
A N A L T E R N A T I V E S E M A N T I C S F O R M O D A L 

P R E D I C A T E - L O G I C 

(A) In this paper I present a realistic semantics for first-order modal 
predicate-logic that differs in two respects from the standard Tarski-
Kripke approach. 

Firstly, the background theory is not axiomatic set theory supple
mented by the concept possible world, but a theory of basic intensional 
entities: propositions, properties and relations;1 this theory will here 
be developed only as far as it is necessary for the semantics of an 
elementary language, that is, the only properties and relations con
sidered are properties of, and relations between individuals. In standard 
(extensional) ontology intensional entities are reduced to sets and pos
sible worlds (and individuals; they are complex sets involving in their 
specification possible worlds and/or individuals);2 in intensional on
tology, however, sets (of individuals) are reduced to properties (of 
individuals), and possible worlds to propositions. The latter reduction 
is more natural than the former, and the inveterate skepticism against 
intensional entities as basic ("What, after all, are these things?? When 
are they identical??") can be dispelled. For intensional ontology is 
completely on a par with set theory. All we really know about sets is 
stated in the axioms of set theory; all we really know about properties, 
relations and propositions is stated in the axioms of intensional on
tology; the latter axioms are no less precise than the former, and 
identity conditions for intensional entities are not left unclear. 

Secondly, the basic semantic concept is different; expressions do not 
have extensions relative to possible worlds in some interpretation, but 
absolutely intend intensions. Sentences intend propositions, monadic 
predicates intend properties, polyadic predicates intend relations, indi
vidual-constants intend individuals. To intend is not to mean; we can, 
however, think of the intension of an expression as an approximation 
to its meaning, such that expressions that mean the same always intend 
the same, but not vice versa (while expressions that intend the same 
have the same extension, but not vice versa).3 The central act (so to 
speak) of my semantics is not the stating of a definition of the concept 
being an interpretation of language L , but rather the stating of semantic 
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axioms that show how the intensions of more complex expressions of 
L are determined by the intensions of simpler expressions of L that 
are their parts. (All of the axioms having to do with logical operators 
are equations; by repeated application of the axioms (the intension of) 
each sentence of L can be completely analyzed.) Of course, the defi
nition of logical truth will look rather different on this approach. (In 
fact, four semantic concepts of truth will be defined for L: truth, 
simpliciter and relative, ontological truth and logical truth.) 

The aim of this paper is not to point out problems that the standard 
approach to modal semantics cannot deal with, while the non-standard 
one can; it is rather to show (especially in the semantical part) that the 
same problems the standard approach successfully deals with can be 
solved in a rather different manner, which, on the whole, seems to me to 
be more satisfactory intuitively and to be more in line with philosophical 
tradition than the usual way. But even if it should seem otherwise to 
the reader, the gain of knowledge obtained by going a different route 
to the same summit ought not to be despised. 

(B) I begin by stating the background theory of basic intensional enti
ties. Like set theory it is a first-order theory. All quantifiable variables 
are of one kind; they can replace any singular term, and no other 
expression. 

1. Expressions Specific to the Theory 

Z?(T) means r is an individual, 
Zl(r) means r is a proposition; 
Z^0)(T) means r is a property (of individuals); 
Z<0-0>(T) means r is a dyadic relation (between individuals); 
Z^q,0,0)(T) means r is a triadic relation (between individuals); 

(rPr') means proposition r is (intensional) part of proposition T'; 
(T, T i , . . . , Tn) means the proposition which is the saturation of r by 
T i , . . . , rn (equivalently the proposition which is the concatenation of 
T with ru . . . , r„); 
Ao7r[o] means the property which results from TT[T] by the extraction of 
T(7T[T] is a singular term; r not in TT[O\); 

\OI . . . onTr[oi,. . . , on] (2 ^ n) means the n-adic relation which results 



from iT\&i, . . . ,V„] by the extraction of T i , . . . , rn (TT[TX, . . . , rn] is a 
singular term; O i , . . . , on are different from each other; r l 5 . . . , r„ are 
different from each other and not in TT[OX, . . . , on]). 

o, o', o". . . are nonquantifiable variables that occur within the 
scope of an occurrence of A; they can replace any singular term, and 
no other expression; they are used instead of normal variables for no 
other reason than better readability (7T[TI, . . . , rn] may already contain 
lots of normal variables). 

The convention governing the use of square brackets in stating axiom-
or definition-schemata is as follows: 7T[T!, . . . , rn] implies that rx oc
curs (syntactically correctly) in TT at some place(s) intended by the 
square bracketing (and marked by the numeral "1"), that r 2 occurs 
in 77 at some other place(s) intended by the square bracketing (and 
marked by the numeral "2"), . . . If T R is a variable, its occurrence is 
supposed to be free at each place intended by the square bracketing. 

w means the (real) world. 

2. Logical Expressions 

non means not; 
a. means and; 
o. means or; 
imp. means implies; 
equ. means equivalent. 

Binding strength diminishes from top to bottom, and brackets may be 
saved accordingly; moreover, brackets are omitted as exemplified in A 
a. B a. C, A o. B o. C; 

V v means there is a v such that; 
A v means for all v\; 
iv means the v such that; 
(T = T') means r is identical with r'. 

The brackets around TPT' and r = T' are not written, except they form 
the scope of a quantifier ( A , V , 0-



3. The Logic 

Standard classical first-order predicate-logic with identity and definite 
description (just as for most systems of set theory). Theorems and 
axioms with free variables are equivalent to their universal closure. 

4. The First Two Groups of Axioms 

(a) The first group of axioms characterizes the predicates Z*(T) and 
TPT' (axiom-schemata are considered as axioms): 

A X I O M 0. AxAy(xPy imp. Zl(x) a. Zl(y))\ Axiom 0 simply makes 
explicit what has been said about the meaning of TPT'. 

A X I O M 1. Ax Ay Az(xPy a. yPz imp. xPz)\ the transitivity of the 
part-predicate. 

A X I O M 2. Ax(Z1(x) imp. xPx)\ "every proposition is part of itself". 

A X I O M 3. Ax Ay(xPy a. yPx imp. x = >>); "propositions which are 
part of each other are identical". 

A X I O M 4. \/z[Z\z)a. Ay(Zl(y) a. A[y] imp. yPz) a. Ax(Z1(x)a. 
Ay(Zl(y) a. A[y] imp. yPx) imp. zPx)]; "there is a proposition such 
that every A-proposition is part of it, and which is part of every proposi
tion that every ^4-proposition is part of", "there is a smallest proposi
tion every A-proposition is part of". (Variables in axiom- and defi
nition-schemata are representative for the (syntactically) "right" 
variables, and are supposed to occur only in the places indicated.) 

For stating Axiom 5 in a fairly convenient manner I need two defi
nitions: 

DEFINITION 1. cxA[x] := iz[Z\z) a. Ay(Zl(y) a. A{y] imp. yPz) 
a. Ax(Zl(x) a. Ay(Zl(y) a. A[y] imp. yPx) imp. zPx)]\ 

"the proposition which is the conjunction of all ^-propositions is the 
smallest proposition every A-proposition is part of". Existence and 
uniqueness are guaranteed for the definiens by Axioms 3 and 4. 



DEFINITION 2. Mi(r): = Z\T) a. Ay(Zl(y) imp. rPy)\ "r is an 
absolutely minimal proposition iff r is a proposition which is part of 
every proposition". 

A X I O M 5. Ay[yPcxA[x] a. non Mi(y) imp. Vz(zPy a. non Mi(z) a. 
V x(zPx a. -4[*]))]. " T P T ' a. non M*(T)" will always be read as "propo
sition r is a non-trivial part of proposition r'"; then one can read 
Axiom 5 as "every proposition which is a non-trivial part of the proposi
tion which is the conjunction of all A-propositions, has a proposition 
as non-trivial part that is also part of an A -proposition"; after the 
comma I can also read "non-trivially overlaps an Ä-proposition". 

Axioms 0-5 state - as far as this is possible in a language that has 
no means for quantifying over properties of propositions - that the 
totality of propositions has the structure of a complete Boolean algebra.4 

For stating Axiom 6 in a convenient manner I need another defi
nition: 

DEFINITION 3. At(r) := Zl(r) a. Ay(yPr a. non Mi(y) imp. y = 
r); "r is an atomic proposition iff r is a proposition such that every 

proposition which is a non-trivial part of it, is identical to it". 

A X I O M 6. AxAy(Z\x) a. Zl(y) a. Az(At(z) a. zPx imp. zPy) 
imp. xPy)\ "if every atomic proposition which is part of a proposition 
x is also part of a proposition y, then x is part of y". 

Axioms 0-6 state that the totality of propositions has the structure 
of a complete and atomistic Boolean algebra. The selection of Axioms 
0-6 from the many alternative formulations of a complete and atomistic 
Boolean algebra was primarily determined by the intuitive perspicacity 
of that system, and secondarily by its handiness in proving theorems. 
(Presumably there is a more perspicuous formulation of Axiom 5, which 
the reader is invited to find.) 

(b) The second group of axioms characterizes the constant w. I shall 
state four definitions before going ahead: 

DEFINITION 4. t := cx non x = x\ "the tautological proposition is the 
proposition which is the conjunction of all propositions which are not 
self-identical"; this reading will be justified below. 



DEFINITION 5. c := cx(x - x)\ "the contradictory proposition is the 
proposition which is the conjunction of all propositions"; this reading 
will be justified below. 

DEFINITION 6. MQ(T):=Z1(T) a. Ay(Zl(y) imp. yPr); "T is an 
absolutely maximal proposition iff r is a proposition every proposition 
is part of". 

DEFINITION 7. To(r) := Z1(T) a. Ay(rPy a. non Ma(y) imp. y = 
T); " T is a total proposition iff r is a proposition such that every 

proposition it is non-trivially part of, is identical with it". 

Definitions 4 and 5 are complementary to each other, and so are 
Definitions 2 and 6, and Definitions 3 and 7. 

A X I O M 7. Non w = t; "the world is not the tautological proposition". 

A X I O M 8. Non w = c; "the world is not the contradictory proposi
tion". 

A X I O M 9. To(w)\ "the world is a total proposition". 

5. Some Theorems Derivable from the First Group of Axioms 

Firstly: 

DEFINITION 8. T' —> T := rPr'; 4 V entails r iff proposition r is part 
of proposition T " \ Then it is easy to prove: 

T H E O R E M 1. Ax(Zl(x)a. Ay(Zl(y) imp. y -+x) equ. x = 0; "the 
tautological proposition is the only proposition that is entailed by every 
proposition"; this justifies the reading of Definition 4. 

T H E O R E M 2. Ax(Zl(x)a. Ay(Zl(y) imp. x ->y) equ. x = c); "the 
contradictory proposition is the only proposition that entails every prop
osition"; this justifies the reading of Definition 5. 



Secondly: 

DEFINITION 9. (r A T ' ) : = CX(XPT O. XPT')\ "the proposition which 

is the conjunction of r and r' is the proposition that is the conjunction 
of every proposition which is part of T or part of r'". 

DEFINITION 10. ( T V T ; ) := cx(xPr a. XPT')\ "the proposition which 

is the disjunction of r and r' is the proposition that is the conjunction 
of every proposition which is both part of T and part of r'". 

DEFINITION 11. - I T : = cx(At(x) a. non * P T ) ; "the proposition 
which is the negation of r is the conjunction of every atomic proposition 
that is not a part of T". 

Then it is easy to prove (for example): 

T H E O R E M 3. A x Ay(Zl(x) a. Zl(y) imp. Az(z-+(xAy) equ. 
z - » x A. z —>y)). 

T H E O R E M 4. AxAy(Zl(x) a. Zl(y) imp. Az((x\/y)->z equ. 
a. y->z)). 

T H E O R E M 5. Ax[Zl(x) imp. Ay(x->y a. -ut-^y equ. y = i) a. 
Ay(y -*x a. y - » —IJC equ. y = c)]. (From now on I leave the intuitive 

readings of theorems in most cases to the reader.) 

Thirdly: 

DEFINITION 12. dxA[x) :== CJC Ay(Zl(y) a. A[y] imp. xPy); "the 
proposition which is the disjunction of all A-propositions is the proposi
tion which is the conjunction of all propositions which are part of every 
/4-proposition". Then it can be proved: 

T H E O R E M 6. dxA[x] = icx\Jy(Zl(y) a. A[y] a.x = ~\y). 

Fourthly: 

DEFINITION 13. Con(T) := Zl(r) a. Ay(Zl(y) imp. non r -+y o. 
non T —* ty)\ "r is a consistent proposition iff r is a proposition, and 



there is no proposition such that r entails both it and the proposition 
that is its negation". 

DEFINITION 14. Max(r) := Z 1 ( T ) a. Ay(Zl(y) imp. T->y o. 
T —> \y)\ " T is a maximal proposition iff r is a proposition, and there 
is no proposition such that r entails neither it nor the proposition that 
is its negation". 

Then it can be proved: 

T H E O R E M 7. /\y[Zl(y) imp. (non y = c equ. Con(y))]. 

T H E O R E M 8. Ay(To(y) equ. Max(y)). 

6. Some Theorems Derivable From the First and Second Group of 
Axioms 

Firstly: 

DEFINITION 15. M C ( T ) := Max(r) a. Con(r); "TT is a maximal-con
sistent proposition iff r is a maximal and consistent proposition". By 
Theorems 7 and 8, Axioms 8 and 9 it follows immediately: 

T H E O R E M 9. MC(w). 

Since the (real) world is a maximal-consistent proposition, the possible 
worlds are the maximal-consistent propositions', hence we may read 
M C ( T ) also as " T is a possible world".5 

Secondly: 

DEFINITION 16. (a) r ( r ) : = w - * r 
(b) F(r) := W - » - I T ; " T is true (false) iff r ( I T ) is entailed by the 

world". 

DEFINITION 17. (a) T ( T , T') := M C ( T ' ) a. T'-> r 
(b) F ( T , T') : = M C ( T ' ) a. T' - * - I T ; "T is true (false) in r' iff T' is a 

possible world that entails r (~IT)". 

DEFINITION 16 defines the ontological concepts of truth and falsity 



(which apply to propositions, while the semantic concepts of truth and 
falsity apply to sentences); Definition 17 is its generalization. 

Various truth-laws can be derived. For example: 

T H E O R E M 10. Ay[Zl(y) imp. (T(y) equ. non F(y))]; "ontological 
bivalence". 

T H E O R E M 11. AxAy[Zl{x) a. Zx{y) imp. (T((xvy)) equ. T(x) o. 
T(y))l 

T H E O R E M 12. /\xf\y[Z\x) a, MC(y) imp. (T(~ix,y) equ. 
F(x,y))]. 

Thirdly: 

T H E O R E M 13. A x[Zl(x) imp. (non x ->c equ. VyT(x,y))]. Theo
rem 13 states the equivalence of two traditional conceptions of proposi-
tional possibility. I choose the more recent one for a definiens: 

DEFINITION 18. P(r) := \ZyT{T,y)\ "r is a (ontologically) possible 
proposition iff r is true in some possible world".6 

Using Axioms 7 and 8 it is easy to prove 

T H E O R E M 14. Vy(P(y) a. P(-ry)). Theorem 14 is important in 
showing that (ontological) truth, possibility and necessity (non P(~ir)) 
do not collapse into each other. 

Fourthly: Let Riy R2>. . . , . . . be two-place predicates such that 

(R) AxAy(xRky imp. MC(x) a. MC(y))\ these predicates can be 
used to define relativized possibility-predicates: 

DEFINITION 19. P * ( T , T ' ) : = Vy(r'Rkya. T(r,y))\ " T is ^-possible 
in T' iff there is some world k-accessible from T' such that T is true in 
it". (If we want to have A x Ay(T(x,y) imp. Pk(x,y)), we must have 
Ax(MC(x) imp. xRkx).) They can also be used to define possibility-
functors: 



DEFINITION 20. pk(r) := dx \Jy(xRky a. T(r,y))\ "the proposition 
that is the ^-possibility of T is the proposition that is the disjunction of 
every possible world from which some world is /c-accessible in which r 
is true"; equivalently: " . . . is the proposition that is the disjunction of 
every possible world in which r is fc-possible". It can be proved: 

T H E O R E M 15. Ax Ay(T(pk(x),y) equ. Pk(x,y)), using beside (R) 
and the definitions the theorems, 

T H E O R E M 16. Ay[MC(y) a. y->dzA[z] imp. V z ( A [ z ] a . ^ z ) ] , 

T H E O R E M 17. Az Ay(MC(y) a. MC(z) a.y-+z imp. z = y), 

T H E O R E M 18. Ay(Zl(y) a. A[y] imp. y-+dzA[z]). 

7. The Third Group of Axioms, and Theorems Derivable by Their Help 

The third group of axioms characterizes the categorial predicates Z"(T) 
and the saturation-operator (or rather -operators) (r, ru . . . , r„) . 

A X I O M 10. Ax(Zn(x) imp. non Zm(jc)), where n and m are different 
types out of: 0, 1, <0), (0,0), . . . ; the exclusiveness of ontological 
categories. 

A X I O M 11. V * Z ° ( J C ) ; "there are individuals". No other existence-
postulate of the form V xZn(x) is necessary. 

A X I O M 12. A*i. . . Axn Ay[?n)(y) a. Z°(JC0 a. . . . a. Z°(JC„) imp. 
Zl((y,Xi,. . . , * „ ) ) ] ; "the saturation of a n-place relation (between 
individuals) by n ordered individuals is a proposition". Here properties 
are considered to be 1-place relations; subscript (n) is short for a se
quence of n tokens of 0, separated by commas and included in brackets 
<); (3), for example, is short for <0,0, 0). 

A X I O M 13. A * i . . . Axn Ay(non 2*n){y) o. non Z°(jti) o. . . . o. 
non Z°( jc n ) imp. (y,x u . . . , * „ ) ^ c); "if an entity is not an /i-place 
relation or some of the ordered n entities it is saturated by is not an 
individual, then the saturation of it by the n ordered entities is the 
contradictory proposition". 



From Axioms 12 and 13 we get immediately 

T H E O R E M 19. AyAxx . . . AxnZ1((y,xu . . . , *„ ) ) ; that is, Axiom 
12 and Axiom 13 justify the reading of (r, r x , . . . rn) as "the proposition 
which is the saturation of r by T i , . . . , T„"; Axiom 12 provides for any 
proper case of saturation, Axiom 13 for any improper one. 

The predicate of satisfaction (by individuals, or rather the predicates 
of satisfaction) is (are) defined as follows: 

DEFINITION 21. r ( T l , . . . , T„) := T((r, ru . . . , r„)); " n , . . . , rn 

satisfy r (r applies to T i , . . . , rn; r a , . . . , r„ exemplify r) iff the propo
sition which is the saturation of r by ru . . . , rn is true". Then it is 
easy to prove (using Axioms 13 and 8): 

T H E O R E M 20. Ay Axx . . . Axn(y(xu . . . ,xn) imp. Z<n)(y) a. 
Z?\xi) a. . . . a. Z?(xn)). Using Axiom 10, I get from Theorem 20, for 
example, 

T H E O R E M 21. Ay(Z<0)(y) imp. non y(y))', "no property applies to 
itself". 

Definition 21 can be generalized: 

DEFINITION 22. (r in T')(TU . . . , rn) := T((r, ru . . . , r„) , T ' ) ; 
4 4 T i , . . . , rn satisfy r in r' iff the proposition which is the saturation of 
r by T X , . . . , TN is true in T " \ 

The next axiom states the sufficient identity condition for properties 
and relations: 

A X I O M 14. AJC Ay(Z<n)(x) a. Z<n)(y) a. 
A Zi.. . A zn((x, Zu • • • , Zn) = Cv, z i , . . . , zn)) imp. x = >>). 

In the axiom-system so far developed it is possible to prove (and to 
link) two principles well-known from orthodox intensional semantics. 
Without Axiom 14 it is provable: 

T H E O R E M 22. AJC Ay(Z\x) a. Zl(y) a. Az(T(xyz) equ. T(y,z)) 



imp. x = y)\ "propositions are identical, if they are true in the same 
worlds". From Theorem 22 it follows by Axiom 14: 

T H E O R E M 23. A x A y { £ n ) ( x ) a. 2*n)(y) a. A u A zi.. . A z„((x in 
u)(zu • • • . z*) equ. in u)(zi,. . ., zn)) imp- * = y); "fl-place relations 
are identical if they apply to the same n ordered individuals in each 
world". 

Theorems 22 and 23 show that propositions and /i-place relations can 
only serve as intensions for sentences and n-place predicates, not as 
meanings; meanings need to be finer differentiated, what becomes ap
parent when we consider epistemic contexts. That meanings are not 
dealt with in this paper should not be taken as the tacit admission 
that they cannot be represented in a properly extended intensional 
background theory. If we move up the type-hierarchy to relations be
tween properties/relations (of individuals) and individuals, then we can 
reconstruct, for example, structured propositions as ordered sequences 
starting with a property or relation (of individuals) and ending with a 
tail of individuals (compare the treatment of ordered sequences of 
individuals only in section C,3 of this paper). 

Finally I offer an important definition that gives the ontological corre
lates of restricted all-quantifiers: 

DEFINITION 23. aT'(r)>:= cx VZ(T'(Z) a. (T,Z)->X)', "the r'-rel-
ative all-proposition of r is the proposition which is the conjunction of 
every proposition entailed by some proposition resulting when r is 
saturated by an individual satisfying r " \ It can be proved: 

T H E O R E M 24. Ax Ay[T(ay(x)) equ. Az(y(z) imp. *(z))]. 

8. The Fourth Group of Axioms, and Theorems Derivable by Their 
Help 

The fourth group of axioms characterizes the extraction-operator A: 

A X I O M 15. A * i . . . AxN[Z?(xx) a.... a.Z?(xn) a. 
Z1(TT[XU . . . ,*„]) imp. (\ot. . .onTr[ou . . . ,on], 
x\,.. . ,xn) = 7T[JCI, . . . , * „ ] ] ; "the n-place relation which results from 
the proposition TT[XI, . . .,xn] by the extraction of individuals 



Xi,. . . ,xn yields a proposition that is identical with rr[xi, . . . , * „ ] if it 
is saturated by * i , . . . , xn". 

A X I O M 16. Axi.. . Axn (non Z1{TT[XU . . . ,*„]) imp. 
(Aoi. . . on 7r[oi,. . . , o„], Xi,. . . , xn) = c); "the n-place relation 
which results from the non-proposition ir[x\9 . . . , * „ ] by the extraction 
of entities x u . . . , x n yields the contradictory proposition if it is satur
ated by Xi,... , xn'\ Axiom 15 takes care of any proper case of extrac
tion, Axiom 16 (together with Axiom 13) of any improper one. 

By Axioms 15, 16 and 13: 

T H E O R E M 25. A xx. . . A x»[(Aoi. . . onir[ou . . . , on]9 

Xi,. . . ,x„) = ir[xu . . . 9xn] o. (Ac?i. . .o„ir[ou . . . ,o„]9 

* i , . . . 9xn) = c]. 

By Axiom 15 and 13: 

T H E O R E M 26. V xt.. . V xn (Z°(JCI) a.... a. Z?(xn) a. 
Z 1 (ir[xl9 . . . ,*„]) a. non ir[xl9 . . . , * „ ] = c) imp. 
Z < " > ( A o i . . .onir[ol9. . . 9o„]). 

Axiom 17 is designed to provide for the case left open by Theorem 26: 

A X I O M 17. non V * i . . . VxN(Z?(xi) a. ...a. 
Z ° ( * „ ) a. Zl(ir[xl9 . . . ,*„]) a. non ir[xi9 . . . , * „ ] = c) imp. 
Z^iXox . . .on ir[ol9. . . , o„ ] ) . 

By Theorem 26 and Axiom 17: 

T H E O R E M 27. Z ^ A Ö I . . . o„ir[oi,. . . , on])9 Theorem 27 justifies 
the reading of \ot.. . on7r[ol9. . . , on] as "f/ze n-place relation resul
ting.. .". 

By Axioms 15, 16 and 13: 

T H E O R E M 28. Non V x x . . . V * „ ( Z ° ( * i ) a . . . . A. Z ° ( * N ) a. 
Z\TT[X19 . . . ,*„]) a. non TT[XI, . . . 9xn] = c) equ. 
Axx. . . A*„((A0i . . .on7r[ol9. . . . . . 9xn) = c). 



9. Sets as Intensional Entities 

Intensional ontology has been developed only as far as it is necessary 
for my particular semantic purpose. I will not go into applications, and 
axiomatic or expressive extensions of the system - with the exception 
of showing how sets (of individuals) can be represented by properties 
(of individuals). 

DEFINITION 24. S(T) := Z ( 0 > ( T ) a. A X((T, X) = t o. (T, x) = c); "T 
is a set iff T is a property such that its saturation by any entity is the 
tautological or contradictory proposition". 

DEFINITION 25. r E T' := S(T') a. T ' ( T ) ; "T is an element of r' iff 
T' is a set exemplified by T " . Then I can prove what justifies the 
readings of the above definitions: 

The Principle of Comprehension: A x \/y(S(y) a. A z(z E y equ. x{z)). 
The Principle of Extensionality: A x Ay(S(x) a. S(y) a. 
Az(zEx equ. z E y) imp. x = y). 

The Principle of Comprehension is a consequence of the following 
provable principle: 

T H E O R E M 29. Az(A[z] imp. Z ° ( z ) ) imp. Az(\ocx' (non A[o] a. 
x' = c) (z) equ. A[z]). This is how the Principle of Comprehension 
follows from Theorem 29: let A[z] be x(z), hence A[o) x(o)\ then 
A z(x(z) imp. Z ° ( z ) ) by Theorem 20, and Theorem 29 can be applied; 
in addition S(kocx' (non A[o] a. x' = c)) [hence S(\ocx'(x(o) a. x' -
c))]\ if non Z ° ( z ) , then (\ocxf (non A[o] a. x' = c), z) = c by Axiom 
13; if Z ° ( z ) and A [z], then cx'(non A[z] a. xf = c) = /, hence by Axiom 
15 (Aoat'(non Ö. JC' = c), z) = r; if Z ° (z) and non A[z], then CJC' 
(non /l[z] a. x' = c) = c, hence by Axiom 15 (kocx' (non a. acr = 
c), z) = c; hence A z((Aocx'(non A[o] a. x' = c), z) = t o. (Xocx'(non 
A[o] a. x' = c), z) = c); moreover Z ^ A o a r ^ n o n a. x' = c)) by 
Theorem 27; the rest is obvious. 

Theorem 29 states that any monadic predicate applying only to individ
uals has a set corresponding to it whose elements are precisely the 



individuals the predicate is true of. Its proof: assume (1) A z04[z] imp. 
2°(z)); 
(i) assume A [z], hence cx' (non A [z] a. x' = c) = f, hence, since Axiom 
15 is applicable [Z°(z) by (1)] and T(t), by Definition 21 \ocx'(non 
A[o] a. x' = c)g(z); 
(ii) assume non A[z], hence (Aocjc'(non 0. x' = c), z) = c, no 
matter whether Z°(z) or non Z°(z) (see above); and non T(c); hence 
by Definition 21 non Aoc*'(non A[o] a. x' = c)(z). (Because of the 
initial condition Az(A[z] imp. Z°(z)) Russell's Paradox cannot be 
derived from Theorem 29; it merely serves to prove the negation of 
A z(z € z imp. Z°(z)) - which also can be proved independently.) 

There is an equally appropriate reading of S(T) beside " T is a set", 
namely "r is an essential property", since (T, T') = M S equivalent to 
f\y(MC(y) imp. (r in y) (r')) ("r applies to r' in every possible 
world"), and (r, r') = c is equivalent to non Vy(MC(y) a. (r in 
>0(T')) ("T applies to T' in no possible world"). That sets can be 
represented by essential properties - of all things! - is a mildly ironic 
commentary on Quine's militant extensionalism embodied primarily in 
his well-known polemic against both intensional entities and essen-
tialism. 

(C) I am now ready to state a new semantics for first-order modal 
predicate-logic. I will not describe in detail the object language L . Let 
is suffice that in it free variables are syntactically distinguished from 
bound variables and called "individual-constants"; its sentential connec
tives are - (negation), & (conjunction) and M (possibility); its quan
tifier is (v) ("for all v"); empty occurrences of the quantifier are 
avoided; if we go from a sentence s[a] - a being an individual-constant 
- to (v)s[v], then v is a variable not occurring in s[a]. The meta
language is English enriched by the technical expressions of intensional 
ontology, and of logical syntax and semantics. In the semantics I have 
in particular int|a|: "the intension of a", int a|a|: "the intension of a, 
when a is taken out of a", s: "the property (of individuals) of being 
spoken of in L " . Expressions are considered to be abstract individuals, 
and to be self-referring if used in the meta-language. 



1. The Axioms of the Semantics of L 

A X I O M SI. For every individual-constant a of L : int|ö| E s\ "the inten
sion of each individual-constant of L is an individual that is an element 
of the property (the set, the essential property) of being spoken of in 
L " . Since I assume that there are individual-constants of L (indeed 
infinitely many), I can deduce from Axiom SI that s applies to some 
individual (is not empty). Since s is an essential property, the same 
(possible) individuals are spoken of in L in each possible world. 

A X I O M S2. For every n-place predicate-constant p of L : 2?n>(\nt\p\); 
"the intension of each n-place predicate-constant of L is an n-place 
relation (between/of individuals)"; 1-place relations are properties. 

A X I O M S3. For every n-place predicate-constant p of L and all indi
vidual-constants a u . . . y a n of L : int[p(a1?. . . , an)\ = (int|/?|, in-
t|fli|,. . . , int|an|); "the intension of an atomic sentence of L is the 
proposition which is the saturation of the intension of its predicate by 
the ordered intensions of its individual-constants". 

A X I O M S4. For all sentences s, s' of L : int|(*fc5')| = (int|̂ | A int|^'|); 
"the intension of the conjunction of sentences s and s' of L is the 
proposition which is the conjunction of the intension of s and the 
intension of s"\ 

A X I O M S5. For all sentences s of L : int|-s| = -iint|$|; "the intension 
of the negation of a sentence s of L is the proposition which is the 
negation of the intension of s". 

A X I O M S6. For all sentences s of L : int|A/s| = px (int|$|); "the inten
sion of the 'possibilization' of a sentence s of L is the proposition 
which is the 1-possibility of the intension of s"; PI(T) = dxVy{xRxy a. 
T(T,y)) (compare Definition 20). 

A X I O M S7. AxAy(xRty imp.MC(x)a.MC(y))y Ax(MC(x) imp. 
xRxx), AxAy(xRxy imp. yRix), Ax Ay A z{xRxy a. yRxz imp. 
xRiz). Axiom S7 states that pi is an S5-possibility, that is: for all 
propositions x: x ->px (x), x -> ipx (-npi (*)), Pi (Pi (*)) -»Pi (*)• 



A X I O M S8. For all sentences (v)g[v] of L , individual-constants a of L 
not occurring in g[v], variables v of L not occurring in g[a]: 
int|(v)g[v]| = cf (inta|g[a]|); "the intension of a universal sentence of L 
is the 5-relative all-proposition of the intension of one of its precise 
instances, when the instantiating individual-constant is taken out of it". 

A X I O M S9. For all sentences s[a] of L and individual-constants a of 
L not in Ao7r[o]: int|^[«]| = 7r[int|ö|] imp. inta|s[a]| = Ao7r[o]; "if the 
intension of a sentence s[a] of L has been analyzed so far that every 
occurrence of the individual constant a in the analyzing expression "7r 
[int|a|]" is preceded by "int|", then the intension of s[a], when a is 
taken out of it, is the property resulting by the extraction of int|a| 
from 7r[int|a|]". 

2. Some Important Semantic Concepts 

DEFINITION SI. s is a true sentence of L := s is a sentence of L a. 
7XintM). 

DEFINITION S2. s is a true sentence of L in T := s is a sentence of 
La. r(int|$|,T). 

DEFINITION S3, s is an ontologically true sentence of L:=s is a 
sentence of L a. int|s| = t. 

It can be proved: 

T H E O R E M SI. Ax(x is an ontologically true sentence of L equ. 
f\y(MC{y) imp. ^ is a true sentence of Liny). 

DEFINITION S4. si9...9sn L-entails s := su . . . ,s„ and s are sen
tences of L 0. (int|5i| A . . . A int^l) -> int|j|; (equivalently: . . . a. 
(int|5i| A . . . A int|s„| A -iint|j|) = c). 

Being an ontologically true sentence of L is not yet being a logically 
true sentence of L , and L-entailment is not yet logical L-entailment. 
The latter concepts will be defined with respect to logical form. In 
preparation of the definition I need to introduce two notions: 



(a) the complete analysis of a sentence s of L: As\ 
(b) the all-trivialization of the complete analysis of a sentence s of L: 

Ts. 

Let g be a sentence of L: 
(a) The complete analysis of g: Ag is a singular term r of the meta
language such that int|g| = T is provable on the basis of Axiom S1-S9, 
and "int|" occurs in r precisely in front of the occurrences of the 
predicate-constants of g in r and precisely in front of the occurrences 
of the individual-constants of g in r (if there are any). (The complete 
analysis of g is uniquely determined - the choice of extraction-variables 
(0,0', . . .) being inessential.) Here are some complete analyses of 
sentences of L: the complete analysis of P\(a,a')\ (int|P?|, int|tf|, 
int|ö'|); the complete analysis of (u)(u')P\(u, u'): 

rf(Atf'rf(Ao(int|P?|,o\o))); 

the complete analysis of (u)(P\(u) & P\(ju)): 

cf(\o((int\P\lo)A(int\Pl

2lo))); 

the complete analysis of -(w)P?(w, a'): 

-icf(Ao(int|jP?|,o, int|fl'|)); 

the complete analysis of -((u)P?(w, a') & -Pi(a9a')): 

-i(rf(Ao(int|P?|,o, int|fl'|)) A-i(int|P?|, int|a|, int|a'|)). 

(b) The all-trivialization of the complete analysis of g: Tg is a sentence 
cr of the meta-language constructed from Ag as follows: 

First step: write down Ag and add "=f". 
Second step: replace any expression of the form int|a| in Ag, where a 
is an individual-constant, everywhere in Ag by a normal variable of 
the metalanguage (different variables for different expressions); the 
expression obtained is Ag[xu • • • ,xn] = t (where * ! , . . . , * „ represent 
the variables used); then go to 



A*i . . . Ax„(xi Es a. . . .a. xnEs imp. Ag[xl9 . . . ,xn] - t) 
(the ordering and typographical appearance of the variables is inessen
tial). 
Third step: replace any expression of the form int|a| in Ag9 where a is 
a predicate-constant, everywhere in A [xl9 • • • »**] by a normal variable 
of the meta-language (different variables for different expressions, the 
variables used must not occur in the expression obtained in the second 
step); the expression obtained is A * i . . . Axn(xx E s a. . . . a. xn E s 
imp. Ag[xu . . . ,*„; yl9 . . . 9yk] = t) (where yl9. . . ,yk represent the 
variables used); at the same time write down Z<m(r)>(yr) - where m(r) 
is the number of places of the predicate-constant ar such that int|ar| is 
replaced by yr\ then go to A yx... A yk ( Z < m ( 1 ) > (yx)a....a. Z < m ( / c ) > (yk) 
imp. A JCi . . . A xn(xx E 5 a. ...a. xnEs imp. Ag[xl9. . . ,xn; 
yi,.->,yk] = t)). 
Fourth step: replace s in the expression obtained in the third step 
everywhere by a variable z not yet used and go to A z [ V y (y E z) 
imp. Ay\. . . A ^ C ^ 1 » ^ ) a. . . . a. Z^k))(yk) imp. 
A^i . . . Ax„(xi Ez a a. xnEz imp. Ag[xl9 . . . 9xn; yl9. . . 9yk9 

z] = f))]. Here are two examples of the all-trivializations of complete 
analyses of sentences of L: 

the all-trivialization of the complete analysis of Pi(a9a'): 
Az[Vy(yEz) imp. A>>'(Z<2V) imp. Ax Axf(x E z a. 

x'Ez imp. (y(

9x9x') = /))], in short: AzAy' Ax Ax' 
(\Jy(y E z) a. Z{2)(y') a.xEz a.x' E z imp. (y'9x9x')=t)\ 

the all-trivialization of the complete analysis of 
~{(u)P\{u9a') & -P\(a9a')): Az[Wy(yEz) imp. 
A / ( Z < 2 V ) imp. AxAx'(xEz a. x*Ez imp. 
-i(cf {\o{y'9o9x')) A i(y\ x9 x')) = t))]9 in short: AzAy' 
AJC A X ' ( V ^ C V E Z ) fl. Z<2)(y') a. xEz a. x'Ez imp. 
-i((f(\o(y'9o9x')) A-i(y'9x9x')) = t). 

Now: 

DEFINITION S5. s is a logically true sentence of L := s is a sentence 
of L a. r 5. 

DEFINITION S6. sl9.. . 9sn logically L-entails s := -(sx & .. . & sn 

& -s) is a logically true sentence of L . 



According to Definition S5 P\(a,a') is not a logically true sentence of 
L: a and a' are two different individuals (remember that expressions 
are considered to be abstract individuals); consider Aoc;t(non (o = a o. 
o = a') a. x = c), in short: {a, a'}; this property is a set; hence we have 
by Theorem 29, Definition 25 a E {a, A'}, a'e{a, a'}, \Jy(y E {a, A'}); 
consider moreover Aoo'cjt(non o = o' a. x = c), in short: W ("identity 
(between individuals)"); we have Z^2)(id) and (id,a,a') = c (since a 
and a' are different), hence non (id,a,a') = r; this falsifies the all-
trivialization of the complete analysis of P\(a, a'). The all-trivialization 
of the complete analysis of -((u)P\(u, a') & -P\(a,a')) is, however, 
provably true; this makes this sentence of L a logically true sentence 
of L , which means according to Definition S6 that (u)P\ (u, a') logically 
L-entails P\(a,a') - as is desired. 

3. Some Results and Problems 

It is provable: 

The Law of Generalization: If s[a] is a logically true sentence of L 
and the individual-constant a does not occur in (v)s[v] (v a variable of 
L not in s[a]), then (v)s[v] is a logically true sentence of L . 

The Law of Necessitation: If 5 is a logically true sentence of L, then 
-M-s is a logically true sentence of L . 

I give the proof of the latter law (which is shorter and simpler than the 
proof of the former): assume s is a logically true sentence of L; hence 
Ts; we need to show T-M-s\ Ts has the shape —(. . . imp.i45[#] = t), 
T-M-s has the shape —(. . . imp. A-M-s[#] = /) (in both schemata — , 
. . . and # stand for the very same sequence of expressions), where 
A-M-s[#] has the shape -ip1(-iy4J[#]); hence we need to show ---
(. . . -ipi(-iAs[#]) = /); now: Ax(x = t imp. ~]pi(-ix) = t), since 
-i/?i(-i/) = /, since -\dx\Jy(xRxy a. T(~nt,y)) = t, since n o n V * 
V y(xRiy a. T(~it,y)) [non \J x(Zl(x) a. A[x]) imp. dxi4[x] = c, -ic = 
t], since there is no possible world in which ~i / (=c) is true; this 
establishes: what we needed to show - T-M-s - follows from Ts. 

There is no difficulty in describing an axiom-system MPL in L which 
is appropriate for the semantics of L . Intensional ontology, even in the 
elementary state presented in this paper, allows to define the concept 
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of a finite sequence (of individuals), which is necessary for the definition 
of AfPL-provability: 

DEFINITION 26. r is a «-place sequence: = 
V * i . . . V * „ ( 0 " , * i , . . . , * « ) = f a. Ayi...Ay„ (non yi=xx 

o o. non yn = xn imp. (T,yu . . . ,yn) = c)). 

DEFINITION 27. (ru . . . , T „ ) : = A<?i. . . o„a:((non Oi = r x o. . . . o. 
non on - rn) a. x = c); (TI, . . . , rn) is an «-place sequence, if (and 
only if) T i , . . . , TN are individuals; for then we have 
« T I , . . . , rn>, r i , . . . , r„) = t and A)>i. . . Ay* (non^i = T J O o. 
non y„ = r„ imp. « T I , . . . , T„) , yu . . . ,.yn) = c); it is easy to prove 
the accustomed necessary identity condition for «-place sequences 
(TU . . . , r„> and ( p i , . . . , p „ > . 

DEFINITION 28. T is a finite sequence := Vcr(r is a cr-place se
quence). Natural numbers are not presupposed for this definition; the 
existential quantification is substitutional: " V O - ( T is a cr-place se
quence)" simply means: for some appropriate substitution for a - an 
arable numeral - "r is a a-place sequence" turns into a true sentence. 

It will present no problem to prove the semantic soundness of MPL\ 
the semantic completeness of MPL is a different matter (provided, of 
course, that the background theory is not strengthened to such an 
extent as to become equal in power to the set-theory which is necessary 
for constructing a Henkin-Proof, and provided that the given semantical 
definitions are used). 

Another open problem is how definite descriptions, if introduced 
into L , are to be treated semantically. Such singular terms can be 
considered in two different manners: The reference of definite descrip
tions is allowed to vary from one possible world to another; or the 
reference of definite descriptions is not allowed to vary from one pos
sible world to another, but stays fixed to the real-world referent.7 In 
the latter case definite descriptions can be treated in my semantics as 
it stands: 

A X I O M S10. For all singular terms wg[v] of L , individual-constants 
a of L not occurring in g[v], variables v of L not occurring in g[a]: [ V ! 
z(zEs a. inta\g[a]\(z)) imp. int|tvg[v]| = LZ(Z E S a. inta\g[a]\(z))] a. 



[non \/\z(zGs a. inta\g[a]\(z)) imp. int|tvg[v]| = int|a"|]. (VI : there 
is precisely one). 

In the former case a contextual definition of the description operator 
seems to be the most promising approach (this would be in consistency 
with the Russellian bend of this semantic theory). 

The standard practice of defining interpretations of modalized lan
guages can be paralleled more closely if I introduce in general properties 
and relations of propositions, and in particular m\ the property of being 
a possible world considered in L, and r: the accessibility-relation between 
possible worlds considered in L. The background theory, the semantic 
axioms and the definition of the complete analysis and the all-trivializ
ation of the complete analysis of a sentence of L have to be changed 
accordingly. The logic of the possibility-operator M of L thereby be
comes the logic of no particular possibility-operator, but that of a whole 
set of such operators. (Analogously the logic of the all-quantifier of L 
is already the logic of no particular all-quantifier, but that of a whole 
set of such quantifiers.) 

N O T E S 

1 A theory of basic intensional entities has been developed by G. Bealer in Quality and 
Concept. Mine is rather different from his. The basic concepts are different, and while 
Bealer's theory in its fully developed state resembles axiomatic set-theory, mine resembles 
type-theory, more accurately the so-called standard theory of types, where type-dis
tinctions are expressed by predicates, and not incorporated into the syntax of the lan
guage. Both theories, however, are first-order theories, and both regard sets - in an 
analogous manner - as special properties. 
2 On the whole there are two set-theoretic ontologies of intensional entities. According 
to the classical approach based on R. Carnap's Meaning and Necessity (and more remotely 
on Frege) possible worlds are entities sui generis, and properties (for example) are 
functions (i.e., special sets) that assign to each possible world and possible individual 
(not world-bound) a truth-value (0 or {0}), propositions functions that assign to each 
possible world a truth-value. According to D. Lewis, on the other hand, properties are 
sets of (world-bound) possible individuals, propositions sets of possible worlds, which 
are for him possible individuals (hence propositions are properties!); see for example On 
the Plurality of Worlds, p. 50, p. 53. 
3 My basic semantic paradigm is that of Russell, not that of Frege. (For an exposition 
and defense of Russell's theory of meaning see Quality and Concept, p. 160ff.) But there 
is the following difference to Russell. According to Russell, sentences (for example) 
mean propositions (in his sense). I transform Russell's theory of meaning into a theory 
of intension and say accordingly: sentences intend - as part of their meaning - propositions 



(in my sense). I do not aim in this paper at developing a theory of meaning. The 
Russellian paradigm favors an algebraic treatment of semantics. This will be the treatment 
I accord to the semantics of L. It is much simpler and more economic in basic concepts 
than Bealer's 'New Semantic Method' in Quality and Concept, Section 13 and 14 of 
Chapter 2. 
4 For this concept and the concept (complete) atomistic Boolean algebra compare Tarski's 
classical paper 'On the Foundations of Boolean Algebra', p. 321ff, p. 335. If Tarski's 
system - 384 is rewritten in the language of intensional ontology here employed (set-
theoretical expressions have to be represented (approximated) by non-set-theoretical 
means) and is applied to propositions, it turns out to be (deductively) equivalent to 
Axioms 1-5, Axiom 0 being presupposed. Tarski's system $i - £$4, ® - having been 
subjected to the same treatment - turns out to be equivalent to Axioms 1-6, Axiom 0 
being presupposed. (3> is the axiom of atomism; Tarski's definition of an atom is different 
from mine!) 
5 This conception of possible worlds is anticipated by A. Plantinga in The Nature of 
Necessity, p. 45: " . . . a possible world is simply a possible state of affairs that is maximal". 
If this is intended to be a definition, then the concept of a possible world cannot be used 
for defining the concept of possibility. But this defect is easily remedied: simply replace 
"possible" in "possible state of affairs" by "consistent". 

The relation of Axioms 0-9 to the standard approach which considers (coarse-grained) 
propositions to be sets of possible worlds is as follows: Let PW be the set of possible 
worlds; Z\r) := T C PW; TPT'\ = T C PW a. T' C PW a. T' C T. Given these definitions, 
which model intensional relations by extensional ones, the Axioms 0-6 are easily verified 
within the framework of set-theory, and we have the following provable correspondences: 

cxA[x] = H {Z\x)\ A[x\}, if {Z\x)\ A[x]} is not empty; else 
cxA[x] = PW; 
dxA[x)= U{Z\x): A[x]}; 
Ax(Mi(x) equ. x = PW), Ax(At(x) equ. x = PW o. V y(y G PW a. x = 
PW - {y})), t - PW, c = 0, A x(Ma(x) equ. x = 0), A x(To(x) equ. x = 0 
o. Vy(y<=PWa. x = {y})), Ax(MC(x) equ. \f y(y e PW a. x = {y})). 

The axioms 7-9 amount to stating V y(y E PW a. w = {y}) a. non w = PW. 
6 G. Bealer regards the possible-worlds definition of necessity as circular, since the 
concept necessarily false proposition needs to be employed in the definition of possible 
world. He defines (Quality and Concept, p. 206): 

w is a world := for every proposition x, x is in w or the negation of x is in 
w (in my terms: w is a maximal proposition)', w is a possible world := w is 
a world and no necessarily false proposition is-true-in w (in my terms: w is 
a maximal and consistent proposition). 

There is, of course, no need to employ the concept of a necessarily false proposition in 
the latter definition, as I have shown in this paper. 
7 Kaplan's dthat forms constant definite descriptions out of variables ones. Both uses are 
based on ordinary language. 
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