examples Condition, 
contrary to the findings in earlier studies such as (Trafton & 
Reiser, 1993; Kalyuga et al, 2001). On the other hand, the 
Examples Condition did learn more efficiently, using 21% 
less time to complete the same problem set. If these results 
were to scale across a 20-week course, students could save 4 
weeks of time – yet learn just as much. 

Of course, our studies are different from earlier studies in 
that they involve tutored problem solving, instead of 
untutored problem solving. One possible reason for the null 
learning result is that the students in the Problems Condition 
equalized themselves to the Examples Condition by using 
the tutor to create examples through the reading of the 
bottom-out hints in the tutor (which provide the answer). 
This might neutralize the expected learning advantage of 
first studying and then self-explaining examples in the 
Examples Condition. There is some evidence this occurred, 
as can be seen in Table 5. In studies 2 and 3 the students in 
the Problems Condition used the bottom-out hint more when 
working on the first of the isomorphic example-problem 
pairs, at a statistically significant level but modest effect 
size, and in study 1 the comparison was also in this 
direction, although not significantly so. This provides some 
support for the hypothesis that students try to make an 
example out of a tutored problem that is the first of a 
matched pair of isomorphic problems. 

But what explains our finding that the Examples 
Condition worked more efficiently than the Problems 
Condition? As can be seen in Table 6, students in the 
Examples Condition worked much faster on the first of the 
isomorphic example-problem pairs (”Isomorphic Problem 
n”) than the second problem (“Isomorphic Problem n+1”), 
with a statistically significant interaction effect between the 
paired problems in the Examples and Problems Conditions 
in all three studies. In other words, the extra time the 
students in the Problems Condition take on Isomorphic 
Problem n – even though it often seems to be used to turn 
problems into examples, as shown in Table 5 – is not 
benefiting them. This may be because clicking through hints 
is a less efficient way to see an example compared to seeing 
the example immediately, as in the Examples Condition. Or 
perhaps students in the Problems Condition simply waste 

more time floundering with the tutor in search of a solution. 
The difference in time on task between the Examples and 
Problems conditions cannot be attributed to students 
skimming the worked examples; we found that students 
spent, on average, 127% (sd=0.63) of the example video 
time working on the examples5. 

Table 5. Comparison of bottom-out hints taken per student on the 
1st and 2nd problems of the isomorphic pairs in the Problems 
Condition. The P-value was calculated by a 2-tailed t-test between 
the number of bottom-out hints in the 1st and 2nd problems across 
all students. (Note: Statistics were run on all problem pairs except 
one that was clearly faulty, i.e., one pair of problems was not 
isomorphic. In this pair, the same terms were required to solve 
both problems, but in reverse order. Even with this outlier pair 
included, the difference (and direction) between the Example and 
Problem conditions was statistically significant in study 2, but not 
so in studies 1 and 3.) 

 
St. 
# 

Avg. Bottom-
Out Hints 

Isomorphic 
Problem n 

Avg. Bottom-
Out Hints 

Isomorphic 
Problem n+1 

 
P-val. 

 
Effect Size 
(Cohen’s d) 

1 3.2 (sd = 6.0) 2.8 (6.0) 0.320 0.07 (None) 
2 4.1 (5.1) 1.9 (3.0) 0.002* 0.53 (Med.) 
3 5.1 (6.9) 3.1 (5.7) 0.002* 0.31 (Small) 

* - Significant result 

Table 6. Comparison of the avg. time spent on the 1st and 2nd 
problems of the isomorphic pairs in the Examples and Problems 
Conditions. The int. P-val. was calculated by a 2-way ANOVA.  

St #  

 

Condition Isomorphic 
Problem n 

Isomorphic 
Problem n+1 

 

P-val. 

Examples 
Condition 

2.0 min  
(sd = 1.0) 

4.3 min (1.3)  

0.000* 
 

1 Problems 
Condition 

4.9 min (1.9) 4.6 min (2.0)  

Examples 
Condition 

4.8 min (1.3) 6.7 min (4.5)  

0.001* 
 

2 Problems 
Condition 

7.7 min (2.9) 6.6 min (2.4)  

Examples 
Condition 

4.8 min (1.5) 5.0 min (1.7)  

0.000* 
 

3 Problems 
Condition 

8.2 min (2.9) 4.0 min (1.0)  

* - Significant result 
While we did not test for far transfer effects in our 

studies, prior studies of worked examples and self-
explanation have found null effects on normal tests (i.e., 
near transfer), yet statistically significant effects on far 
transfer. For example, the study of Schwonke et al (2007), 
similar in many respects to our studies, also got a null effect 
for normal learning, but a significant effect in favor of the 

                                                             
5 This includes the time spent video viewing and answering self-

explanation questions. The large standard deviation is due to 
students in study 1 spending only 62% time with the examples. 
This can be explained by (a) college students being more likely to 
know the material, thus being more likely to skim, and (b) not 
being prompted with self-explanation questions as in studies 2 & 3. 
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Examples Condition, for conceptual transfer. This study 
illustrates that it is possible the study and self-explanation of 
examples is more likely to have an effect on conceptual 
learning than on normal learning. The study of Paas and 
Van Merriënboer (1994) also demonstrated that examples 
could have a significant effect on transfer learning. While 
they did not test normal learning – and thus it is unsure they 
would have gotten null effects – their transfer tests resulted 
in statistically significant learning gains and efficiency, 
again in favor of the worked examples condition. We intend 
to explore this in subsequent studies in which we will 
include conceptual, transfer questions. 

The “minimize cognitive load” theory (Sweller, Van 
Merriënboer, Paas & 1998) appears to inadequately describe 
our findings, and we are left with an open theoretical 
problem. It’s possible that all problem solving (or all 
example study) puts students in a less metacognitive mode – 
just getting the job done (or just reading the examples), 
whereas interleaving keeps students more metacognitive by 
focusing them on (1) reflecting on examples to induce deep 
regularities (the domain rules), (2) reflecting on whether 
they got the rule right during problem solving, and (3) 
returning to the next example more focused on what they 
don’t know yet.  That is, they may carry “learning subgoals” 
from the prior problem into the next example.  

Our studies would appear on the dimension of assistance 
of Figure 1 in like fashion to the Schwonke et al studies, in 
which an all-tutored problems condition was compared to an 
alternating examples/tutored problems condition (except 
that our examples have both explained and unexplained 
portions). Our results are not as strong as theirs with only an 
efficiency gain in favor of the alternating condition, rather 
than both an efficiency and far transfer gain (i.e., with 
respect to the key of Figure 1, only a “o” instead of “+o”). 
Yet our studies are also consistent with the inverted-U 
hypothesis that mid-level assistance provides the greatest 
learning advantages, although in less decisive fashion than 
when the control condition is all untutored problems, as in 
(cf. Paas, 1992; Trafton & Reiser, 1993). However, we are 
yet to test the middle range against higher-level assistance 
(e.g., all worked examples).  Thus, our next step in testing 
the inverted-U hypothesis is to compare three conditions 
spanning between 2 and 3 on the dimension of assistance of 
Figure 1: all tutored problems (lower assist.), alternating 
examples and tutored problems (mid-level assist.), and all 
unexplained examples (higher assist.). 
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