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ABSTRACT
Machine intelligence already helps medical staff with a number of tasks. Ethical decision-
making, however, has not been handed over to computers. In this proof-of-concept study,
we show how an algorithm based on Beauchamp and Childress’ prima-facie principles could
be employed to advise on a range of moral dilemma situations that occur in medical institu-
tions. We explain why we chose fuzzy cognitive maps to set up the advisory system and
how we utilized machine learning to train it. We report on the difficult task of operationaliz-
ing the principles of beneficence, non-maleficence and patient autonomy, and describe how
we selected suitable input parameters that we extracted from a training dataset of clinical
cases. The first performance results are promising, but an algorithmic approach to ethics
also comes with several weaknesses and limitations. Should one really entrust the sensitive
domain of clinical ethics to machine intelligence?

KEYWORDS
Algorithms; artificial
intelligence; Beauchamp
and Childress; clinical
ethics; decision-making;
machine learning

INTRODUCTION

In many areas of medicine, time-consuming and
labor-intensive duties are on the brink of being dele-
gated to machines (World Health Organization 2021).
Increasingly sophisticated algorithms are being devel-
oped to interpret medical images (Badgeley et al.
2019; Esteva et al. 2017; Heijden et al. 2018; Madani
et al. 2018; Rajpurkar et al. 2018; Serag et al. 2019;
Tong et al. 2020; Wang et al. 2020), analyze electro-
cardiograms (Hannun et al. 2019), predict long-term
therapeutic outcomes (Avati et al. 2018; Komorowski
et al. 2018), aid in precision dosing (Angehrn et al.
2020), detect signs of mental disorders (Laacke et al.
2021) and even deliver psychological therapies (Fiske,
Henningsen, and Buyx 2019).

Inherently ethical tasks, however, have so far been
excluded from the promise of automation. As of
today, no machine-intelligence systems exist that are
designed specifically for the making of sophisticated
moral decisions (Cervantes et al. 2020). To the best of
our knowledge, the creation of an algorithmic advis-
ory system for clinical ethics has only been attempted
once, and it was not developed beyond the early
prototype stage. The agent, described in a pioneering
article (Anderson, Anderson, and Armen 2006), was

confined to a single type of dilemma situation,
namely, one in which mentally competent patients
refuse to undergo treatments that would be beneficial
for them. The algorithm was then to decide whether
medical staff should accept this decision or challenge
it. An updated version also included a scenario in
which patients are reminded to take their medication
(Anderson and Anderson 2018).

In clinical reality, of course, a multitude of different
types of ethical dilemmas arise. Possible solutions are
often much more controversial than in the case of
informed refusal of treatment with full decisional cap-
acity—a patient’s right that is enshrined in law. To be
of help to medical staff and patients, an algorithm
would have to be able efficiently to handle a wide var-
iety of ethical problems. In this proof-of-concept
study, we shall present a first attempt at developing
such an advisory system.

We will begin by exploring which normative ethical
theory could act as the moral basis of the algorithm.
Next, we shall consider different technical approaches
and detail why we chose fuzzy cognitive maps to set
up our Medical Ethics Advisor METHAD. We will
explain how we captured the parameters of clinical
cases and solved these dilemma situations by
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implementing Beauchamp and Childress’ prima-facie
principles. Finally, we shall evaluate the algorithm’s
performance, consider challenges and limitations of
our approach and reflect on the ethical implications
of employing such a technology in the clinic.

THE ETHICAL BASIS: PRIMA-FACIE PRINCIPLES

Like any ethical judgments taken by humans, ethical
algorithmic decision-making must be rooted in a
moral framework. When constructing an artificial
moral agent, the primary question is therefore that of
the underlying normative ethical theory (Allen,
Varner, and Zinser 2000; Gips 2011). Roughly speak-
ing, philosophers distinguish between three funda-
mental types of ethical theories: the teleological, the
deontological, and the aretaic.

According to teleological approaches, the conse-
quences of an act determine whether the latter is mor-
ally right. The act that produces the best overall result
is the one to choose. The most prominent type of
consequentialist ethics is utilitarianism (Bentham
1789; Mill 1863; Sidgwick 1877).

Conversely, deontologists hold that actions are
morally right when they conform to a particular norm
or set of norms. Actions are therefore regarded as
innately ethical or innately unethical independent of
their respective consequences. Many variants
of deontological moral systems have been proposed,
of which the most influential one is the Kantian
(Kant 1993).1

The third fundamental normative ethical theory is
virtue ethics. According to this framework, moral
actions are the result of an individual’s acquiring
praiseworthy dispositions of character (Aristotle 1995;
Hume 1826). Aretaic ethics originated in ancient
Greek philosophy (Aristotle 1995; Plato 1997) and
were also influential in the scholastic period
(Aquinas 1981).

Given the three theories’ complementary strengths
and weaknesses—which we do not need to rehash (see
Copp 2011)—even hundreds of years of philosophiz-
ing have not resulted in one of them emerging as
superior. Until recently, this problem pertained only
to human action. However, our ability to construct
autonomous agents now requires that we make a deci-
sion regarding which moral principle to implement
despite the fact that the philosophical debate will
likely never reach a definitive conclusion. To take an
often-discussed example: autonomous vehicles must

be equipped with principles that specify what to do in
situations of unavoidable harm. A 2016 study found
that the vast majority of people advocate utilitarian
decision rules to minimize the overall number of cas-
ualties, while at the same time preferring a car that—
according to a deontological principle—protects its
passengers at all cost (Bonnefon, Shariff, and Rahwan
2016). Such puzzles plague the implementation of
machine intelligence in most ethically relevant fields.

In the domain of clinical ethics, however, it became
clear early on that consultants could not afford on a
daily basis to engage in lengthy debates about which
fundamental moral theory ought to prevail. Moreover,
none of the three types of basic ethical theory provide
the tools to enable concrete decision-making in actual
clinical cases (Flynn 2021). Less general approaches of
greater practical applicability were developed—among
them casuistry (Jonsen 1991), narrative ethics (Charon
and Montello 2002; Montello 2014), feminist ethics
(Sherwin 1992; Wolf 1996) and principlism
(Beauchamp and Childress 2013).

While discussing in detail the strengths and weak-
nesses of these and other relevant accounts would
exceed the scope of this paper (see Flynn 2021), it is
certainly fair to say that all have made important con-
tributions to ethical medical decision-making. After
much deliberation, we chose principlism as the basis
of our advisory algorithm because it provides a set of
decision factors common across case types which
lends itself to being translated into machine-readable
values. Moreover, many authors (Gillon 2015; Veatch
2020), though certainly not all (Tong 2002), regard
principlism as the most influential methodology for
doing bioethics.

Tom Beauchamp and James Childress first pro-
posed principlism in the 1979 edition of their seminal
Principles of Biomedical Ethics. Famously, their set of
four prima-facie principles comprises beneficence,
non-maleficence, respect for patient autonomy and
justice (Beauchamp and Childress 2013). Derived
from people’s everyday moral convictions, this mid-
level approach offers, so they argue, a basis for the
structured analysis of medical cases in spite of the
unresolved fundamental moral disputes. But how does
one build an algorithm around Beauchamp and
Childress’ principles?

THE TECHNICAL BASIS: FUZZY
COGNITIVE MAPS

As the technical solution for implementing
Beauchamp and Childress’ prima-facie approach, we

1For an overview of the single- and multi-rule moral systems that have
featured in medical ethics, see Veatch (2020).
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chose a type of machine-learning model known as
fuzzy cognitive maps (FCMs). The term machine learn-
ing refers to any algorithm that learns from, and
improves with, experience. FCMs are machine-learn-
ing models that can simulate dynamic systems, such
as human decision-making processes. Presently, their
areas of application include the aggregation of differ-
ing expert opinions in software project management
(P�erez-Teruel, Leyva-V�aquez, and Estrada-Sent�ı 2015),
the evaluation of developmental prospects in the
industry (Chen and Chiu 2021) and the analysis of
risks in clinical drug administration (Mazzuto et al.
2018). The relevant components of the process are
mapped onto a causal graph which consists of nodes
that are linked by causal connections. Nodes represent
the entities or concepts to be modeled. In our study,
these are parameters of the respective medical case—
for example, whether the patient has reached the age

of majority—as well as higher-level concepts, such as
Beauchamp and Childress’ principle of beneficence
(Figure 1).

The causal connections between nodes can be posi-
tive, negative or neutral. The patient’s capacity to con-
sent to a treatment and the node that represents the
principle of autonomy, for example, are positively con-
nected since an increase in the former would lead to an
increase in the latter. An input like a decrease in the
patient’s quality of life and the node that stands for the
concept of non-maleficence, on the other hand, are
negatively connected because lowering the quality of life
involves a decrease in non-maleficence. The connec-
tions between nodes are weighted, which means that
some factors can have a stronger influence on inter-
mediate or output nodes than others. On the basis of
the input values of a case and the connections between
nodes, the FCM can simulate the causal interactions
between the decision-relevant concepts over time.

Figure 1. Visualization of the METHAD FCM. In this pilot study, we omitted the principle of justice for reasons explained below.
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At each simulation step, every node in the network
aggregates all the values of the concepts by which it is
influenced, weighted by its incoming causal connec-
tions. The node that represents the principle of auton-
omy, for example, aggregates a number of factors,
such as whether the patient has decisional capacity
and whether they have reached the age of majority.
Each factor is weighted by the strength of the incom-
ing connection between the factor and the autonomy
node. Once a node has weighted and aggregated the
values of all the nodes by which it is influenced, the
resulting number is mapped to a value between 0 and
1 using an S-shaped activation function. One does
this to keep the values of all nodes—also called their
activation—in a comparable range. Each node then
passes its aggregated activation onto all the nodes that
are influenced by it—again via weighted connections.
The autonomy node may, for example, transmit its
value to a node that represents whether to follow the
patient’s treatment preference. This process is repeated
over several time steps until the system stabilizes
(Felix et al. 2019). The algorithm then reports its rec-
ommendation regarding the intervention in question
in an output node. It takes values between 0 and 1,
where 0 means strongly opposed to the intervention,
and 1 means strongly in favor of it.

One can either manually specify the strength and
the polarity of the connections between the nodes in
an FCM or acquire them from input examples
through various forms of machine learning. We chose
a genetic algorithm, which is a machine-learning
method inspired by evolutionary biology. Genetic
algorithms start out from a pool of random guesses
that are refined and improved over time. For each
“generation,” the algorithm identifies the guess, that
is, the set of FCM connection weights, that delivers
the best results—namely, those that are closest to the
given solution (how we obtained these solutions is
explained below). The guesses are used to breed a
new and even better generation of solutions. At cer-
tain intervals, random mutations are introduced to
add some variation to the solution pool. This process
is repeated until a certain performance threshold is
reached or until no further improvement is observed
over a set number of generations (Reeves 2010).

FCMs occupy a space in between two artificial-
intelligence paradigms: deep neural networks and
symbolic methods. Deep neural networks are a subcat-
egory of machine-learning models. They consist of
thousands or even millions of artificial neurons and
synapses arranged in multiple layers—hence the name
“deep.” These methods have received widespread

attention for achieving impressive results in a broad
range of application areas, such as image classification
or gameplay, although their robustness in real-world
domains has recently been called into question
(D’Amour et al. 2020). The way in which deep neural
networks and FCMs process their inputs by passing
activations on through weighted connections is very
similar. However, FCMs are usually much smaller—
comprising only 21 nodes and 54 connections in our
case—and can be applied to domains with relatively
little training data. In contrast, deep neural networks
learn from extremely large sets of examples. Since col-
lecting ethically relevant medical cases is a labor-
intensive manual task that requires categorization and
expert data labeling, it was important that our algo-
rithm be able to learn from comparatively few
data points.

Besides the difference in the required amount of
training data, an important distinction between FCMs
and deep neural networks is the fact that each node
in an FCM has a human-designated semantic mean-
ing. It is, for instance, explicit which node in our
FCM represents autonomy and which stands for ben-
eficence, whereas deep neural networks decide intern-
ally what each of their neurons shall represent.
Usually, these designations are not human-interpret-
able, which is why deep-learning methods are often
described as black boxes (Braun et al. 2021; Watson
et al. 2019). In addition to causing difficulties with
regard to trustworthiness and accountability, these
methods would therefore not have been conducive to
an important goal of our study, which is to achieve
transparency regarding the ethical knowledge that
METHAD acquires. In contrast, the human-readable
visualization as causal graphs that FCMs offer make
them well-suited tools for interdisciplinary projects
such as this pilot study (Jetter 2006). Their interpret-
ability enabled the medical ethicists on our team to
provide feedback on which concepts should be
included in the model and which nodes should be
causally connected. Our programmers were then able
to encode this domain knowledge in a computer-read-
able way.

Opposite the deep-learning paradigm on the artifi-
cial-intelligence spectrum are symbolic methods.
These methods deal with logical reasoning or search
over given high-level knowledge representations. A
programmer might, for example, specify a rule accord-
ing to which if a patient is fully capable to consent
and has reached the age of majority, then doctors
should adhere to their treatment preferences. Methods
like decision trees or integer logic programming—the
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approach that Anderson, Anderson, and Armen
(2006) pursued in their study—can extract such rules
from relatively few examples. Since these rules can be
expressed in natural language, they are also highly
transparent. However, several problems arise when
one applies symbolic methods to a domain like med-
ical ethics. First, symbolic methods operate in the
realm of true and false, whereas case discussions in
clinical ethics require much more nuanced options.
Thus, methods like integer logic programming strug-
gle when data is not clear-cut (Evans and Grefenstette
2018). Secondly, medical case discussions often com-
prise various factors that interact in complex ways, so
that accounting for all of them would result in a very
long list of convoluted rules.

For the task of issuing recommendations in medical
ethics, FCMs therefore represent a good compromise
between deep learning and symbolic methods. Like
symbolic methods, they require relatively little data;
but like neural networks, they are able to incorporate
vague and more uncertain knowledge through their
weights and activations and thereby to establish an
adequate balancing of Beauchamp and Childress’ prin-
ciples in a context-dependent manner.

In terms of interpretability, FCMs are located
between the black boxes of deep learning and the
clear-cut rules of symbolic methods in that their
nodes as well as their connections have a clear, inter-
pretable meaning. By inspecting the weights that the
network has learned, one can determine whether the
strength and the polarity of the connections match
ethicists’ suggestions. This is in contrast to classical
neural networks, whose nodes and connections have
no obvious meaning (Felix et al. 2019).

CAPTURING CASE PARAMETERS

With the technical architecture in place, the next step
was to provide the algorithm with the input categories
necessary to capture the specific parameters of indi-
vidual cases. To do this, we identified the variables
that usually play a role in case discussions of clinical
ethics committees. We had to tread a fine line: if the
interface overburdens the users by demanding of
them that they input a multitude of complicated
parameters, the advantage of a computerized process-
ing of data is markedly decreased; if, on the other
hand, the number of input variables is so small that
the peculiarities of the respective cases are not convey-
able to the algorithm, the latter can only reach very
generalized verdicts and is limited to providing overly

generic advice that would be useless for dealing with
the highly unique real-life clinical cases.

We therefore strove for a balance between user-
friendliness and precision of outcome and created a
catalog of twenty input parameters per case.
METHAD begins by asking general questions about
the patient’s current health status to obtain the back-
ground against which any positive or negative conse-
quences that the treatment may yield will
be compared.

The algorithm then proceeds to request the values
for the variables that underlie Beauchamp and
Childress’ principles of beneficence, non-maleficence,
and autonomy. The questions are grouped accord-
ingly. Medical staff can either enter the values them-
selves or jointly with the patient. Patient participation
is especially desirable where subjective parameters or
personal preferences are at stake. Consequently, we
designed the user interface in a way that is also
accessible to laypeople.

Beneficence and Non-Maleficence

The principle of beneficence demands of medical per-
sonnel that they attend to the patient’s welfare
(Beauchamp and Childress 2013). For operationalizing
this principle, two factors are of primary importance:
the intervention’s influence on the patient’s life expect-
ancy and on their quality of life (Buyx, Friedrich, and
Sch€one-Seifert 2009; Ventegodt, Merrick, and
Andersen 2003). While the former is a quantifiable
value, the latter is an inherently subjective category
that must somehow be translated into a machine-
readable form.

A patient’s quality of life does not only encompass
purely physiological parameters but extends also to
cognitive, emotional, and social components
(Bullinger 2014; Gutmann 2017; Wilm, Leve, and
Santos 2014; World Health Organization 2012). Life
quality can be assessed with various questionnaires,
like the SF-36 Health Survey, the EQ-5D or the WHO-
QoL Questionnaire (Kohlmann 2014). Since these tools
have different strengths and weaknesses and are usu-
ally most reliable when tailored to a specific malady,
we refrained from embedding any of the surveys dir-
ectly into our user interface.

There are often discrepancies between the subject-
ively perceived quality of life and the patient’s clinic-
ally assessed health status (Bullinger 2014; Perron,
Morabia, and de Torrent�e 2002; Woopen 2014).
Especially in the case of disabilities, third-personal
evaluation frequently underestimates the patient’s

THE AMERICAN JOURNAL OF BIOETHICS 5



perceived quality of life because individuals who have
not experienced a particular malady usually fail to
adequately conceptualize it (Drummond et al. 2009;
Mast 2020). Being able to choose the method of evalu-
ation according to the respective situation is therefore
paramount. The aggregated score that the respective
questionnaire delivers can then be used as an
input parameter.

To what degree an intervention has the potential to
improve a particular patient’s quality of life or their
life expectancy can ex ante only be specified probabil-
istically (Buyx, Friedrich, and Sch€one-Seifert 2009). A
certain drug may have a great impact on some
patients, but be ineffective in others; some patients
experience serious side effects, whereas others do not.
METHAD therefore asks the user not only to specify
the improvement in these two parameters that the
intervention is assumed to yield, but also the likeli-
hood of this effect occurring (Figure 2).

In general, one cannot simply interpret anticipated
gains in life expectancy or in the quality of life in
absolute terms: being given an additional month of
life may mean only a marginal improvement for one
patient, but be an extremely favorable outcome for
another; likewise, a minute change in the quality of
life may be considered too small to even attempt ther-
apy in one case, but be regarded as a great relief in

another (Deutscher Ethikrat 2011). To reflect this
interindividual discrepancy, METHAD collects data
on what the patient’s presumed trajectory would look
like if the measure in question would not
be performed.

Patients also differ greatly in whether they prefer
an extension in the length of their life or an improve-
ment in the quality of the latter (Craig et al. 2018).
Since it is not uncommon for certain therapy options
to achieve one of these goals only at the expense of
the other—dialysis, for instance, prolongs a patient’s
life but simultaneously diminishes its quality—the
user interface requests that, if possible, the patient
indicate their preference between these sometimes
competing aims. While the interface offers itemized
answer options for most questions, we realized the
input of this highly subject-specific parameter via a
continuous slide switch to allow for more fine-
grained values.

Many therapies carry great risks or come with sig-
nificant side effects which must be taken into account
when making ethically relevant decisions.
Consequently, the principle of non-maleficence
demands of medical staff that they do not inflict evil
or harm (Beauchamp and Childress 2013). This
requires anticipating risks, avoiding or minimizing
them as far as possible, and monitoring any harms

Figure 2. User interface: beneficence.
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that may occur on an ongoing basis during treatment.
After all data for the category of beneficence has been
provided, METHAD’s interface therefore guides the
user to the questions associated with this second prin-
ciple. Analogous to the parameters requested for the
previous category, the user is now asked to specify
whether the planned intervention has the potential to
diminish the patient’s life expectancy or their quality
of life, and if so, how great these adverse effects would
presumably be and what the odds are for them to
occur. Finally, one must enter the patient’s individual
willingness to take this risk.

Respect for Patient Autonomy

Doctors must always act in accordance with the
patient’s choices and values (Herring 2016). The next
principle to implement was therefore the respect for
patient autonomy (Beauchamp and Childress 2013).
Although legal standards and assessment tools vary
between countries, there is general agreement that
patients have decisional capacity and can thus exercise
their autonomy if they are able “to communicate a
choice, to understand the relevant information, to
appreciate the medical consequences of the situation,
and to reason about treatment choices” (Appelbaum
2007, 1835).2 While an individual’s decisional compe-
tence admits of various degrees, practicality dictates
that one specify a threshold below which the patient
is regarded as incompetent (Beauchamp and Childress
2013). In clinical practice, the judgment about a
patient’s capacity is therefore usually binary: the
patient is declared either capable or incapable to take
the decision.

In recent years, a growing number of authors have
pointed out that even when patients are deemed to be
lacking decisional capacity, they are often still able to
express preferences, and argued that the latter should,
if possible, be taken into account (Berlinger, Jennings,
and Wolf 2013; Jaworska 1999; Navin et al. 2021;
Walsh 2020; Wasserman and Navin 2018). In
response, we decided to provide the user with the
option of passing more nuanced judgment by offering
two additional choices—marginally and moderately
capable—in between the customary all-or-nothing cat-
egories “fully capable” and “not capable.” The algo-
rithm would learn to attach more weight to the
patients’ preferences the higher they score on this
scale and depending on whether they have reached

the age of majority.3 However, conceiving of capacity
as a spectrum rather than as a binary construct is not
currently common practice and is thus just offered as
an experimental addendum.

When the user rates the patient’s decisional cap-
acity as impaired, METHAD should follow the
standard hierarchy (Bundes€arztekammer 2018;
Schweizerische Akademie der Medizinischen
Wissenschaften 2013) of also taking into account
other sources for establishing preferences. The first
source to consult is the advance healthcare directive.
When an advance directive is valid—in most jurisdic-
tions this means that it was signed after having
reached the age of majority, while in possession of full
capacity, that it was not revoked and that the docu-
ment is in accordance with the law—it should nor-
mally be followed unconditionally.4

It is often the case, however, that patients expressed
their wishes only vaguely, or, if they did express them
clearly, what they have laid down may not be applic-
able to the present situation (Fagerlin and Schneider
2004). Initiatives like advance care planning seek to
improve this situation in clinical practice (Detering
et al. 2010). To accommodate this difficulty, we inte-
grated a parameter into the algorithm with which one
can rate how well the written instructions correspond
to the decision that must be taken. The algorithm
should learn to give more weight to the patient’s pref-
erences when their respective applicability is high
(Figure 3).

When a patient has lost the capacity to take deci-
sions but had not drafted an advance directive, or
when the latter does not apply to the current situ-
ation, most legal systems permit that a surrogate deci-
sion maker be appointed. Usually, this is the patient’s
next of kin or an individual nominated by the courts.
The surrogate’s duty is to make decisions on the
patient’s behalf according to the substituted judgment
standard. Any choice made must reflect the incapaci-
tated person’s preferences and values as closely pos-
sible (Batteux, Ferguson, and Tunney 2020). To honor
this requirement, METHAD inquires about how well
the surrogate is informed about the patient’s wishes
and should adjust the emphasis given to the surro-
gate’s recommendation accordingly.

2See also Herring (2016) and Schweizerische Akademie der Medizinischen
Wissenschaften (2013).

3In some jurisdictions, the right to consent to certain medical
interventions is independent of whether the patient has reached the age
of majority (Griffith 2016). To employ the algorithm in these areas, one
would therefore need to remove this variable.
4We leave aside the often-discussed concern that the choices
documented in living wills may not be stable across time and,
consequently, fail to accurately reflect the individual’s later preferences
during an incapacitating illness (Beauchamp and Childress 2013; Mast
2020; Wasserman and Navin 2018).
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Finally, if the patient’s wishes are entirely
unknown, most legal systems follow the best-interest
approach, which specifies that the therapeutic option
is to be chosen that—measured by intersubjective
standards—promises to yield the best clinical out-
come. When this is the case, METHAD is supposed
to derive its recommendation solely from considering
the values entered for the categories beneficence and
non-maleficence.

Justice

The fourth and final of Beauchamp and Childress’
(2013) principles—justice—specifies that available
health-care resources should be distributed fairly.
Does this mean that they shall be allocated in a way
that maximizes utility or do certain deontological
rules take priority? That the principle of justice does
not provide an answer to this question is due to the
great plurality of theories of distributive justice.
Traditionally, one distinguishes between four major
types of theories: the libertarian, which place emphasis
on individual freedom and autonomous choice (Locke
2003); the communitarian, which are concerned with
the welfare of the collective (Hegel 1991); the egalitar-
ian, which highlight equal access to the available

goods (Rawls 1999); and the utilitarian, which strive
to maximize well-being for the greatest possible num-
ber of individuals (Bentham 1789; Mill 1863). No con-
sensus exists as to which theory should guide the
distribution of medical resources in society
(Marckmann 2001). Hence, while Beauchamp and
Childress’ prima-facie principles help to evade con-
flicts between the major ethical theories at the top
level, a somewhat analogous conflict reappears at the
level of the principle of justice.

Countries’ health policies vary significantly in their
adherence to these theories of justice (Beauchamp and
Childress 2013; Buyx, Friedrich, and Sch€one-Seifert
2009; Deutscher Ethikrat 2011; Drummond et al.
2009). States with universal health-care systems lean
more toward egalitarian values, whereas pluralist sys-
tems sympathize primarily with libertarian principles
and freedom of choice for patients, often to the detri-
ment of communitarian considerations. The British
NHS, for instance, takes a cost-effective and benefit-
maximizing approach in which quality-adjusted life
years (QALYs) play a major role in allocating medical
resources, which are made available to everyone
(Herring 2016; National Health Service 2021; Paulden
2017). Health care in the US, in contrast, traditionally
adheres to libertarian ideals. Citizens must basically

Figure 3. User interface: patient autonomy.
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protect their health on their own initiative
(Beauchamp and Childress 2013). How widely coun-
tries differ in what they deem a just way of distribut-
ing medical goods was recently revealed with the
publication of their respective guidelines for the allo-
cation of beds in intensive-care units during the
COVID-19 pandemic (Ehni, Wiesing, and Ranisch
2021; Joebges and Biller-Andorno 2020; J€obges et al.
2020; Lewandowski and Schmidt 2020). Finally, even
if one could agree on a theory of distributive justice,
there would still be many different ways in which fair-
ness could be calculated (Verma and Rubin 2018).

Given these great discrepancies in the practical
operation of the different health-care systems as well
as the lack of consensus regarding the underlying the-
ory of what would constitute a fair distribution of
medical resources, incorporating the principle of just-
ice into our algorithm was not achievable without
making specific, and possibly unwarranted, health-pol-
itical and socio-economical background assumptions,
of which we wished to stay clear in this pilot study.
Consequently, METHAD passes judgment only at the
level of the individual patient. Matters of intersubject-
ive justice—for example, whether a certain treatment
option would be too costly—must be resolved by
the user.

TRAINING THE ALGORITHM

Algorithms must be trained before they function
properly. For supervised learning, which is the most
common form of machine learning, one provides a
model with a range of inputs and a corresponding set
of predefined solutions, the so-called labels. The algo-
rithm is then trained to learn a mapping that will
most closely match the inputs in its dataset to the
given answers.

When machine intelligence is used, for instance, to
detect tumors in images of stained tissue slides taken
from biopsies, pathologists label each image of the
training dataset that is fed into the algorithm regard-
ing whether it contains healthy or abnormal tissue
(Pantanowitz et al. 2020). In the field of ethics, these
labels are much more difficult to obtain. Ethically
relevant situations rarely admit of “objectively correct”
solutions. As we have seen, what is morally right can
be highly controversial. However, the supervised train-
ing of algorithms requires definite answers—in our
case whether to recommend a certain medical inter-
vention or to advise against it. How could one acquire
this data?

We considered three potential sources for compil-
ing training datasets: court judgments, surveys con-
ducted on the general public’s moral preferences, and
decisions from clinical ethics committees. We deemed
court rulings unfitting for the purpose since several
factors play decisive roles in these verdicts that are
irrelevant in questions of medical ethics. What is eth-
ical and what is legal is not always congruent
(Herring 2016). Surveys of moral preferences (Awad
et al. 2018; Uldall 2015) bring with them the difficulty
that they cannot possibly reflect the complexity that
the making of patient-centered clinical decisions
requires. The sheer amount of detail that comes with
every single case precludes a broad survey-based
approach. In the end, cases that were brought before
clinical ethics committees emerged as the most suit-
able data source. While it is important to note that
even the decisions that these committees have reached
cannot be regarded as morally objective, they still
promise to deliver adequate training data for algo-
rithms whose goal it is to replicate as closely as pos-
sible the recommendations that ethical advisory
bodies typically issue.

To mitigate regional influences and national differ-
ences, we did not gather historical cases from the eth-
ics committee in our own university hospital, but
sourced them from larger collections in the literature
(Ackerman and Strong 1989; Dickenson, Huxtable,
and Parker 2010; Freeman and McDonnell 2001;
Johnston and Bradbury 2016; Pence 2017; Perlin 1992;
Snyder and Gauthier 2008). For every included case,
we established the respective values of the parameters
described in the foregoing section and fed them into
the database. Simultaneously, we also entered the
training label: whether or not the intervention in
question was recommended or rejected. Often the
sources already suggested a preferred solution. Where
they did not, our institute’s ethics team specified
which decision clinical ethics committees would most
likely take. Thus, the algorithm gradually learned
which constellations of input parameters are supposed
to be associated with which ethical outcome. As
shown in Table 1, the dataset covers a wide range of
case types.

To increase METHAD’s accuracy, we employed
data augmentation—a technique whereby slightly
modified versions of the original cases are introduced
into the dataset (Shorten and Khoshgoftaar 2019). In
each of these variations, we made alterations only to a
single value while holding the other parameters con-
stant. This enables the algorithm to discern exactly
which factor is supposed to exert an influence on the
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final recommendation and which parameters are less
important in which overall constellations.

EVALUATION

Observing METHAD issuing its first recommenda-
tions was fascinating. In the majority of test cases, its
suggestions were surprisingly well in accordance with
the solutions obtained from the textbooks and from
our ethicists (Figures 4 and 5).

However, there was one case category that caused
some problems: the competent refusal of medically
highly beneficial treatment. In textbooks for medical
students, this situation is often illustrated using the
example of Jehovah’s Witnesses’ informed rejection of
blood transfusions (Dickenson, Huxtable, and Parker
2010; Johnston and Bradbury 2016). Here, our algo-
rithm’s recommendation for treating the fully compe-
tent patients against their will was consistently
between 0.3 and 0.6 higher than the training label.
Although overriding a patient’s decision to prevent
significant harm can in certain circumstances be mor-
ally justified, most ethicists agree that a patient’s sub-
stantial autonomy interests must not be infringed
even if this would result in their certain death
(Beauchamp and Childress 2013).

Why did METHAD issue this output? In many of
our training cases, a high likelihood of significant
gains in the length of life in conjunction with negli-
gible side effects and a good quality of life were asso-
ciated with a strong tendency to attempt the
intervention in question. That patient autonomy can
sometimes override this intricate calculus was appar-
ently difficult for the algorithm to pick up. We allevi-
ated this deviation by introducing additional case
variations in which autonomy is the deciding factor
into the training dataset to reinforce correct behavior
in these types of situations (Figure 6).

Currently, the algorithm’s database consists of only
69 cases. To evaluate METHAD’s performance, we

therefore employed stratified k-fold cross-validation,
which is a method commonly used in machine learn-
ing for assessment in settings with limited data.
Splitting the dataset into a training set and a test set
according to a given ratio—we used two thirds for
training and one third for testing—enables one to
assess the model’s performance on data that it has
never encountered before. K-fold cross-validation
means that this split is done k times. The data is
shuffled, so that the exact makeup of the training and
test sets differs slightly each time. Stratification
ensures that the data split is done in a way that results
in an equal distribution of a certain feature in the
training and test sets. We stratified according to case
type. Consequently, even though our training set is
twice the size of our test set, they both contain the
same proportion of cases concerning, for instance,
consent in minors.

We used a k of 3, which provided us with three
separate pairs of training and test datasets. Since there
is an element of randomness involved in genetic algo-
rithms, we trained ten models for each train/test-set
pair with the configuration shown in Figure 1 to
obtain a more robust performance estimate. The
results are averaged over these ten models, and we
report them separately for the training and the test
set. As mentioned, METHAD’s recommendations
were allowed to take any value between 0 (strongly
opposed to the intervention) and 1 (strongly in favor
of the intervention). We set a decision threshold of
0.5, which means that outputs �0.5 are counted as
approval, and outputs <0.5 signify that the interven-
tion in question should not be undertaken.

When the algorithm’s predictions were compared
to the textbook solutions and to our ethicists’ judg-
ments, its outputs deviated from these labels on aver-
age by 0.11 in the training dataset and 0.23 in the test
dataset. METHAD agreed with our ethicists in 92% of
the cases in the training set and 75% of the cases in
the test set. Note that these metrics measure slightly

Table 1. Breakdown of dataset by case category.
Case category Number of cases (absolute) Number of cases (relative) (%)

Beginning of life, pregnancy and abortion 8 12
Consent in minors 11 16
Advance directives and consent in adults 13 19
Patient’s refusal of treatment 11 16
Request or provision of futile treatment 9 13
Withholding or withdrawal of treatment 14 20
Mental health 3 4
Total 69 100

Since no universally accepted taxonomy of clinical ethics cases exists, authors employ very different categorizations (Ackerman and
Strong 1989; Freeman and McDonnell 2001; Herring 2016; Johnston and Bradbury 2016; Pence 2017; Perlin 1992; Stauch, Wheat,
and Tingle 2018). Consequently, the classifications displayed here are not to be regarded as mutually exclusive; some cases nat-
urally fit into more than one category. Importantly, METHAD is not dependent on case categorizations. We only include these to
illustrate the composition of the initial training dataset.
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different things: a prediction may deviate only mar-
ginally from the training label but be counted as
incorrect—for example, if the algorithm’s output is
0.45 and the ethicists’ judgment is 0.6. However, the
opposite is also true: a recommendation may be
counted as correct although the deviation from the
label is relatively high—for example, if the output is
0.55 and the label is 1.0 (Table 2).

Although, considering the size of its training data-
set, METHAD’s performance is already rather promis-
ing, it would be desirable to broaden the database
considerably. To further refine the recommendations
that the algorithm issues and to make them more
robust, hundreds of novel training cases would have
to be added. This, however, was not the aim of this
first proof-of-concept study. The small example data-
set served mostly as a vehicle to test whether the algo-
rithm is, in principle, able to generate reasonable
recommendations based on a decision process that is
learned from examples.

LIMITATIONS AND CHALLENGES

We shall now address crucial limitations of our sys-
tem and consider some challenges that it raises. For
the reasons already detailed, we omitted Beauchamp
and Childress’ principle of justice in this feasibility
study. While distributive justice is indeed of little

Figure 4. Example case 1: A 10-year-old is suffering from leu-
kemia. Seeing their child experience the strong side-effects
that the therapy induces, the parents want all interventions
halted. However, chemotherapy has proven to be highly effect-
ive and the child’s prognosis is very promising. METHAD’s ana-
lysis indicates that continuing the therapy would very likely be
in the young patient’s best interest, which is in accordance
with human ethicists’ judgment (denoted as “training label”).

Figure 6. Example case 3: A competent patient refuses a life-sav-
ing treatment. METHAD calculates that the medical benefits for
the patient would be enormous – visible as an initial spike – and
that the intervention would come with only minimal risks, but,
after figuring in that the refusal occurred with full decisional cap-
acity, eventually recommends refraining from intervening.

Figure 5. Example case 2: A patient with limited decisional
capacity requests a medical intervention that is unlikely to
result in an extension of her life. There is a strong indication,
however, that the treatment would reduce the patient’s quality
of life. Her risk preference cannot be established. METHAD
begins by analyzing the patient’s wishes, but, after factoring in
the intervention’s medical futility, ultimately recommends
against proceeding.
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relevance in most individual case discussions, there is
another dimension to justice to which one must pay
close attention when developing algorithms: proced-
ural justice.

When it comes to justice in decision-making, the
focus is usually on whether the outcome is fair.
Studies have shown, however, that people perceive the
fairness of the process by which a certain decision is
reached as equally important—irrespective of whether
they agree with the result (Blader and Tyler 2003;
Thibaut and Walker 1975). Fairness in the practice of
reaching decisions is known as procedural justice.

While authors differ in which elements they take
procedural justice to encompass (Leventhal 1980;
Solum 2004; Thibaut and Walker 1975), this question
now also pertains to the emerging field of algorithmic
decision-making. Recent work has been exploring
what procedural justice amounts to in this specific
context (Lee et al. 2019). The main challenge in set-
ting up algorithms, especially in the health-care sector,
is to ensure that they neither amplify existing biases
nor introduce novel ones (Char, Shah, and Magnus
2018; Vollmer et al. 2020). Mehrabi et al. (2019)
uncover no less than 23 different types of poten-
tial biases.

For advisory algorithms like METHAD, this means
that utmost care must be exercised in populating the
database. Above all, one must collect the chosen cases
in a way that is representative and inclusive to ensure
that machine intelligence will not make discriminatory
decisions (World Health Organization 2021). Given
that some parameters of clinical cases are open to
interpretation, this requirement also extends to the
individuals who enter the data.

Besides the absence of systematic errors in the
dataset, there are two main goals in honoring proced-
ural justice in algorithmic decision-making: transpar-
ency (Braun et al. 2021; Char, Abr�amoff, and
Feudtner 2020) and control (Lee et al. 2019).

Transparency is crucial to enable all parties involved
to retrace how exactly the decision came about
(World Health Organization 2021). As described ear-
lier, this requirement led us to exclude machine-learn-
ing models with limited explanatory power, such as
deep neural networks and support vector machines,
which are often criticized for their opacity (Watson
et al. 2019). Instead, we chose FCMs, which can be
represented as causal graphs with nodes that symbol-
ize the different elements and causal connections of
the decision-making process (Figure 1). As shown in
Figures 4–6, the procedure of weighing the ethical
principles can be visualized as a diagram for every
single case. Moreover, METHAD delivers its outputs
not in a binary form (intervention recommended/not
recommended), but as a digit that demonstrates how
much in favor or against a certain intervention the
algorithm’s suggestion is, thereby signposting border-
line cases in which greater scrutiny may be needed.
Nonetheless, this decision-making process will inevit-
ably be more opaque than well-conducted discussions
among skilled clinical ethicists.

Procedural justice also requires control: to allow the
users to modify as much of the input data as possible
and ideally even permit them to influence the inner
workings of the algorithm itself (Lee et al. 2019). As
described, our analysis of clinical case discussions
revealed 20 decisive parameters that appeared repeat-
edly, and we implemented these into METHAD’s user
interface. However, only larger clinical trials will show
whether special circumstances may require additional
input categories. There is always the danger of the so-
called omitted-variable bias: of failing to take into
consideration a parameter that exerts an influence on
the result, and thus falsely attributing a certain out-
come to the effect only of those variables that were
included in the dataset (Mehrabi et al. 2019). If, for
instance, the algorithm’s user interface did not pro-
vide the option to specify a possible decrease in the

Table 2. Cross-validation results.

Case category Number of cases

Mean absolute error Mean binary accuracy

Train Test Train Test

Beginning of life, pregnancy and abortion 8 0.10 ± 0.06 0.25 ± 0.14 0.82 ± 0.08 0.68 ± 0.28
Consent in minors 11 0.11 ± 0.07 0.22 ± 0.10 0.94 ± 0.10 0.81 ± 0.12
Advance directives and consent in adults 13 0.10 ± 0.06 0.23 ± 0.10 0.97 ± 0.07 0.75 ± 0.19
Patient’s refusal of treatment 11 0.11 ± 0.06 0.18 ± 0.11 1.00 ± 0.01 0.92 ± 0.15
Request or provision of futile treatment 9 0.12 ± 0.07 0.32 ± 0.14 0.87 ± 0.17 0.60 ± 0.27
Withholding or withdrawal of treatment 14 0.09 ± 0.07 0.17 ± 0.11 0.95 ± 0.11 0.83 ± 0.19
Mental health 3 0.18 ± 0.14 0.30 ± 0.16 0.68 ± 0.42 0.27 ± 0.33
Total 69 0.11 ± 0.07 0.23 ± 0.12 0.92 ± 0.10 0.75 ± 0.20

A discrepancy in performance between training and test datasets is to be expected in most machine-learning settings – especially when working with
small datasets.
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patient’s quality of life caused by the intervention in
question, the system would learn to recommend that
therapies go ahead whenever the gain in life expect-
ancy is great enough (and patient consent is obtained,
of course). This would in some cases lead to unethical
proposals—for example, when patients could gain an
additional year of lifetime only by being subjected to
excruciating pain, or when they indicate that they pre-
fer a high quality of life over any temporal prolonga-
tion. While machine intelligence will inevitably be
inferior to human ethicists in that it will, at least in
the beginning, not be able to take into consideration
more exceptional peculiarities, algorithmic solutions
must still endeavor not to disregard crucial parameters
that arise in clinical consultations. Conversely, how-
ever, will analyzing which results METHAD yields on
the basis of which variables hopefully also help us bet-
ter to understand the role that each parameter plays
in case discussions conducted by human experts.

Regarding control over of the inner mechanics of
the algorithm, we have already described how our
FCM permits the addition, deletion, and modification
of nodes and connections. This way, METHAD can
also be adapted to regional, cultural, and juridical
differences.

Despite these measures, no algorithm will be fully
free from biases, thoroughly transparent, and entirely
controllable. While one must endeavor to hold algo-
rithmic decision-making to the same high standards
that guide clinicians (Char, Shah, and Magnus 2018),
it is therefore essential that mechanisms be in place to
override or to appeal decisions (World Health
Organization 2021). In the case of METHAD, no
autonomous unsupervised use is intended in the fore-
seeable future.

In a sense, the choice of Beauchamp and Childress’
principlism as the ethical basis of our algorithm also
constitutes a limitation. Although some authors hold
that this approach offers a set of moral commitments
“to which all doctors can subscribe, whatever their
culture, religion (or lack of religion), philosophy or
life stance” (Gillon 2015, 115), others maintain that
“morality is more than the attempt either to follow a
set of rules or to apply principles appropriately”
(Tong 2002, 418). There are situations and particular
categories of problems in which casuistic (Jonsen
1991), narrative (Charon and Montello 2002; Montello
2014), feminist (Sherwin 1992; Wolf 1996) or other
approaches will be more appropriate. While a synthe-
sis of the different methods and perspectives would
certainly be desirable (McCarthy 2003), constructing
such an algorithm is not yet feasible. Consequently,

METHAD should only be employed in contexts where
one also deems appropriate guidance from
Beauchamp and Childress’ prima-facie principles.

Lastly, it is worth repeating that the advice that the
model offers is about whether medical interventions
should be carried out (or treatment continued) or not
attempted (or treatment withdrawn). This limits
METHAD’s applicability to cases in which treatments
are at issue and excludes the many other areas in
which people consult clinical ethicists.

SHOULD WE EMPLOY IT?

In this first feasibility study, we have proposed a way
in which machine intelligence could be utilized to
solve a range of real-life moral dilemmas that occur in
clinical settings. METHAD offers a framework to sys-
tematically break down medical ethics cases into a set
of quantifiable parameters and provides a novel
approach to modeling their assessment in a computer-
ized way.

We began by choosing the underlying moral theory
and analyzing the different technical solutions that are
available. We explained why fuzzy cognitive maps are
particularly suited for building an ethical advisory sys-
tem and showed how one can capture the parameters
of individual cases. Finally, we reported on the algo-
rithm’s performance and considered the limitations of
our approach.

That one can do something does not imply that
one also should: the basic technological means to aid
ethical decision-making now exist; but would it really
be a good idea to implement such a technology in our
clinics? Most people will find the prospect of autono-
mously driving vehicles taking morally relevant deci-
sions in situations of unavoidable harm easier to
accept than having judgments in clinical settings
made by machine intelligence.

Human contact, the intimate relationship between
patient and medical personnel, is inherent to the field
of medicine as an essential part of making diagnoses,
establishing patient preferences and—ultimately—cur-
ing (Char, Shah, and Magnus 2018). Could we ever
relinquish this bond when it comes to ethical deci-
sion-making? Besides medical expertise, should not
empathy guide us rather than “cold” computerized
calculations?

In the foreseeable future, ethical advisory systems
will likely be employed only to support, not to stand
in lieu of, human judgment. METHAD could, for
example, be used for educational purposes such as
training medical students and aspiring ethicists. One
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may also utilize it to provide patients and relatives
with informal ethical guidance in cases that are not
deemed important or controversial enough to be
brought before clinical ethics committees.

A time may come, however, at which machine
intelligence has become efficient, accurate, and trans-
parent enough to in fact replace human ethical deci-
sion-making in certain settings. There will be much to
be gained from, for example, employing advisory algo-
rithms in overwhelming emergency situations where
greater numbers of morally relevant decisions must be
taken than would be humanly possible; and, con-
versely, there will be scenarios in which machine
intelligence will likely always remain inferior to
human decision-making. Currently, the prospect of
putting our patients’ fate into the hands of non-bio-
logical apparatuses is met with great resistance
(Bundes€arztekammer 2020). Irrespective of whether or
not this is a path that society will ultimately wish to
pursue—it is crucial already to begin this discussion
and carefully to consider the virtues and vices of the
novel options that are becoming available to us.
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