RUNNING HEAD:
Modeling inference of mental states

TITLE:
Modeling inference of mental states: As simple as possible, as complex as
necessary

AUTHORS:

Ben Meijering! (b.meijering@rug.nl; +31 50 363 7603)

Niels A. Taatgen! (niels@ai.rug.nl; +31 50 363 6435)
Hedderik van Rijn? (hedderik@van-rijn.org; +31 50 363 6290)
Rineke Verbrugge!® (l.c.verbrugge@rug.nl; +31 50 363 6334)

1. Institute of Artificial Intelligence and Cognitive Engineering, University of
Groningen, PO Box 407, 9700 AK, Groningen, The Netherlands

2. Department of Psychology, University of Groningen, Grote Kruisstraat 2/1,9712
TS, Groningen, The Netherlands

* Corresponding author



Abstract

Behavior oftentimes allows for many possible interpretations in terms of mental
states, such as goals, beliefs, desires, and intentions. Reasoning about the relation
between behavior and mental states is therefore considered to be an effortful
process. We argue that people use simple strategies to deal with high cognitive
demands of mental state inference. To test this hypothesis, we developed a
computational cognitive model, which was able to simulate previous empirical
findings: In two-player games, people apply simple strategies at first. They only
start revising their strategies when these do not pay off. The model could simulate
these findings by recursively attributing its own problem solving skills to the other
player, thus increasing the complexity of its own inferences. The model was
validated by means of a comparison with findings from a developmental study in
which the children demonstrated similar strategic developments.
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Introduction

In social interactions, we try to understand others’ behavior by reasoning about
their goals, intentions, beliefs, and other mental states. Such reasoning about
mental states is often called theory of mind, abbreviated ToM (Baron-Cohen, Leslie,
& Frith, 1985; Wellman, Cross, & Watson, 2001; Wimmer & Perner, 1983). There
has been an ongoing debate among philosophers and cognitive scientists whether
our everyday reasoning about mental states constitutes a theory, as claimed by the
‘theory-theorists’ or rather that people directly simulate others’ mental states, as
claimed by the ‘simulation-theorists’. In this work, even though we do use the term
‘theory of mind’, we do not adhere to either of the two claims.

When we ascribe a simple mental state to someone, we apply first-order
theory of mind. For example, if Bob thinks: “Ann knows that my birthday is
tomorrow”, he is applying first-order theory of mind, which covers a great deal of
daily social interactions. However, first-order theory of mind does not suffice for
reasoning about more complex situations. If Carol thinks: “Bob thinks that Anne
knows that his birthday is tomorrow”, she is making a second-order mental state
attribution, as she does if she thinks: “Bob believes that Anne intends to throw him
a surprise party”.

In this work, we present a computational cognitive model that simulates
application of various ToM strategies, ranging from simple strategies to full-blown
recursive ToM. ToM has been modelled before (Hiatt & Trafton, 2010; Van Maanen
& Verbrugge, 2010). However, these models either simulated one specific instance
of ToM (Hiatt & Trafton, 2010) or attributed too much rationality to human
reasoning (Van Maanen & Verbrugge, 2010).1 Our model is based on previous
empirical results (Meijering, Van Maanen, Van Rijn, & Verbrugge, 2010; Meijering,
Van Rijn, Taatgen, & Verbrugge, 2011) and is validated by means of a re-analysis of
a previous developmental study by Flobbe et al. (2008). The model can explain
why people use strategies that are relatively simple, while still being successful at
inferring mental states of others.

Many studies have shown that people cannot always account for another’s
mental states in order to predict their behavior, particularly in the context of two-
player sequential games (e.g., Flobbe et al., 2008; Hedden & Zhang, 2002;
Raijmakers, Mandell, Van Es, & Counihan, 2013; Zhang, Hedden, & Chia, 2012).
Sequential games require reasoning about complex mental states, because Player 1
has to reason about Player 2’s subsequent decision, which in turn is based on
Player 1’s subsequent decision (Figure 1). Typically, performance is suboptimal
and that is probably because players do not have a correct model of the other
player’s mental states (Johnson-Laird, 1983). By means of hypothesis testing, they
may try to figure out which model works best in predicting the other player’s
behavior (Gopnik & Wellman, 1992; Wellman et al.,, 2001). However, a particular

1 Note that in the remainder of this article we use ‘simulate’ in its usual meaning
in the field of computational cognitive modeling as ‘fitting well to the experimental
data’, so not in the sense of ToM as understood by simulation-theorists.



action or behavior can have many possible mental state interpretations (Baker,
Saxe, & Tenenbaum, 2009), and testing all these interpretations strains our
cognitive resources.

To alleviate cognitive demands, people generally start testing simple models or
strategies that have been proven successful before (Todd & Gigerenzer, 2000).
Because application of ToM and especially recursive ToM is an effortful process
(Keysar, Lin, & Barr, 2003; Lin, Keysar, & Epley, 2010; Qureshi, Apperly, & Samson,
2010), reasoning about mental states probably also comprises the use of simple
strategies. So where do these strategies come from? We hypothesize that they are
a legacy of our childhood years, possibly developed in other domains, where they
have proven themselves successful. Raijmakers et al.’s (2013) findings corroborate
this claim, as the children in their study consistently used strategies that were not
fit to deal with the logical structure of the games presented to them. The strategies
sometimes did yield the best possible outcome, however, which may be an
explanation for why they still exist in adult reasoning: Simple strategies do not
exhaust cognitive resources and are appropriate in a wide range of circumstances.
Indeed, our computational cognitive model will show that the presence of simple
strategies depends on the proportion of games in which they yield an optimal
outcome.

In this study, we present a computational cognitive model that simulates
inference of mental states in sequential games. The model initially uses a simple
strategy that ignores many task aspects. However, if the model’s strategy does not
worlk, it learns to acknowledge that the other player has a role in its outcome. The
model will therefore start attributing its own strategy to the other player. We will
show that this process can account for the differential learning effects in Meijering
et al.’s study (2011), in which participants adopted distinct strategies based on the
training regimen that was administered to them. To validate the model, the
developmental study of Flobbe et al. (2008) was re-analyzed, searching for
patterns that are indicative of the use of simple strategies in children.

Before we explain the model, we will first explain the empirical findings on
which it is based.

Empirical findings
Meijering et al. (2011) studied second-order ToM reasoning in two-player
sequential games. Take the game in Figure 1 as an example game: Each end node
contains a pair of payoffs, left-side payoffs belonging to Player 1 and right-side
payoffs belonging to Player 2. The end node in which a game is stopped determines
the payoff each player obtains in that particular game. Each player’s goal is to
obtain his or her greatest attainable payoff. Players take turns in making a
decision, and Player I begins. Because each player’s outcome depends on the other
player’s decision, both players have to reason about one another’s mental states.
These two-player games might appear at first sight to be similar to the
Prisoner’s Dilemma (PD), because in PD there are also two players whose
outcomes depend on the other’s decisions. However, PD is a simultaneous-move
game, whereas in sequential games, players take turns. The turn-taking aspect of
sequential games naturally delineates the required depth of ToM reasoning. In PD,



in contrast, there is not necessarily a limit on ToM depth (see Osborne &
Rubinstein, 1994), which complicates the analysis of human ToM reasoning in PD.

In our turn-taking game, participants were always assigned to the role of
Player 1, and had to decide at the first decision point whether to stop the game in A
or to continue it to the next decision point. To make that decision, they had to
reason about what Player 2 would do at II, and because Player 2, in turn, would
have to reason about what Player [ would do at II], participants had to apply
second-order ToM.

It might at first sight appear that participants could be using alternative
strategies that do not concern the opponent’s mental states at all; for example, they
might be applying backward induction, which essentially consists of three pairwise
comparisons of pay-offs, from the leaves of the game tree upwards. Our previous
studies Meijering et al. (2012, 2013) and Bergwerff et al. (2014), however, support
the assumption that participants are indeed imputing mental states such as beliefs
and plans to their opponent, and that they also reason about the opponent’s beliefs
about their own plan of action. Reaction-time and accuracy measures for a similar
turn-taking game in Meijering et al. (under submission) also show that a second-
order prediction requires significantly more cognitive resources than a first-order
decision, even if they correspond to exactly the same payoff comparisons.

Player 1

Player 2
A3, 2)

Player 1

C((21) D (1, 4)

Figure 1: An extensive form representation of a two-player sequential game.
Player 1 decides first, Player 2 second, and Player 1, again, third. The
decision points are indicated in Roman numerals (I - III). Each end-node has
a pair of payoffs, of which the left-side is Player 1’s payoff and the right-side
Player 2’s payoff. Each player’s goal is to obtain their highest possible payoff.
In this particular game, the highest possible payoff for Player 1 is a 4, which
is obtainable because Player 2’s highest possible payoff is located at the same
end node (i.e., B). Player 2’s payoff of 4 is not obtainable because Player 1
would decide left instead of right at the third decision point (III).



Experimental setup

Meijering et al. (2011) investigated the effect of two distinct training regimens. The
training regimens were followed by two test blocks of 32 games each, which were
administered to test for longer-term effects of training regimen.

One training regimen was based on the training phase in Hedden and Zhang's
(2002; 2012) study, which consisted of 24 so-called trivial games (Figure 2; top
panel). In these games, Player 2 did not necessarily have to reason about Player 1’s
last possible decision, because Player 2’s payoff in B was either lower or higher
than both his payoffs in C and D. Consequently, Player 2 did not have to apply ToM,
and Player 1 had to apply first-order ToM at most.

Undifferentiated Training Player 1

Player 2
A1)

EEEEEEENRNENR IIIIIIII}

Player 1
B(4,2)

C(2,4) D(1,3)
24 trivial games

Player 1

Player 1 Player 2

Stepwise Training
A(3,2)

Player 1
A2,1) B (4, 3)
A A

A(2,1) B(1,3) B (3,2) C(1,3) C(2,1) D (1, 4)

Player 2 Player 1

4 zero-order games 8 first-order games 8 second-order games

Figure 2: Schematic overview of the two training regimens (see Figure 1 for a
detailed explanation of a single game). Undifferentiated training consisted of
24 trivial games. Stepwise training consisted of 4 zero-order, 8 first-order,
and 8 second-order games. Each game had a unique distribution of payoffs.

Although it is not uncommon to include ‘simple’ practice items, Meijering et al.
(2011) believed that the trivial games might have had the opposite effect of
familiarization (see Flobbe et al., 2008 for similar concerns). Participants might
have adopted first-order reasoning during training. Such reasoning would yield
expected outcomes during the training phase, but not anymore during the
experimental phase. The games in the latter phase required second-order ToM,
and first-order ToM would yield suboptimal outcomes. To test the hypothesis that
the practice regimen might have entrained participant to use first-order ToM,



Meijering et al. contrasted Hedden and Zhang’s training phase with another
training regimen.

In the other training regimen, participants were presented with subsequent
blocks of games of increasing complexity (see Figure 2; bottom panel). Each block
(three in total) introduced a new decision point, thus increasing the required ToM
reasoning. This regimen allowed for adoption of simple strategies at first, and
gradually more complex strategies in subsequent blocks. Crucially, the games in
the last training block required second-order ToM, and simpler strategies would
not suffice anymore. This training regimen is henceforth referred to as Stepwise
training; Hedden and Zhang's training regimen is henceforth referred to as
Undifferentiated training.

Meijering et al. (2011) hypothesized that these two training regimens would
have distinct effects on strategy formation and performance. They predicted that
Stepwise training would facilitate participants to incorporate mental states of
increasing complexity into their decision making process, yielding high accuracy.
Undifferentiated training, in contrast, would not motivate participants to develop
recursive ToM, as they could suffice with application of first-order ToM.
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Figure 3: A zeroth-order (a), first-order (b) and second-order (c) Marble
Drop game. The participant’s payoffs are represented by al - a4, the
computer’s by b1 - b4, both in increasing order of value. The goal is to let the
white marble end up in the bin with the highest attainable payoff. The
diagonal lines represent trapdoors. At the first set of trapdoors, the
participant decides which of both trapdoors to remove, at the second set the
computer decides, and at the third set the participant again decides. The
dashed lines represent the trapdoors that both players should remove to
attain the highest payoff they can get.

Meijering et al. (2010; 2011) designed a new visual task representation to
facilitate reasoning in sequential games. Importantly, this representation did not
change the logical structure of the sequential games, which were still equivalent to
Hedden and Zhang’s. Figure 3 shows examples of the new task representation,
which is called Marble Drop. Note that in this game, both players are aware of the
pay-off structure for the whole game. In this respect, Marble Drop differs from
well-known large turn-taking games such as chess and checkers.



Results

As expected, the participants that were assigned to Stepwise training performed
better than the participants assigned to Undifferentiated training (see Figure 6).
One specific behavioral pattern is of particular interest to validate the model: The
performance of participants assigned to Undifferentiated training rose to ceiling
during the training phase and dropped again when the experimental phase started
(Figure 6). We hypothesize that the participants applied simple, child-like
strategies during the training phase, because these strategies worked and did not
consume much cognitive resources. At the start of the experimental phase,
however, these strategies did not work anymore and accuracy dropped, because
the games, while superficially similar, required more complex reasoning.
Nevertheless, accuracy increased again over the course of the experimental phase,
as the participants were able to revise their strategies. We will show that our
computational cognitive model can simulate this process: The model’s most
important characteristic is that the complexity of its reasoning gradually increases
by repeatedly attributing its own (evolving) strategy to the other player.

Computational cognitive model

The model? is implemented in the ACT-R cognitive architecture (Anderson, 2007;
Anderson et al., 2004). ACT-R comprises a production system, which executes if-
else rules, and contains declarative knowledge, which is presented as memory
representations, or so-called chunks. In addition, ACT-R also includes modules that
simulate specific cognitive functions, such as vision and attention, declarative
memory, motor processing, et cetera. The results of these simulations appear as
chunks in the modules’ associated buffers, which the model continually checks
(and manipulates) by means of its production system. ACT-R imposes natural
cognitive constraints, as buffers can hold just one chunk at a time, and production
rules can only fire successively, whenever their pre-specified conditions are
matched. ACT-R does allow for parallel processing whenever a task induces
cognitive processing in distinct modules. The model that we present here runs
atop of ACT-R.

The model’s behavior partially depends on memory dynamics. It needs to
retrieve factual knowledge from declarative memory, and both the speed and
success of retrieval depend on the so-called base-level activation of a fact (or
chunk). The higher the base-level activation is, the greater the probability and
speed of retrieval. The base-level activation in turn is positively correlated with the
number of times a fact is retrieved from memory and the recency of the last
retrieval.

The model simulates inference of mental states in sequential games. It uses a
simple strategy at first (explained in the section Assumptions) and gradually
revises that strategy until it can process recursive mental states. We consider the
application of a particular strategy, and revising that strategy, to be deliberate

2 The model can be downloaded from
http://www.ai.rug.nl/~meijering/iccm2013



processes. Therefore, application and revision are implemented by means of an
interaction between factual knowledge and problem solving skills. Arslan, Taatgen,
and Verbrugge (2013) successfully used a similar approach in modeling the
development of second-order ToM in another ToM paradigm (i.e., the false-belief
task). Van Rijn, Van Someren, and Van der Maas (2003) have successfully modeled
children’s developmental transitions on the balance scale task in a similar vein.
Factual knowledge is represented by chunks in declarative memory, which store
what strategy the model should be using. The problem solving skills, or strategy
levels, are executed by (recursively) applying a small set of production rules. The
model’s goal is to make decisions that yield the greatest possible payoff. Decisions
are either ‘stop the game’ or ‘continue it to the next decision’. The model was
presented with the same distributions of payoffs (i.e., items) as were presented to
the participants.

The model’s initial simple strategy is to consider only its own decision at the
first decision point and to disregard any future decisions. The model’s decision is
based on a comparison between its (i.e., Player 1’s) payoff in A and the maximum
of its payoffs in B, C, and D. If the model’s payoff in A is greater, the model will
decide to stop. Otherwise, the model will decide to continue. By using this simple
strategy the model seeks to maximize its own payoff, which can be considered a
direct translation of the instructions given to the participants.

This strategy will work in some games but not in all. Whenever the strategy
works, the model receives positive feedback and stores in declarative memory
what strategy it is currently using. In fact, the model stores a strategy level, which
is level-0 in the case of the simple strategy described above. Whenever the strategy
does not work, the model receives negative feedback and stores in declarative
memory that it should be using a higher strategy level (e.g., level-1).

The higher strategy level means that the model should attribute whatever strategy
it was using previously to the other player at the next decision point. In the case of
strategy level-1, the model attributes the model’s initial simple strategy (i.e., level-
0) to Player 2. Accordingly, the model is applying first-order ToM, as it reasons
about the mental state of Player 2, who considers only his own payoffs and
disregards any future decisions.

Again, this strategy will work in some games but not in all. Whenever it does
not work, the model receives negative feedback and stores in declarative memory
that it should be using a higher strategy level. At a higher strategy level, the model
will attribute whatever strategy level it was using previously to Player 2. At
strategy level-2, the model attributes strategy level-1 to Player 2, who in turn will
attribute strategy level-0 to the player deciding at third decision point: Player 1.
Now the model is applying second-order ToM.

Assumptions

The model is based on three assumptions. The first assumption is that participants,
unfamiliar with sequential games, start playing according to a simple strategy that
consists of one comparison only: Participants compare their current payoff, when
stopping the game, against the maximum of all their future payoffs, when
continuing the game. They stop if the current payoff is highest; they continue
otherwise. Participants who are using this strategy ignore the consequences of any



possible future decision, whether their own or the other player’s, hence the label
‘simple strategy’.

The simple strategy can also be phrased in terms of risk attitudes that bias
one’s expectations of a certain outcome. Expectations might either be too liberal or
too conservative, causing risk-seeking or risk-averse strategies. Importantly, risk
attitudes are prevalent in both children and adults. For example, Harbaugh,
Krause, and Vesterlund (2002) have investigated the role of risk attitudes in
choices between gambles and certain outcomes, and they have shown that children
are risk seeking when faced with high-probability prospects of gains. Harbaugh et
al. have also found that adults’ choices, too, were affected by similar risk attitudes.
Importantly, these risk attitudes did not have to be task specific, and could
generalize across a multitude of domains.

If participants obtain their expected outcomes, they do not have to revise their
strategy. However, participants might obtain unexpected outcomes if the other
player’s decision is incongruent with their goals. As the games are fully animated,
and played from start to end, participants would see that the unexpected turn of
events is due to the other player’s unexpected decision. Our second assumption is
that in future games, participants will acknowledge the role of the other player.

Reasoning about the other player, participants can only attribute a strategy
they are familiar with themselves. This is our third assumption, which is based on
variable frame theory (Bacharach & Stahl, 2000). Imagine a scenario in which two
persons are asked to select the same object from a set of objects with differing
shapes and colors but one person is completely colorblind. The colorblind person
cannot distinguish the objects based on color, nor can he predict how the other
would do that. Therefore, the colorblind person can only predict or guess what
object the other would select based on which shape is the least abundant. The
seeing person should account for the colorblind person’s reasoning and also
choose the object with the least abundant shape. This variable frame principle also
applies to reasoning about others: We can only attribute to others goals,
intentions, beliefs, and strategies that we are familiar with ourselves.

Mechanisms

The simple strategy is implemented in two production rules. The first production
rule determines what the payoff will be when stopping the game; the other
production rule determines what the highest future payoff could possibly be when
continuing the game. Both productions are executed from the perspective of
whichever player is currently deciding (Figure 4). The model will attribute this
simple strategy from the current decision point to the next, each time the model
updates its strategy level (i.e., incrementing strategy level by one). The model will
thus heighten its level, or order, of ToM reasoning.
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Figure 4: Depiction of the simple strategy. In the left panel, the model
compares its payoff if it would stop (grey) against its maximum possible
payoff if it would continue (black). In the right panel, the model compares
Player 2’s payoff if Player 2 would stop (grey), against Player 2’s maximum
possible future payoff (black). The left panel schematically represents the
application of zero-order ToM, and the right panel the attribution of zero-
order ToM to the other player.

Zero-order ToM

Before the model starts applying its strategy, it needs to construct a game state
representation to store the payoffs that are associated with a stop and continue
decision, respectively. To construct a game state, the model first retrieves from
declarative memory what strategy level it is currently using. At the beginning of
the experiment, strategy level has a value of 0, which represents the simple
strategy. After retrieving strategy level, the model constructs its current game
state.

Starting with the simple strategy, the model will determine its own stop and
continue payoffs (see Figure 4, left panel), which will be stored in the game state
representation. The model will then compare these payoffs and make a decision.
After the model has made a decision, it will update declarative memory by storing
what strategy level the model should be playing in the next game: If the model’s
decision was correct, the model should continue playing its current strategy level;
otherwise the model should be playing a higher strategy level.

After playing a couple of games in which the simple strategy (i.e., level-0) does
not work, the higher strategy level (i.e., level-1) will have a greater probability of
being retrieved, as its base-level activation increases more than the simple
strategy’s base-level activation. At the start of the next few games, before the
model constructs its game state, it will begin retrieving strategy level-1 from
declarative memory.

11



First-order ToM

Playing strategy level-1, the model will first determine what payoff is associated
with a stop decision at the first decision point (I). However, before determining
what payoff is associated with a continue decision, the model needs to reason
about the future and therefore consider the next decision point (II). It attributes
strategy level-0 to Player 2, who is deciding at II. Later, the model will return to the
first decision point and determine what payoff is associated with a continue
decision.

At 11, the model will apply strategy level-0, but from the perspective of Player 2
(Figure 4, right panel). When reasoning about Player 2’s decision, the model
constructs a new game state, which references the previous one. The previous
game state is referenced, because the model needs to jump back to that game state
and determine what payoff is associated with a continue decision in that game
state. At I], the model will execute the same production rules that it executed
before when it was playing according to strategy level-0: It will determine what
payoffs are associated with a stop and a continue decision, but from the perspective
of Player 2.

The model will not produce a response whenever it determines the stop and
continue payoffs at I, because the problem state at Il references a previous one
(i.e., I). The model will therefore backtrack to the previous game state
representation, which did not yet have a payoff associated with a continue
decision. That payoff can now be determined based on the current game state (i.e.,
Player 2’s decision). The model will retrieve the previous game state from
declarative memory.

After retrieving the previous game state representation, the model has two
game states stored in two separate locations, or buffers: The current game state is
stored in a so-called problem state buffer, which stores intermediate results
(Anderson, 2007; Borst, Taatgen, & Van Rijn, 2010); the previous game state is
stored in the retrieval buffer, which belongs to the declarative memory module.
The model will determine what payoff is associated with a continue decision in the
previous game state (stored in the retrieval buffer) given the decision based on the
current game state (in the problem state buffer). It will update the previous game
state and store it as an intermediate result in the problem state buffer.

Playing strategy level-1 and being back in the previous game state, there is no
reference to any previous game state and the model will make a decision based on
a comparison between the payoffs associated with the stop and continue decisions.
As explained previously, the model will stop if the payoff associated with stopping
is greater; otherwise the model will continue.

Again, after the model has made a decision, it will update declarative memory
by storing what strategy level the model should be playing in the next game(s). If
the model’s decision is correct, it will apply the current strategy level. Otherwise,
the model will revise its strategy level by storing in declarative memory that it
should be using strategy level-2 in the next game(s).

Second-order ToM
The model will first determine what payoff is associated with stopping the game
and then consider the next decision point. There, the model proceeds as if it were

12



playing strategy level-1, but from the perspective of Player 2. In other words, the
model is applying second-order ToM.

The strategy described above closely fits the strategy of forward reasoning plus
backtracking (Meijering, Van Rijn, Taatgen, & Verbrugge, 2012). Meijering et al.
(2012) conducted an eye-tracking study, and participants’ eye movements
reflected a forward progression of comparisons between payoffs, followed by
backtracking to previous decision points and payoffs. Such forward and backward
successions are present in strategy level-2 as well: Payoffs of stop decisions are
determined one decision point after another, and this forward succession of payoff
valuations is followed by backtracking, as payoffs of previous continue decisions
are determined in backward succession.

Results

The model was presented with the same trials as in Meijering et al.’s (2011) study,
with stepwise training versus undifferentiated training as a between-subjects
factor. The model was run 100 times for each training condition. Each model run
consisted of 20 (stepwise) or 24 (undifferentiated) training games, followed by 64
truly second-order games. The results are presented in Figures 4 and 5.
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Figure 5: Proportion of models that apply strategy levels 0, 1, and 2; plotted
as a function of trial. The left panel depicts these proportions for the model
that received undifferentiated training; the right panel depicts the
proportions for the model that received stepwise training.

Figure 5 shows the proportions of models that apply strategy levels 0, 1, and 2,
calculated per trial. The left panel of Figure 5 shows the output of the models that
received 24 undifferentiated training games before playing 64 second-order
games. As can be seen, initially all models apply strategy level-0, corresponding
with zero-order ToM, but that proportion decreases quickly in the first couple of
games. The proportion of models applying zero-order ToM decreases because that
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strategy yields too many errors, which can be seen in Figure 6. The models store in
declarative memory that they should be using strategy level-1, but it takes a few
games before the base-level activation of the level-0 chunk drops below the
retrieval threshold. After it does, the models start retrieving level-1 chunks and
will apply strategy level-1, which corresponds with first-order ToM. The
proportion of models that use strategy level-1 increases up to 100% towards the
end of the 24 undifferentiated training games. The models do not start applying
strategy level-2 during the training phase, because strategy level-1 yields correct
decisions in all undifferentiated training games, which can be seen in Figure 6.
However, in the experimental games, which are truly second-order games, strategy
level-1 yields too many errors, and accuracy drops. It takes approximately 40
games before the base-level activation of the level-1 chunk has dropped below the
threshold in at least half of the models. The models gradually start using strategy
level-2, and accuracy starts to increase again, as can be seen in Figure 6.

The right panel of Figure 5 shows the output of the models that were
presented with 20 stepwise training games (4 zero-order, 8 first-order, and 8
second-order games) before playing 64 second-order games during the
experimental phase. As can be seen, all models start applying strategy level-0, and
they use it longer than the models that received undifferentiated training. The
reason is that strategy level-0 yields a correct answer in the first four games during
stepwise training, because those are zero-order games. As can be seen in Figure 6
(right panel), accuracy is 100% in the first few games. In the next eight first-order
training games (Trials 5 - 12), the proportion of models that apply strategy level-0
decreases, as strategy level-0 yields too many errors. Simultaneously, the
proportion of models applying strategy level-1 increases, as the base-level
activation of the level-0 chunk decreases and the models start retrieving the level-
1 chunk. In the next eight second-order training games (Trials 13 - 20), the
proportions of models that apply strategy level-0 and level-1 decrease, as both
strategy levels yield too many errors. Simultaneously, the proportion of models
that apply strategy level-2 increases. As strategy level-2 yields a correct decision in
the remainder of the games, accuracy increases up to ceiling, which can be seen in
Figure 6 (right panel).

14



o ] o | T
» »

2 o7 | € o7

k) k)

L L

O o [SE o]

8 ° 8 o

© ©

o ~ o ~

S o] 5 o 7|

O O

c c

o © o ©

£ o 7 T o 7

(@] (@]

Q. Q.

o o

o 2 . Training o 2 Training

® stepwise —— Stepwise
< | . undiff < | Undiff
e I I I I I e I I I I I
0 20 40 60 80 0 20 40 60 80
Trial Trial

Figure 6: Proportion of correct decisions, or accuracy, across participants
(left panel) and models (right panel). The solid lines in the left panel
represent the fit of the statistical model, which is added to visualize the
proportion trends.

The accuracy trends in the models’ output qualitatively fit those of Meijering et
al.’s study (2011). The quantitative differences are probably due to the fact that
not all participants started out using the simple strategy, whereas all models did.
One possible explanation is that some participants started with intermediate-level
strategies and, due to large proportions of optimal outcomes, did not proceed to
the highest level of reasoning. We could account for this by storing level-0, level-1,
and level-2 chunks in declarative memory, and having the base-level activation of
these chunks follow the distribution of zero-order, first-order, and second-order
ToM in the adult population. A meta-review of (higher-order) ToM in adults and
children may be a good starting point to find the appropriate distributions.
Nevertheless, the qualitative trends in the model data, changing as a function of
game complexity, correspond with the response patterns in the behavioral data.
The trends suggest that people use simple strategies for as long as these yield
expected outcomes.

In the introduction we hypothesized that simple strategies are a legacy of our
childhood years, and that adults keep using those strategies that have proven
themselves successful during development. To test this hypothesis, we have re-
analyzed the data from Flobbe et al.’s (2008) developmental study. We expected
that few children would have sufficient cognitive resources to apply second-order
ToM, and that performance levels would therefore align well with lower and
intermediate strategy levels. The most obvious prediction is that prevalence of
level-0, level-1, and level-2 strategies can be ranked, where level-0 is the most
dominant strategy and level-2 is least frequent.
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Developmental study

Flobbe et al. (2008) studied the application of second-order ToM in children that
were in between 8 and 10 years (M = 9;2). They presented the children with
sequential games that were game-theoretically equivalent to the game we use in
the current study (see Fig. 1), but they used a different cover story. The child was
told that she and the computer opponent would jointly control a car. The current
position in the game was represented by the location of the car. Decision points
were represented by road junctions. Each junction was marked with a color (blue
for the child, yellow for the computer) to show who could decide there. Leaves
were represented by dead ends. Each dead end contained a reward for the child (a
number of blue marbles) as well as one for the computer opponent (a number of
yellow marbles). The rewards at a dead end could be different for each player, and
the rewards to be amassed at each dead end differed. Crucially, all rewards were
visible throughout the entire round of the game (car ride). The reward for a player
consisted of 1, 2, 4, or 7 marbles. These numbers were chosen to make the payoffs
easy to distinguish visually and to eliminate the need for counting. At the junctions,
the child and the computer opponent would alternately decide either to turn to a
dead end, where both ‘drivers’ would receive their rewards, or to continue on the
main road, so that other rewards at subsequent dead ends could be reached. The
child was told to maximize her own reward (i.e., the number of blue marbles), and
was told that the opponent would try to maximize the number of yellow marbles.

Performance in this ‘road game’ was just above chance-level (57% correct). As
children of age 9 can correctly apply second-order theory of mind in false belief
tasks and are at the brink of mastering application of second-order ToM in other
contexts (Flobbe et al., 2008; Miller, 2009; Perner & Wimmer, 1985), we expect the
lower and intermediate strategies to be most prevalent in Flobbe et al.’s study,
which is thus perfect to validate our model.

We hypothesize that children apply the same simple strategies that are
implemented in our computational cognitive model. We predict that the children
start out with the simplest (i.e., zero-order) strategy, and that some will learn to
attribute that strategy to the other player. Probably few children will learn that the
other player, in turn, attributes the simple strategy to the player who decides next
(i.e., to them). As each child was first asked to predict the other player’s decision,
before they were asked to make a decision themselves, we have a direct measure
of the child’s perspective of the other player’s strategy. We will analyze both the
predictions and the decisions.

Predictions

We applied a binomial criterion to reliably categorize a participant’s predictions as
belonging to either level-1 or level-2: The predictions in at least 8 out of 10
consecutive games had to be congruent with one particular strategy level to label
the predictions accordingly. This might seem strict, but 8 out of 10 is the minimum
quantile that is still significant with a significance level of 0.05. As the experiment
consisted of 40 second-order games, we categorized each child’s responses in 4
sets of 10 games. Figure 7 depicts the proportion of children that applied either
first-order or second-order ToM. These ToM-orders correspond with level-1 and
level-2 in the computational model.
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Note that sets of predictions that could not be categorized level-1 or level-2 do
not necessarily imply the use of level-0, because the predictions in those sets could
have been completely random, or a mixture of the various strategy levels. The
decisions are therefore analyzed to determine the prevalence of strategy level-O0.
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Figure 7: The proportion of children that applied zero-order ToM (level-0),
first-order ToM (level-1), or second-order ToM (level-2) to the other player;
depicted in 4 consecutive sets of 10 games.

As can be seen in Figure 7, the proportion of children that applied first-order
ToM by attributing strategy level-0 to the other player is greater than the
proportion of children that applied strategy second-order ToM. Furthermore,
many children’s predictions could not be labeled according to one of the strategies
at all (13 out of 40). These children probably switched frequently between
multiple possible perspectives, and such switching is difficult to reliably capture by
means of a statistical model. However, Bayesian model selection could be used to
determine which strategies are most likely (see for example Lee & Sarnecka,
2010). Nevertheless, most of the children whose responses could be categorized,
were applying first-order ToM by attributing the simple (i.e., level-0) strategy to
the other player. Almost none of the children was able to consistently attribute
strategy level-1 to the other player, thereby applying second-order ToM.

Decisions

As explained above, the predictions required application of first-order ToM at
minimum and could therefore not be indicative of zero-order ToM. Therefore, the
decisions were analyzed to determine how many children applied zero-order ToM,
ignoring the other player entirely. Again, we categorized the decisions based on
the binomial criterion that at least 8 out of 10 consecutive responses should be
consistent with application of zero-order ToM (i.e., level-0 in the model). As can be
seen in Figure 7, most of the children that consistently responded according to one
of the strategies applied zero-order ToM when making a decision. This is
remarkable, because each child that participated in the experimental phase
successfully passed a training block in which they were required to apply first-
order ToM. This finding suggests that the children could not see how first-order
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ToM would fit in the more complex games in the experimental blocks. They may
have recognized that it did not work, but still could not revise their strategy to
incorporate an additional ToM level.

To conclude, a re-analysis of Flobbe et al.’s (2008) study shows that few
children were able to apply second-order ToM (level-2), and that most children
used simple strategies. The most dominant strategy was the simplest one that did
not account for any future decision points. Most children seemed to apply zero-
order ToM (level-0) while making a decision. Some children, though, were able to
attribute that simple strategy to the other player, thereby applying first-order ToM
(level-1). These strategies are the same as those implemented in our
computational cognitive model. The model is thus supported in two ways: (1) Its
most simple strategies are found in children, and (2) it learns to revise its
strategies as adults do.

Conclusions

In this study we presented a computational cognitive model that simulates
inference of mental states in sequential games. More specifically, the model was
required to apply ToM recursively, a skill that appears to be unique to human
intelligence. Many studies have shown that people oftentimes fail to apply ToM to
interpret the behavior of others (e.g., Apperly et al,, 2010; Keysar et al., 2003; Lin
et al.,, 2010). In this study, in contrast, we show that people do not necessarily fail
to apply ToM, but rather first apply simple strategies that are computationally less
costly. Only when necessary do people revise their strategies to account for
complex mental states.

The model is based on previous empirical findings (Meijering et al., 2011) that
seemed to imply that people exploit the possibility of using simple strategies for as
long as these pay off. We implemented one such simple strategy that ignores any
future decisions and simply compares the immediate payoff, when stopping a
game, against the maximum of all future possible payoffs. By means of simple
memory dynamics the model either retrieves a chunk that specifies that the model
should continue using this strategy, or chunks that specify that the model should
attribute the simple strategy to the player who decides next. Although this
updating process may seem simplistic at first sight, the model does gradually
master second-order ToM, but only because that is required in the games in this
study. In other words, the model’s most important dynamics are not task-specific,
and because of that, the model is flexible and can accommodate many other two-
player sequential games.

We found support for the model in the data from Flobbe et al.’s (2008)
developmental study in which 9-year-old children were presented with similar
sequential games. Most children used the simple, level-0, strategy when making a
decision. The second-most prevalent strategy was the level-1 strategy. Using that
strategy, the children attributed the simplest possible strategy (i.e., level-0) to the
other player. Few children were able to apply second-order ToM mind. They did
not recognize that the other player, in turn, attributed the simplest strategy (i.e.,
level-0) to them. These findings show that the children used the same simple
strategies as the adults initially used in Meijering et al.’s study. However, the adults
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were able to revise their strategies to achieve the highest required level of ToM
reasoning, whereas the children may not have had sufficient cognitive resources to
achieve that same level of reasoning. This interpretation is supported by the study
of Omaki et al. (2013), indicating that children of around 5-6 years of age have
trouble revising their interpretations when incrementally interpreting complex
questions such as “Where did Emily tell someone that she hurt herself?”

Our notion of zero-order ToM (i.e., strategy level-0) closely maps with the
instruction given to the participants: to maximize their payoff. This strategy
corresponds with a risk-seeking perspective, because it does not account for the
fact whether higher future payoffs are actually attainable. There are other notions
of a level-0 strategy, however. A risk-seeking strategy can be contrasted with a
risk-aversive strategy according to which one would stop if there were any lower
future payoffs. There is still another notion of a level-0 strategy: Hedden and Zhang
(2002; 2012) defined a so-called myopic level-0 strategy that only considers the
current payoff and the closest future payoff. Player 1, for example, would only
compare his payoffs in A and B, ignoring his payoffs in C and D. These strategies,
however, are almost non-existent in Flobbe et al.’s dataset.

This study has at least two methodological implications: One, experimenters
should be careful in selecting ‘practice’ items, as participants exploit the possibility
of using simple strategies when possible. Two, average proportions of correct
answers, a popular statistic in most ToM studies, may not be as informative as a
categorization of responses (also see Raijmakers et al., 2013). Flobbe et al., for
example, reported that performance was just above chance-level (i.e., 57%
correct), and the most common interpretation would be “on average children were
able to apply second-order ToM in 57% of the games.” However, the current study
shows that this score can be obtained if 1 or 2 children are applying second-order
ToM and most of them below-optimal strategies such as zero-order and first-order
ToM.

The theoretical implication of this study is that people do not necessarily
perceive sequential games in terms of interactions between mental states. They
know that there is another player making decisions, but they have to learn over
time, by playing many games, that the other player’s depth of reasoning could be
greater than initially thought. Learning takes place when people obtain unexpected
outcomes and start recognizing that the other player has a role in their outcomes.
They will have to attribute their own, simple, strategies to the other player,
thereby developing increasingly more complex strategies themselves. Over time,
reasoning will become as complex as necessary, as simple as possible.
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