
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

The Complexity of Satisfiability for Fragments

of Hybrid Logic — Part II

Arne Meiera Martin Mundhenkb Thomas Schneiderc

Michael Thomasa Felix Weissb

a Universität Hannover, Germany
{meier,thomas}@thi.uni-hannover.de

b Universität Jena, Germany
{martin.mundhenk,felix.weiss}@uni-jena.de

c University of Manchester, UK
schneider@cs.man.ac.uk

Abstract

Hybrid logic is an expressive specification language, but has an undecidable satisfiability problem in
general. In this paper, we restrict the set of Boolean operators to monotone operators (for instance
conjunction and disjunction) and the underlying frames to commonly used acyclic frames, namely
transitive trees, total transitive trees, linear orders, and the natural numbers. We show that, under
these restrictions, satisfiability is decidable for 16 fragments arising from different combinations of
modal and hybrid operators. More precisely, we categorise these fragments to be PSPACE-complete,
NP-complete or tractable, where the latter cases are contained in LOGDCFL or complete for NC1.

Keywords: satisfiability, modal logic, complexity, hybrid logic

1 Introduction

Hybrid logic is an extension of modal logic with nominals, satisfaction operators
and binders. The downarrow binder ↓, which is related to the freeze operator
in temporal logic [12], provides high expressivity. The price paid is the
undecidability of the satisfiability problem for the hybrid language with the
downarrow binder ↓ [6,11,1]. In contrast, modal logic, and its extension with
nominals and the satisfaction operator, is PSPACE-complete [13,1].

1 Supported in part by the grants DFG VO 630/6-2, BC-ARC 1323, DAAD-ARC
D/08/08881.

c©2010 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:{meier,thomas}@thi.uni-hannover.de
mailto:{martin.mundhenk,felix.weiss}@uni-jena.de
file:schneider@cs.man.ac.uk

Meier, Mundhenk, Schneider, Thomas, and Weiß

In order to regain decidability, syntactic and semantic restrictions have been
considered. It has been shown in [24] that the absence of certain combinations of
universal operators (2, ∧) with ↓ brings back decidability, and that the hybrid
language with ↓ is decidable over frames of bounded width. Furthermore, this
language is decidable over transitive and complete frames [19], and over frames
with an equivalence relation (ER frames) [18]. Adding @ or the global modality
leads to undecidability over transitive frames [19], but not over ER frames [18].
Over linear frames and transitive trees, ↓ on its own does not add expressivity,
but combinations with @ or the global modality do. These languages are
decidable and of non-elementary complexity [10,19]; if the number of state
variables is bounded, then they are of elementary complexity [23,26,7].

We aim for a more fine-grained distinction between decidable and undecid-
able fragments of different complexities by systematically restricting the set of
Boolean operators and combining this with restrictions to the modal/hybrid
operators and to the underlying frames. In [16], we have focussed on four frame
classes that allow cycles, and nearly completely classified the decidability and
complexity of satisfiability for fragments obtained by arbitrary combinations
of Boolean operators and four modal/hybrid operators.

In this paper, we are focussing on acyclic frame classes such as transitive
trees, total transitive trees, linear orders and the natural numbers. These are
important for representing the flow of time. Over acyclic frames, the ↓ operator
only adds expressivity to the modal language if it appears in combination
with @, past operators, or the global modality because otherwise named states
cannot be re-visited. Over the named frame classes, even the language with ↓
and the global modality is decidable, although of non-elementary complexity
[10,19]. Hence, we are interested in differentiating between fragments with
high and low complexity. We have observed that the complexity varies sharply
among the many fragments, i.e., a single lower or upper bound carries over
to another set of operators or another frame classes less often than it usually
does over cyclic frame classes according to [16]. Therefore, the fragments over
acyclic frame classes require a more separate treatment, and we are restricting
this study to one prominent class of Boolean operators, namely monotone
operators. A Boolean function is monotone if changing one of its arguments
from 0 to 1 does not decrease its value. Every Boolean operator corresponding
to a monotone Boolean function, for instance n-ary conjunction and disjunction,
is called monotone.

It has been shown in the context of the temporal logics CTL and LTL that
the complexity of the model-checking problem does not decrease if Boolean
operators are restricted to monotone ones [3,5], but satisfiability becomes
tractable [4,17]. In the presence of expressive hybrid operators, which give the
satisfiability problem non-elementary complexity, it is not clear, and therefore
interesting to find out, whether the restriction of Boolean operators leads to a

2

Meier, Mundhenk, Schneider, Thomas, and Weiß

significant decrease in complexity.

In this study, we will completely classify the computational complexity of
satisfiability for fragments of hybrid logic with monotone Boolean operators
and arbitrary combinations of the operators 3, 2, ↓ and @ over the above listed
frame classes. We will prove all these satisfiability problems to be decidable
and classify them into PSPACE-complete, NP-complete and tractable. We will
further show that the tractable problems can be solved in LOGDCFL—the set of
problems logarithmically reducible to deciding membership in a deterministic
context free language—or are NC1-complete. Our results are shown in Figure
1, which covers the following frame classes.

• N—the class that consists of the frame (N, <),
• lin—the class of linear frames,
• tt—the class of transitive trees, and
• ttt—the class of total transitive trees.

∅

23 ↓ @

3,2 3, ↓ 3,@ 2, ↓ 2,@ ↓,@

3,2, ↓ 3,2,@ 3, ↓,@ 2, ↓,@

3,2, ↓,@

NP-comp.

NC1-comp.

PSPACE-complete

NC1-complete (lin, tt)

NC1-hard, ∈ LOGDCFL (N, ttt)

NC1-complete (lin, tt)
LOGSPACE-hard, ∈ LOGDCFL (N, ttt)

Fig. 1. Our complexity results for satisfiability over N, lin, tt and ttt with monotone Boolean
operators and different combinations of modal/hybrid operators

2 Preliminaries

Hybrid Logic. In the following, we will introduce the notions and definitions
of hybrid logic. The terminology is largely taken from [2].

Let PROP be a countable set of atomic propositions, NOM be a countable
set of nominals, SVAR be a countable set of variables and ATOM = PROP ∪
NOM ∪ SVAR. We will stick with the common practice to denote atomic
propositions by p, q, . . ., nominals by i, j, . . ., and variables by x, y, We
define the language of hybrid (modal) logic HL as the set of well-formed
formulae of the form

ϕ ::= a | > | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 3ϕ | 2ϕ | ↓x.ϕ | @tϕ

3

Meier, Mundhenk, Schneider, Thomas, and Weiß

where a ∈ ATOM, x ∈ SVAR and t ∈ NOM ∪ SVAR.

Formulae of HL are interpreted on (hybrid) Kripke structures K =
(W,R, η), consisting of a set of states W , a transition relation R : W ×W , and
a labeling function η : PROP ∪ NOM→ ℘(W) that maps PROP and NOM to
subsets of W with |η(i)| = 1 for all i ∈ NOM. In order to evaluate ↓-formulae,
an assignment g : SVAR → W is necessary. Given an assignment g, a state
variable x and a state w, an x-variant gxw of g is defined by gxw(x) = w and
gxw(x′) = g(x′) for all x 6= x′. For any a ∈ ATOM, let [η, g](a) = {g(a)} if
a ∈ SVAR and [η, g](a) = η(a), otherwise. The satisfaction relation of hybrid
formulae is defined as follows.

K, g, w |= a iff w ∈ [η, g](a), a ∈ ATOM,
K, g, w |= >,
K, g, w 6|= ⊥,
K, g, w |= ¬ϕ iff K, g, w 6|= ϕ,
K, g, w |= ϕ ∧ ψ iff K, g, w |= ϕ and K, g, w |= ψ,
K, g, w |= ϕ ∨ ψ iff K, g, w |= ϕ or K, g, w |= ψ,
K, g, w |= 3ϕ iff ∃w′ ∈ W (wRw′ &K, g, w′ |= ϕ),
K, g, w |= 2ϕ iff ∀w′ ∈ W (wRw′ ⇒ K, g, w′ |= ϕ),
K, g, w |= @tϕ iff K, g, [η, g](t) |= ϕ,
K, g, w |= ↓x.ϕ iff K, gxw, w |= ϕ.

A hybrid formula ϕ is said to be satisfiable if there exists a Kripke structure
K = (W,R, η), a w ∈ W and an assignment g : SVAR→ W with K, g, w |= ϕ.

The at operator @t shifts evaluation to the state named by t ∈ NOM∪SVAR.
The downarrow binder ↓x. binds the state variable x to the current state. The
symbols @x, ↓x. are called hybrid operators whereas the symbols 3 and 2 are
called modal operators.

The scope of an occurrence of the binder ↓ is defined as usual. For a state
variable x, an occurrence of x or @x in a formula ϕ is called bound if this
occurrence is in the scope of some ↓ in ϕ, free otherwise. ϕ is said to contain
a free state variable if some x or @x occurs free in ϕ.

Given two formulae ϕ, α and a subformula ψ of ϕ, we use ϕ[ψ/α] to denote
the result of replacing each occurrence of ψ in ϕ with α. If we want to replace
only one previously specified occurrence of ψ, we write ϕ[ψ//α].

For considering fragments of hybrid logics, we define subsets of the language
HL as follows. Let O be a set of hybrid and modal operators, i.e., a subset
of {3,2, ↓,@}. We define HL(O) to denote the set of well-formed hybrid
formulae using only the operators in O, and MHL(O) to be the set of all
formulae in HL(O) that do not use ¬.

Properties of Frames. A frame F is a pair (W,R), where W is a set of
states and R ⊆ W ×W a transition relation. A frame F = (W,R) is called

4

Meier, Mundhenk, Schneider, Thomas, and Weiß

• transitive if R is transitive (for all u, v, w ∈ W : uRv ∧ vRw → uRw),
• linear if R is transitive and trichotomous (∀u, v ∈ W : uRv or u = v or vRu),
• a tree if (W,R) is acyclic and connected, and every state in W has at most

one R-predecessor,
• a transitive tree if R is the transitive closure of S such that (W,S) is a tree,
• a total transitive tree if F is a tree and total (each u ∈ W has an R-successor).

In this paper we will consider the frame classes listed on Page 3. Further-
more, all stands for the class of all frames.

The Satisfiability Problem. Let K = (W,R, η) be a Kripke structure. Say
that K is based on a frame F iff F is the frame underlying K, i. e., F = (W,R).
The satisfiability problem F-SAT(O) is defined as follows: given an HL(O)-
formula ϕ, is there a Kripke structure K = (W,R, η) based on a frame from
F, an assignment g : SVAR → W and a w ∈ W such that K, g, w |= ϕ ?
The monotone satisfiability problem F-MSAT(O) is defined analogously, with
HL(O) replaced by MHL(O). In case F = all, we will omit the prefix and
simply write SAT(O) or MSAT(O). Furthermore, we will often omit the set
parentheses when giving O explicitly, e.g., SAT(3,2, ↓,@).

Technical assumptions. In order to make proofs of our results easier, we
assume that any instance of a satisfiability problem contains no free state
variables. This does not restrict generality because free state variables can be
simulated by nominals. Furthermore, we assume that, for each state variable
x such that x or @x occurs in ϕ, x is bound exactly once by ↓ in ϕ. This is no
significant restriction as well because multiply bound variables can be named
apart, which is a well-established and computationally easy procedure.

Complexity Theory. We assume familiarity with the standard notions of
complexity theory as, e. g., defined in [20]. In particular, we will make use of
the classes LOGSPACE, NLOGSPACE, NP, PSPACE, and coRE. The complexity
class NONELEMENTARY is the set of all languages A that are decidable and
for which there exists no k ∈ N such that A can be decided using an algorithm
whose running time is bounded by expk(n), where expk(n) is the k-th iteration

of the exponential function (e.g., exp3(n) = 222n

).

Furthermore, we will need two non-standard complexity classes whose
definition relies on circuit complexity and formal languages, see for instance
[25,14]. The class NC1 is defined as the set of languages recognizable by a
logtime-uniform Boolean circuits of logarithmic depth and polynomial size
over {∧,∨,¬}, where the fan-in of ∧ and ∨ gates is fixed to 2. The class
LOGDCFL is defined as the set of languages reducible in logarithmic space to
some deterministic context-free language.

The following relations between the considered complexity classes are known.
NC1 ⊆ LOGSPACE ⊆ LOGDCFL ⊆ NP ⊆ PSPACE ⊂ coRE. It is unknown

5

Meier, Mundhenk, Schneider, Thomas, and Weiß

whether LOGDCFL contains NLOGSPACE or vice versa.

A language A is constant-depth reducible to D, A 6cd D, if there is a logtime-
uniform AC0-circuit family with oracle gates for D that decides membership in
A. Unless otherwise stated, all reductions in this paper are 6cd-reductions.

Known results. The following theorem summarizes results for hybrid
languages with Boolean operators ∧,∨,¬ that are known from the literature.
Since 2ϕ = ¬3¬ϕ, the 2-operator is implicitly present in all fragments
containing 3.

Theorem 2.1 ([1,2,15,19,21])

(1) SAT(3, ↓) and SAT(3, ↓,@) are coRE-complete.

(2) F-SAT(3, ↓) and F-SAT(3, ↓,@), for F ∈ {tt, lin,N}, are in NON-
ELEMENTARY.

(3) tt-SAT(3) and tt-SAT(3,@) are PSPACE-complete.

(4) F-SAT(3) and SAT(3,@), with F ∈ {lin,N}, are NP-complete.

3 Results for Monotone Fragments

3.1 PSPACE results

We start by analyzing only the frame class lin. It will be easy to carry over the
results to the other acyclic classes. For an arbitrary ϕ ∈ lin-MSAT(3,2, ↓,@)
with |ϕ| = n, we will show the existence of a model K which either is of size
linear in n or has a “prefix” of at most n states after which all states agree in η.
This result will enable us to show PSPACE-membership of lin-MSAT(3,2, ↓,@).
PSPACE-hardness follows from a reduction from QBFSAT.

We first define the set Kϕ which contains all linear models that match the
above description.

Definition 3.1 Let ϕ ∈MHL(3,2, ↓,@) and |ϕ| = n. We define the linear
Kripke structures Lm (m ∈ N), L∞ and the sets K6n

ϕ , K∞ϕ , Kϕ of Kripke
structures as follows:

Lm = ({1, . . . ,m}, <) L∞ = (N, <)

K6n
ϕ = {(W,R, η) | (W,R) = Lm for some m 6 n}

K∞ϕ = {(W,R, η) | (W,R) = L∞ and

∀a ∈ PROP ∪ NOM ∀i, j ≥ n (i ∈ η(a)⇔ j ∈ η(a)}
Kϕ = K6n

ϕ ∪ K∞ϕ

Now let ϕ ∈ lin-MSAT(3,2, ↓,@), K = (W,R, η) be a linear model, w ∈ W
a state and g an assignment with K, g, w |= ϕ. We give a construction

6

Meier, Mundhenk, Schneider, Thomas, and Weiß

that leads to K ′ = (W ′, R′, η′) with K ′, g, w |= ϕ. Algorithm 1 returns on
input (ϕ, g, w) a subset V of W such that |V | 6 n. Informally speaking, V
contains all states that are relevant for the evaluation of ϕ over K. We set
W ′ = V ∪{w}∪{w | w ∈ η(i) and i ∈ NOM that occurs in ϕ}. The transition
relation R′ is the restriction of R to W ′, and the labeling function η′ is the
restriction of η to W ′. In case W is infinite, let v be the last state in the order
imposed by R′. We add an infinite chain vR′u1R

′u2R
′ . . . to (W ′, R′) and add

ui to η(p) for each p ∈ PROP. Now the following holds.

Algorithm 1 Function relev-states

Require: a formula ψ, an assignment f , a state v
1: if ψ ∈ ATOM ∪ {⊥,>} then
2: wψ := v, gψ := f
3: return ∅
4: else if ψ = 2α then
5: wψ := v, gψ := f
6: return ∅
7: else if ψ = α ∧ β then
8: wψ := v, gψ := f
9: return relev-states(α,f ,v) ∪ relev-states(β,f ,v)

10: else if ψ = α ∨ β then
11: wψ := v, gψ := f
12: if K, v, f |= α then return relev-states(α,f ,v)
13: else if K, v, f |= β then return relev-states(β,f ,v)
14: end if
15: else if ψ = 3α then
16: wψ := v, gψ := f
17: choose a state v′ ∈ W with vRv′ and K, v′, f |= α
18: return relev-states(α,f ,v′) ∪ {v′}
19: else if ψ = @tα then
20: wψ := v, gψ := f
21: return relev-states(α,f ,[η, f](t))
22: else if ψ = ↓x.α then
23: wψ := v, gψ := f
24: return relev-states(α,fxv ,v)
25: end if

Lemma 3.2 Let K ′ be defined as above. Then

(i) K ′ ∈ Kϕ, and

(ii) K ′, g, w |= ϕ.

Proof. For (1), observe that, due to its construction, K ′ satisfies the following.
If W is finite, then W ′ consists of at most #3(ϕ) + #nom(ϕ) 6 n states,

7

Meier, Mundhenk, Schneider, Thomas, and Weiß

where #3(ϕ) (resp. #nom(ϕ)) is the number of 3-operators (resp. nominals)
occurring in ϕ. Therefore, K ′ ∈ K6n

ϕ in this case. If W is infinite, then only
states that agree in η(a) for a ∈ PROP ∪ NOM are attached, hence K ′ ∈ K∞ϕ .
We show (2) with the following claim.

Claim 3.3 Let Sub(ϕ) be the set of all subformulae of ϕ. For every ψ ∈
Sub(ϕ), it holds that if K, gψ, wψ |= ψ, then K ′, gψ, wψ |= ψ, where wψ and gψ
are calculated in Alg. 1.

Proof of Claim. We prove this claim by induction on ϕ. For the initial step
we assume that ψ ∈ ATOM ∪ {⊥,>}. In this case the claim is true because
η′ is the restriction of η on W ′. For the induction step we distinguish several
cases.

• The cases ψ = α ∧ β or ψ = α ∨ β are trivial.

• Case ψ = 3α:
K, gψ, wψ |= 3α if and only if there is a v′ with wψRv

′ and K, gψ, v
′ |= α. For

the chosen v′, it holds that wα = v′ as in Algorithm 1 (The state v′ will be
added in Line 18). In order to satisfy α we can also use gψ as assignment, so
gα = gψ. The induction hypothesis yields K ′, gα, wα |= α. So K ′, gψ, v

′ |= α
and K ′, gψ, wψ |= 3α.

• Case ψ = ↓x.α:
K, gψ, wψ |= ↓x.α iff K, (gψ)xwψ , wψ |= α.

Clearly (gψ)xwψ = gα and wψ = wα. The induction hypothesis yields

K ′, (gψ)xwψ , wψ |= α. This leads to K ′, gψ, wψ |= ↓x.α.

• Case ψ = 2α:

K, gψ, wψ |= 2α
⇔ ∀w′ ∈ W (wψRw ⇒ K, gψ, w

′ |= α)

⇒ ∀w′ ∈ W ′ (wψRw ⇒ K, gψ, w
′ |= α)

⇒ ∀w′ ∈ W ′ (wψRw ⇒ K ′, gψ, w
′ |= α)

Correctness of the last implication follows from the monotonicity of ψ
and the fact that for every v ∈ W \W ′ and every u ∈ W ′, it holds that
η−1(v) ⊆ η−1(u). This eventually leads to K ′, gψ, wψ |= 2α. 32

We thus know that for all ϕ ∈ lin-MSAT(3,2, ↓,@), there exists a model
K, a state w in K, and an assignment g such that K, g, w |= ϕ, and K either
is of linear size in |ϕ| or K’s states are indistinguishable except for a prefix of
size linear in |ϕ|. Using this result, we obtain the following proposition.

Proposition 3.4 lin-MSAT(3,2, ↓,@) is in PSPACE.

Proof. If ϕ is satisfiable in a linear model, then there exists a model K ′ ∈ Kϕ

that satisfies ϕ. Conversely, if ϕ is not satisfiable in any linear model, then it

8

Meier, Mundhenk, Schneider, Thomas, and Weiß

cannot be satisfiable in any of the linear models in Kϕ. Therefore, the following
algorithm decides lin-MSAT(3,2, ↓,@).

Given ϕ, nondeterministically guess a K ∈ Kϕ, a state w from K and an
assignment g and verify whether K, g, w |= ϕ.

This is an NPSPACE = PSPACE algorithm for the following reasons. Let
|ϕ| = n. If we represent all infinite models in Kϕ using their prefix of size n and
an additional bit whether the last state occurs on an infinite chain, such a finite
representation can be guessed in O(n) steps, the same for all finite models in
Kϕ. Remember that, for guessing η, it suffices to guess the assignment only
for symbols occurring in ϕ. Now model checking on finite structures has been
shown to be PSPACE-complete in [9]. In order to accommodate the finitely
represented infinite structures, it suffices to make a simple adjustment to the
techniques underlying the model checkers MCLITE and MCFULL in [10]. This
adjustment consists in modifying the definition of R−1(w) for the repeatedly
occurring state w in a way that R−1(w) contains w. With this modification,
the original correctness and complexity proofs in [10] go through. 2

In the next step we use a reduction from QBFSAT to show PSPACE-
hardness of lin-MSAT(3,2, ↓,@).

Proposition 3.5 lin-MSAT(3,2, ↓,@) is PSPACE-hard.

Proof. We reduce from QBFSAT, the problem to decide whether a given
quantified Boolean formula is valid. Let ϕ be an instance of QBFSAT and
assume w.l.o.g. that negations occur only directly in front of atomic propositions.
We define the transformation as f : ϕ 7→ ↓r.3↓s.3h(ϕ) where h is given as
follows: let ψ, χ be quantified Boolean formulae and let xk be a variable in ϕ,
then

h(∃xkψ) := @r3↓xk.h(ψ), h(∀xkψ) := @r2↓xk.h(ψ),

h(ψ ∧ χ) := h(ψ) ∧ h(χ), h(ψ ∨ χ) := h(ψ) ∨ h(χ),

h(¬xk) := @s3xk, h(xk) := @sxk.

For example, the QBF ψ = ∀x∃y(x ∧ y) ∨ (¬x ∧ ¬y) is mapped to f(ϕ) =
↓r.3↓s.3@r2↓x0.@r3↓x1.(@sx0 ∧@sx1) ∨ (@s3x0 ∧@s3x1). Intuitively, this
construction requires the existence of an initial state named r, a successor
state s that represents the truth value >, and one or more successor states of
r which together represent ⊥. The quantifiers ∃,∀ are replaced by the modal
operators 3,2 which range over s and its successor states. Finally, positive
literals are enforced to be true at s, negative literals strictly after s.

For every model of f(ϕ), it holds that r is situated at the first state of the
model and that state has a successor labelled by s. By virtue of the function
h, positive literals have to be mapped to s, whereas negative literals have to
be mapped to some state other than s. An easy induction on the structure of

9

Meier, Mundhenk, Schneider, Thomas, and Weiß

formulae shows that ϕ ∈ QBFSAT if and only if f(ϕ) ∈ lin-MSAT(↓,@,3,2).2

We immediately obtain:

Theorem 3.6 lin-MSAT(3,2, ↓,@) is PSPACE-complete.

The result of Theorem 3.6 carries over to the frame class N directly. It will
also carry over to tt and ttt with a few adaptations: we have to modify the
definition of Kϕ in a way that it consists of (a) all finite trees of size at most
|ϕ| and (b) all such finite trees with each branch extended by an infinite path
of indistinguishable states. Now the proof of Lemma 3.2 and the preceding
construction of K ′ go through for trees as well, since the “tree prefix” of K ′ is
still linear in the size of the underlying formula. The proofs of Propositions 3.5
and 3.4 go through immediately.

Corollary 3.7 F-MSAT(3, 2, ↓, @) is PSPACE-complete for F ∈ {N, tt, ttt}.

3.2 NP results

We start by proving NP-hardness of lin-MSAT(3) and will then generalize
this result to the other three acyclic frame classes. Recall that, owing to the
presence of nominals,MHL(3) is not modal logic with the 3-operator. As we
furthermore have no binder ↓, we will write K,w |= ϕ instead of K, g, w |= ϕ
(the assignment g is irrelevant).

Lemma 3.8 lin-MSAT(3) is NP-hard.

Proof. We reduce from 3SAT. Let ϕ = c1 ∧ . . . ∧ cn be an instance of 3SAT
with clauses c1, . . . , cn and variables x1 . . . xm. We define the transformation as

f : ϕ 7→ ψ1 ∧

(
n∧
`=0

ψ2
`

)
∧ h(ϕ),

where each x` is a nominal, ψ1 := 3(i0 ∧3i1), ψ2
` := 3(i0 ∧ x`) ∨3(i1 ∧ x`),

and the function h is defined as follows: let ljk be a literal in clause cj, then

h(ljk) :=

{
(i1 ∧ x) if ljk = x,

(i0 ∧ x) if ljk = ¬x;

h(cj) := 3(h(lj1) ∨ h(lj2) ∨ h(lj3)), where cj = (lj1 ∨ l
j
2 ∨ l

j
3);

h(c1 ∧ · · · ∧ cn) := h(c1) ∧ · · · ∧ h(cn).

Using ψ1 we enforce the existence of two successors w1 and w2 of the state
satisfying ϕ. The subformulae ψ2

` simulate the assignment of the variables in
ϕ, enforcing that each x` is true in either w1 or w2. With the following claim
NP-hardness of lin-MSAT(3) follows.

10

Meier, Mundhenk, Schneider, Thomas, and Weiß

Claim 3.9 ϕ ∈ 3SAT iff h(ϕ) ∈ lin-MSAT(3).

Proof of Claim. We will first show that h(ϕ) ∈ lin-MSAT(3) implies
ϕ ∈ 3SAT. If K,w0 |= h(ϕ) with K = (W,R, η) based on a linear frame, then
the following applies to K. Let {w1} = η(i0), {w2} = η(i1), and

• {w0, w1, w2} ⊆ W with w0, w1, w2 pairwise different;
• {(w0, w1), (w1, w2)} ⊆ R; and
• for all xj with 1 6 j 6 m : η(xj) ⊆ {w1, w2}
We build a propositional logic assignment β = (β1 . . . βm) that satisfies ϕ,
where βi ∈ {⊥,>} is the truth value for xi, as follows. βj = ⊥ if η(i0) = η(xj),
and βj = > if η(i1) = η(xj). From the construction of h(ϕ), it clearly
follows that β satisfies ϕ. For the other direction, suppose that ϕ is satis-
fied by the propositional logic assignment β = (β1 . . . βm). We construct a
linear model K := (W,R, η) containing a state w such that K,w |= h(ϕ).

W := {w,w0, w1}
R := {(w,w0), (w0, w1), (w,w1)}

η(ij) := {wj} for j ∈ {0, 1}

η(xj) :=

{
{w0} if βj = ⊥
{w1} if βj = >

It follows from the construction of K that K,w |= h(ϕ). The conjunct
h(ϕ) is of the form (h(l11) ∨ h(l21) ∨ h(l31)) ∧ · · · ∧ (h(l1n) ∨ h(l2n) ∨ h(l3n)). Hence,
under assignment β, at least one literal in every clause evaluates to true. The
variable in this literal satisfies the same clause in h(ϕ). Hence every clause in
h(ϕ) is satisfied in w in K. So it holds that K,w |= h(ϕ). 32

We will now show that the problems lin-MSAT(3, ↓,@), lin-MSAT(3,2,@),
and lin-MSAT(3,2, ↓) are in NP.

Lemma 3.10 lin-MSAT(3, ↓,@) is in NP.

Proof. We will first show that every instance of lin-MSAT(3, ↓,@) can be
easily transformed into an equisatisfiable binder-free formula. We will then
show that the ∨-connective can be eliminated, too. This will result in a
nondeterministic polynomial-time decision procedure.

Let ϕ be an instance of lin-MSAT(3, ↓,@). Observe that if there exists
↓x. in ϕ, then we may delete ↓x. from ϕ and replace all occurrences of x in
the scope of ↓x. with a fresh nominal x′. This is possible because we have no
2-operator and x is hence bound to a unique state. Moreover, if K, g, w |= ϕ
and g′ is the assignment obtained from g after binding x to w, set η(x′) = g′(x).
Hence we may w.l.o.g. assume that ϕ is ↓-free and omit the assignment g, i.e.,
we will write K,w |= ϕ instead of K, g, w |= ϕ.

We will now show that ϕ is satisfiable if and only if there exists a way of

11

Meier, Mundhenk, Schneider, Thomas, and Weiß

choosing one disjunct for each disjunction in ϕ, such that the ∨-free formula
resulting from ϕ by omitting all non-chosen disjuncts is satisfiable. The
intuitive reason for the correctness of this procedure is the absence of 2: with
2, there are formulae 2(α ∨ β) whose satisfaction in a state w depends on
each of α, β being true in some, but not all, of the states behind w. Deleting
one of the disjuncts would force α or β to be true in all states behind w. Our
construction works because this problem does not occur without 2.

We construct a set Mϕ which consists of all ∨-free formulae obtained from ϕ
as described above. We generate this set inductively and start with Mϕ = {ϕ}.
For every formula ψ that contains a subformula α ∨ β, remove ψ from Mϕ and
add ψα and ψβ where ψα = ψ[(α∨β)//α] and ψβ = ψ[(α∨β)//β]. Repeat this
as long as Mϕ still contains a ∨-formula. Now ϕ is satisfiable if some formula
in Mϕ is satisfiable.

Claim 3.11 ϕ ∈ lin-MSAT(3, ↓,@) if and only if there is a satisfiable γ ∈Mϕ.

Proof of Claim. It suffices to consider a single contruction step of Mϕ. We
prove that for an arbitrary ψ ∈ Mϕ containing α ∨ β, ψ is satisfiable if and
only if ψα or ψβ is satisfiable. (Note: Mϕ contains ∨-subformulae as long as
the construction not ended.)

If ψα is satisfiable in some model K and state w, then K,w also satisfies ψα
with α replaced by α∨β. Hence ψ is satisfiable. The case that ψβ is satisfiable
is analogous.

For the other direction, let K = (W,R, η) be a model and w a state with
K,w |= ϕ. For every subformula ψ that needs to evaluate to true in order for
K,w |= ϕ to hold, we define wψ as follows:

• wϕ := w;
• if ψ = α ∨ β, then wα := wψ if K,wψ |= α, and wβ := wψ if K,wψ |= β;
• if ψ = α ∧ β, then wα := wψ and wβ := wψ;
• if ψ = 3α, then wα := v for some v with wψRv and K, v |= α;
• if ψ = @xα, then wα := v with {v} = η(x).

If we evaluate ϕ recursively in w, then wψ is the state for the evaluation of the
subformula ψ of ϕ and it holds that K,wψ |= ψ. Let ψ = α∨β be a subformula
of ϕ that has to evaluate to true for K,w |= ϕ. Then K,wψ |= α ∨ β. This
leads to K,wψ |= α or K,wψ |= β. So clearly K,w |= ψα or K,w |= ψβ. (For
subformulae that do not necessarily have to evaluate to true for K,w |= ϕ,
this holds obviously as well.)

Now if ϕ is satisfiable, the algorithm generates at least one satisfiable
formula in every cycle of the while loop, and therefore Mϕ contains a satisfiable
formula when the algorithm is finished. 3

Now let ψ ∈Mϕ; ψ does not contain any ∨. Due to the proof of Proposition
3.4, ψ is satisfiable in a linear model if and only if there exists a model K ′ ∈ Kψ.

12

Meier, Mundhenk, Schneider, Thomas, and Weiß

Furthermore, in the absence of 2, we can even assume w.l.o.g. that K ′ ∈ K6n
ψ .

In particular, K ′ is finite.

To decide lin-MSAT(3, ↓,@), we can nondeterministically guess ψ ∈ Mϕ,
a model K and a state w, and verify whether K, g, w |= ψ for an arbitrary
assigment g. Now the verification step can be done with a straightforward
nondeterministic polynomial-time algorithm because ψ contains no 2 and
every state variable that occurs in ψ is bound to exactly one state. Every time
a subformula 3α is reached during the evaluation of ψ, a state is guessed and
α evaluated there. 2

Lemma 3.12 lin-MSAT(3,2,@) is in NP.

Proof. We use the same algorithm as in the proof of Proposition 3.4. The
only difference is that we have no binder here and therefore the verification
step can be done in polynomial time due to [9]. 2

Furthermore, the following is known:

Proposition 3.13 [10]: lin-MSAT(3,2, ↓) is in NP.

We now have all NP results for lin and can state the following theorem.

Theorem 3.14 Let {3} ⊆ O, and O ⊆ {3, ↓,@} or O ⊆ {3,2, ↓} or
O ⊆ {3,2,@}. Then lin-MSAT(O) is NP-complete.

Proof. Lemma 3.8 states NP-hardness of lin-MSAT(3). We have proven NP-
membership for lin-MSAT(3, ↓,@) in Lemma 3.10, for lin-MSAT(3,2, ↓) in
Proposition 3.13 and for lin-MSAT(3,2,@) in Lemma 3.12. 2

The result of Theorem 3.14 carries over to the frame classes N, tt and
ttt. The small model property we use in Lemma 3.12 also holds for the
other acyclic frame classes. Since, on any acyclic frame class F, it holds that
F-SAT(3,2, ↓) 6cd F-SAT(3,2), Proposition 3.13 carries over to the other
frame classes. Furthermore, the reduction from 3SAT in Lemma 3.8 holds in
the same way for tt. For frame classes N and ttt, we use an infinite model
instead of the three state model, but the same argument goes through.

Corollary 3.15 Let F ∈ {N, tt, ttt} and {3} ⊆ O, and O ⊆ {3, ↓,@} or
O ⊆ {3,2, ↓} or O ⊆ {3,2,@}. Then F-MSAT(O) is NP-complete.

3.3 NC1 and LOGSPACE results

In this part, we show NC1-completeness of F-MSAT(O) for F ∈ {lin,N, tt, ttt}
and O ⊆ {↓,@}. For the cases {2} ⊆ O ⊆ {2, ↓,@} we have different results
for different frame classes.

In [22, Lemma 2.4.7], NC1-completeness of the Boolean Formula Value
Problem for monotone propositional formulae is shown, so the following holds.

13

Meier, Mundhenk, Schneider, Thomas, and Weiß

Lemma 3.16 F-MSAT(∅) is NC1-hard if F∈{lin,N, tt, ttt}.

Lemma 3.17 lin-MSAT(↓,@) is in NC1.

Proof. Let ϕ be an instance of lin-MSAT(↓,@). Let ϕ′ be a transformation of
ϕ where every ↓x. and @x in ϕ is deleted and every atom is replaced by the
constant >. Then the following claim holds.

Claim 3.18 ϕ ∈ lin-MSAT(↓,@) if and only if ϕ′ is a propositional tautology.

Proof of Claim. For the direction from left to right, let K = (W,R, η) be
a model, w the smallest state in W with respect to R, and w ∈ η(x) for every
x ∈ PROP ∪NOM. Let g be an assignment with g(y) = w for every y ∈ SVAR.
If a formula ϕ that is free of modal operators is satisfiable, then we can w.l.o.g.
assume that it is satisfiable in the model K = (W,R, η). As w ∈ η(x) for every
x ∈ PROP∪NOM and g(y) = w for every y ∈ SVAR, every atom is true in the
state w. If we evaluate ϕ in this model, we can replace every atom with >.
After replacing the atoms, we can ignore every ↓ and @. This construction
yields to ϕ′ ≡ c, c ∈ {⊥,>}. If K, g, w |= ϕ, then K, g, w |= ϕ′, and for this
reason ϕ′ is a valid propositional logic formula.

Conversely, if ϕ′ is a tautology, then we obtain a model K = (W,R, η) for ϕ
as follows: (W,R) is a linear frame and w ∈ η(x) for every x ∈ PROP ∪ NOM
for the first state w ∈ W with respect to R. With g(y) = w for every y ∈ SVAR
follows K, g, w |= ϕ. 3

For testing whether ϕ′ is a valid propositional logic formula, we use [22,
Theorem 2.4.2]. Hence we can check the satisfiablity of ϕ by ignoring all
occurrences of ↓x. and @x, treating all atoms as the constant >, and applying
[22, Theorem 2.4.2] to the generated formula. 2

Lemmas 3.16 and 3.17 also hold for the frame classes {N, tt, ttt} because
we only need to look at the first state of a model, so we can state the following.

Theorem 3.19 Let F ∈ {lin,N, tt, ttt} and O be such that ∅ ⊆ O ⊆ {↓,@}.
Then F-MSAT(O) is NC1-complete.

We will now discuss the same fragments with an additional 2-operator.

Lemma 3.20 lin-MSAT(2, ↓,@) is in NC1.

Proof. Let ϕ be an instance of lin-MSAT(2, ↓,@). We show that we can replace
every subformula 2ψ of ϕ with the constant >, which yields an equisatisfiable
formula ϕ′.

Claim 3.21 ϕ ∈ lin-MSAT(2, ↓,@) if and only if ϕ′ ∈ lin-MSAT(↓,@).

Proof of Claim. If ϕ is satisfiable, then ϕ′ is clearly satisfiable as well,
due to the monotonicity of ϕ. On the other hand, if ϕ′ is satisfiable, then it

14

Meier, Mundhenk, Schneider, Thomas, and Weiß

is satisfied in K, g, w defined as follows: K = ({w}, ∅, η) with η(x) = {w} for
every x ∈ NOM ∪ PROP; g(y) = w for every x ∈ SVAR. This is because ϕ′

contains no modal operator and is a monotone formula. Now every 2 formula
is satisfied in this model because w has no successor, hence K, g, w |= ϕ. 3

Note that in an NC1-algorithm, it is not possible to replace all occurrences of
2-subformula. Yet, we can treat them as the constant 1. Therefore, ignoring
all 2-subformulae in ϕ, we can use the NC1 algorithm for lin-MSAT(↓,@). 2

Lemma 3.20 carries over to tt, as K is also a transitive tree. From Lem-
mas 3.16 and 3.20, we obtain the following set of results.

Corollary 3.22 Let O be such that {2} ⊆ O ⊆ {2, ↓,@}. Then lin-MSAT(O)
and tt-MSAT(O) are NC1-complete.

Since the frame underlying the one-state model K constructed in the
previous proof is neither (N, <) nor in ttt, we will now treat the fragments
with 2 over these two frame classes separately.

Lemma 3.23 N-MSAT(2, ↓,@) is LOGSPACE-hard.

Proof. This proof is very similar to the proof of Theorem 3.3. in [16]. We
give a reduction from the problem Order between Vertices (ORD) which is
known to be LOGSPACE-complete [8] and defined as follows.

Problem: ORD

Input: A finite set of vertices V , a successor-relation S on V , and two
vertices s, t ∈ V .

Output: Is s 6S t, where 6S denotes the unique total order induced by S
on V ?

Notice that (V, S) is a directed line-graph. Let (V, S, s, t) be an instance of
ORD. We construct anMHL(2, ↓,@)-formula ϕ that is satisfiable if and only
if s 6S t. We use V = {v1, . . . , vn} as state variables. The formula ϕ consists
of three parts. The first part binds all variables except s to one state and the
variable s to a successor of this state. The second part of ϕ binds a state variable
vl to the state labeled by s iff s 6S vl. Let α denote the concatenation of all
@vk↓vl with (vk, vl) ∈ S and vl 6= s, and αn denotes the n-fold concatenation
of α. Essentially, αn uses the assignment to collect all vi with s 6S vi in the
state labeled s. The last part of ϕ checks whether s and t are bound to the
same state after this procedure. That is, ϕ = ↓v1.↓v2. · · · ↓vn.2↓s. αn @st. To
prove the correctness of our reduction, we show that ϕ is satisfiable iff s 6S t.

If s 6S t, then for K = ({0, 1, 2, . . . }, <, η) with arbitrary η and g it holds
that K, g, 0 |= ϕ. For s 66S t we show that K, g, w 6|= ϕ for any K based on
the frame (N, <), any assignment g and any state w. Let g1 be the assignment
obtained from g after the bindings in the prefix ↓v1.↓v2. · · · ↓vn.2↓s of ϕ, and

15

Meier, Mundhenk, Schneider, Thomas, and Weiß

let g′1 be the assignment obtained from g1 after evaluating the prefix of ϕ
upto and including αn. It holds that g′1(t) = g1(t) = {0} and s is bound to a
successor of 0 because we only have acyclic frames. This leads to K, g′1, 0 6|= @ts
and therefore K, g, 0 6|= ϕ. 2

Now we give an upper bound for N-MSAT(2, ↓,@).

Lemma 3.24 N-MSAT(2, ↓,@) is in LOGDCFL.

Proof. We will give a universal model and define two sets of formulae that
are true in different states of this model. The set F (A) consists of all formulae
that are satisfied in the first state (in all states) of the universal model. For a
given formula we show that it is satisfiable iff it is contained in one of these
sets. Algorithm 2 then decides for a formula membership in these sets.

Let K = (N, <, η) with η(x) = {0} for x ∈ NOM and η(x) = N for
x ∈ PROP, let g be an assignment with g(x) = 0 for every state variable x and
let ϕ be an instance of N-MSAT(2, ↓,@).

Claim 3.25 ϕ ∈ N-MSAT(2, ↓,@) iff K, g, 0 |= ϕ.

Proof of Claim. It is clear that if K, g, 0 |= ϕ then ϕ ∈ N-MSAT(2, ↓,@).
For the converse, let K ′ be an arbitrary N-model satisfying ϕ in some state
w ∈ N. Even though w and states named by nominals do not need to be 0, we
cannot distinguish between all those states without 3 and with only monotone
operators. Therefore we can merge them into one state where all nominals and
atomic propositions are true, and discard all predecessor and successor states,
yielding K. This construction preserves satisfiability due to the absence of 3
and non-monotone Boolean operators. 3

Now we define two sets F and A of instances of N-MSAT(2, ↓,@): they are the
smallest sets satisfying the following conditions. If ϕ ∈ F , then K, g, 0 |= ϕ,
and if ϕ ∈ A, then K, g, n |= ϕ for all n ∈ N.

• ATOM ⊆ F ;
• if α ∈ F or β ∈ F , then α ∨ β ∈ F ;
• if α ∈ F and β ∈ F , then α ∧ β ∈ F ;
• if α ∈ A, then 2α ∈ F ;
• if α ∈ F , then @xα ∈ F and ↓x.α ∈ F for every x ∈ NOM ∪ SVAR;

• if x ∈ PROP, then x ∈ A;
• if α ∈ A or β ∈ A, then α ∨ β ∈ A;
• if α ∈ A and β ∈ A, then α ∧ β ∈ A;
• if α ∈ A, then 2α ∈ A;
• if α ∈ F , then @xα ∈ A for every x ∈ NOM ∪ SVAR;
• if α ∈ F and α[x/>] ∈ A, then ↓x.α ∈ A for every x ∈ SVAR;

where α[x/>] is the formula obtained from α by replacing every occurrence of

16

Meier, Mundhenk, Schneider, Thomas, and Weiß

x in α by >.

Claim 3.26 It holds that

(i) ϕ ∈ F ⇔ K, g, 0 |= ϕ, and
(ii) ϕ ∈ A⇔ K, g, n |= ϕ for all n ∈ N.

Proof of Claim. We prove this by induction on the construction of ϕ. The
initial step is clear. For the induction step we have to distinguish several cases.

ϕ = α ∨ β: ϕ ∈ F ⇔ α ∈ F or β ∈ F
⇔ K, g, 0 |= α or K, g, 0 |= β

⇔ K, g, 0 |= α ∨ β
The case ϕ ∈ A is analogous.

ϕ = α ∧ β: This case is analogous to ϕ = α ∨ β.

ϕ = 2α: ϕ ∈ F ⇔ α ∈ A
⇔ K, g, n |= α for all n ∈ N
⇔ K, g, 0 |= α

The case ϕ ∈ A is analogous.

ϕ = @xα: ϕ ∈ F ⇔ α ∈ F
⇔ K, g, 0 |= α

⇔ K, g, 0 |= @xα ([η, g](x) = 0)
The case ϕ ∈ A is analogous.

ϕ = ↓x.α:

K, g, 0 |= ↓x.α
⇔ K, g0

x, 0 |= α

⇔ K, g, 0 |= α (g = g0
x by construction of g)

⇔ α ∈ F
⇔ ↓x.α ∈ F

and

K, g, n |= ↓x.α for all n ∈ N
⇔ K, gnx , n |= α for all n ∈ N
⇔ K, g0

x, 0 |= α and K, gnx , n |= α for all n ∈ N
⇔ K, g, 0 |= α and K, g, n |= α[x/>] for all n ∈ N
⇔ α ∈ F and α[x/>] ∈ A
⇔ ↓x.α ∈ A

3

Claims 3.25 and 3.26 imply that ϕ ∈ N-MSAT(2, ↓,@) if and only if
ϕ ∈ F , which is tested by the function F(ϕ) in Algorithm 2. Its correctness is
straightforward from the definitions of the sets F and A (the function A(ϕ)

17

Meier, Mundhenk, Schneider, Thomas, and Weiß

Algorithm 2 N-MSAT(2, ↓,@) algorithm.

Require: a formula ϕ
1: return F(ϕ)

2: function F(ψ) // returns a truth value
3: if ψ ∈ ATOM then return true
4: else if ψ = α ∨ β then return max{F(α), F(β)}
5: else if ψ = α ∧ β then return min{F(α), F(β)}
6: else if ψ = 2α then return A(α)
7: else if ψ = @xα then return F(α)
8: else if ψ = ↓x.α then return F(α)
9: end if

10: return false

11: function A(ψ) // returns a truth value
12: if ψ ∈ PROP then return true
13: else if ψ ∈ NOM ∪ SVAR then return false
14: else if ψ = α ∨ β then return max{A(α), A(β)}
15: else if ψ = α ∧ β then return min{A(α), A(β)}
16: else if ψ = 2α then return A(α)
17: else if ψ = @xα then return F(α)
18: else if ψ = ↓x.α then return min{F(α), A(α[x/>])}
19: end if
20: return false

decides membership of ϕ in A).

Furthermore, Algorithm 2 can be implemented on a LOGDCFL-machine, as
the recursion depth is bounded by the input length and can be stored on the
stack while all remaining variables can be stored in logarithmic space. 2

Lemmas 3.23 and 3.24 also hold for total transitive trees, as formulae
without 3 are, informally speaking, not able to distinguish between the different
branches of a tree. Altogether, this leads to:

Corollary 3.27 The fragments N-MSAT({2, ↓,@}) and ttt-MSAT({2, ↓,@})
are LOGSPACE-hard and contained in LOGDCFL.

4 Conclusion

We have completely classified the complexity of all fragments of hybrid logic
with monotone Boolean operators and arbitrary combinations of four modal
and hybrid operators over four acyclic frame classes. In contrast to the case
with arbitrary Boolean operators, all fragments are of elementary complexity.
We have classified their complexity into PSPACE-complete, NP-complete and

18

Meier, Mundhenk, Schneider, Thomas, and Weiß

tractable and shown that the tractable cases are either NC1-complete or in
LOGDCFL.

The result of LOGDCFL-containment is currently complemented by a
LOGSPACE lower bound, and it remains to find matching bounds. Fur-
thermore, we plan to extend our study to arbitrary sets of Boolean operators
in the same spirit as in [16].

References

[1] Areces, C., P. Blackburn and M. Marx, A road-map on complexity for hybrid logics, in: Proc.
CSL-99, LNCS 1683, 1999, pp. 307–321.

[2] Areces, C., P. Blackburn and M. Marx, The computational complexity of hybrid temporal logics,
Logic Journal of the IGPL 8 (2000), pp. 653–679.

[3] Bauland, M., M. Mundhenk, T. Schneider, H. Schnoor, I. Schnoor and H. Vollmer, The
tractability of model checking for LTL: the good, the bad, and the ugly fragments, in: Proc.
M4M-5, ENTCS 231, 2009, pp. 277–292.

[4] Bauland, M., T. Schneider, H. Schnoor, I. Schnoor and H. Vollmer, The complexity of generalized
satisfiability for Linear Temporal Logic, Log. Meth. in Comp. Sci. 5 (2009).

[5] Beyersdorff, O., A. Meier, M. Mundhenk, T. Schneider, M. Thomas and H. Vollmer, Model
checking CTL is almost always inherently sequential, in: Proc. TIME, 2009.

[6] Blackburn, P. and J. Seligman, Hybrid languages, JoLLI 4 (1995), pp. 41–62.

[7] Bozzelli, L. and R. Lanotte, Complexity and succinctness issues for linear-time hybrid logics, in:
Proc. of 11th JELIA, LNCS 5293, 2008, pp. 48–61.

[8] Etessami, K., Counting quantifiers, successor relations, and logarithmic space, J. of Comp. and
Sys. Sci. 54 (1997), pp. 400–411.

[9] Franceschet, M. and M. de Rijke, Model checking for hybrid logics (with an application to
semistructured data), Journal of Applied Logic 4 (2006), pp. 279–304.

[10] Franceschet, M., M. de Rijke and B. Schlingloff, Hybrid logics on linear structures: Expressivity
and complexity, in: Proc. 10th TIME, 2003, pp. 166–173.

[11] Goranko, V., Hierarchies of modal and temporal logics with reference pointers, Journal of Logic,
Language and Information 5 (1996), pp. 1–24.

[12] Henzinger, T., Half-order modal logic: How to prove real-time properties, in: Proc. PODC, 1990,
pp. 281–296.

[13] Ladner, R., The computational complexity of provability in systems of modal propositional logic,
SIAM Journal on Computing 6 (1977), pp. 467–480.

[14] Mahajan, M., Polynomial size log depth circuits: between NC1 and AC1, Bulletin of the EATCS
91 (2007).

[15] Markey, N., Past is for free: on the complexity of verifying linear temporal properties with past,
Acta Informatica 40 (2004), pp. 431–458.

[16] Meier, A., M. Mundhenk, T. Schneider, M. Thomas, V. Weber and F. Weiss, The complexity of
satisfiability for fragments of hybrid logic — Part I, in: Proc. MFCS, LNCS 5734, 2009, pp.
587–599.

[17] Meier, A., M. Mundhenk, M. Thomas and H. Vollmer, The Complexity of Satisfiability for
Fragments of CTL and CTL*, International Journal of Foundations of Computer Science
(IJFCS) 20 (2009), pp. 901–918.

19

Meier, Mundhenk, Schneider, Thomas, and Weiß

[18] Mundhenk, M. and T. Schneider, The complexity of hybrid logics over equivalence relations,
JoLLI 18 (2009), pp. 433–624.

[19] Mundhenk, M., T. Schneider, T. Schwentick and V. Weber, Complexity of hybrid logics over
transitive frames, in: Proc. M4M-4, 2005, see http://arxiv.org/abs/0806.4130.

[20] Papadimitriou, C. H., “Computational Complexity,” Addison-Wesley, 1994.

[21] Schneider, T., “The Complexity of Hybrid Logics over Restricted Classes of Frames,” Ph.D.
thesis, Univ. of Jena (2007).

[22] Schnoor, H., “Algebraic Techniques for Satisfiability Problems,” Ph.D. thesis, Univ. of
Hannover (2007), see http://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/
hschnoor-diss.pdf.

[23] Schwentick, T. and V. Weber, Bounded-variable fragments of hybrid logics, in: Proc. 24th
STACS, LNCS 4393 (2007), pp. 561–572.

[24] ten Cate, B. and M. Franceschet, On the complexity of hybrid logics with binders, in: Proc. 19th
CSL, 2005, LNCS 3634 (2005), pp. 339–354.

[25] Vollmer, H., “Introduction to Circuit Complexity,” Springer, 1999.

[26] Weber, V., Branching-time logics repeatedly referring to states, J. of Logic, Language and
Information 18 (2009), pp. 593–624.

20

http://arxiv.org/abs/0806.4130
http://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/hschnoor-diss.pdf
http://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/hschnoor-diss.pdf

	Introduction
	Preliminaries
	Results for Monotone Fragments
	PSPACE results
	NP results
	NC1 and L results

	Conclusion
	References

