Skip to main content
Log in

DNA Computing, Computation Complexity and Problem of Biological Evolution Rate

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

An analogy between the evolution of organisms and some complex computational problems (cryptosystem cracking, determination of the shortest path in a graph) is considered. It is shown that in the absence of a priori information about possible species of organisms such a problem is complex (is rated in the class NP) and cannot be solved in a polynomial number of steps. This conclusion suggests the need for re-examination of evolution mechanisms. Ideas of a deterministic approach to the evolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297(5579):249–252. doi:10.1126/science.1071468

    Article  Google Scholar 

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 226:1021–1024. doi:10.1126/science.7973651

    Article  Google Scholar 

  • Ben-Jacob E (1998) Bacterial wisdom, Godel’s theorem and creative genomic webs. Physica A 248:57–76. doi:10.1016/S0378-4371(97)00529-3

    Article  Google Scholar 

  • Cavalli-Sforza LL (2000) Genes, peoples and languages, North Point Press, New York

    Google Scholar 

  • Chaitin GJ (1977) Algorithmic information theory. IBM J Res Develop 21:350–359

    Google Scholar 

  • Coyne JA, Orr HA (1989a) Patterns of speciation in drosophila. Evolution 43(2):362–381. doi:10.2307/2409213

    Article  Google Scholar 

  • Coyne JA, Orr HA (1989b) The evolutionary genetics of speciation. Philos Trans R Soc Lond B Biol Sci 353:287–305. doi:10.1098/rstb.1998.0210

    Google Scholar 

  • Cormen T, Leiserson C, Rivest R (2001) Introduction to algorithms. The MIT Press and McGraw-Hill, Cambridge

    Google Scholar 

  • Eigen M, Schuster M (1979) The hypercycle—a principle of natural self-organization. Springer-Verlag, Berlin

    Google Scholar 

  • Ho YC, Pepyne DL (2002) Simple explanation of the No-Free-Lunch Theorem and its implications. J Optim Theory Appl 115:549. doi:10.1023/A:1021251113462

    Article  Google Scholar 

  • Holland J (1975) Adaptation in natural and artificial systems. The University of Michgan Press, Ann Arbor

    Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409(6819):525–529. doi:10.1038/35054083

    Article  Google Scholar 

  • Jiggins CD, Davies N (1993) Genetic evidence for a sibling species of Heliconius charithonia (Lepidoptera; Nymphalidae). Biol J Linn Soc 64:57–67

    Google Scholar 

  • Kolchanov NA, Nedosekina NA, Ananko EA et al (2002) GeneNet database: description and modeling of gene networks. In Silico Biol 2(2):97–110

    Google Scholar 

  • Kolmogorov AN (1963) On tables of random numbers. Sankhya A 25(4):369–376

    Google Scholar 

  • Kolmogorov AN (1968a) Three approaches to the quantitative definition of information. Int J Comput Math 2(1–4):157–168

    Article  Google Scholar 

  • Kolmogorov AN (1968b) Logical basis for information theory and probability theory. IEEE Trans Inf Theory 14(5):662–664

    Article  Google Scholar 

  • Kolmogorov AN (1987) Information theory and theory of algorithms. Nauka, Moscow

    Google Scholar 

  • Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. Mass MIT Press, Cambridge

    Google Scholar 

  • Li M, Vitanyi P (1990) Kolmogorov complexity and its applications/handbook of theoretical computer science. Elsevier Science Publication

  • Mao W (2003) Modern cryptography: theory and practice. Prentice Hall Professional Technical Reference

  • Marinakis YD (2007) From quasi-organism to protolife. Ecol complexity 4:102–112

    Article  Google Scholar 

  • Melkikh AV (2005a) Deterministic mechanism of molecular evolution. Proceedings of the international moscow conference on computational molecular biology, pp 227–228

  • Melkikh AV (2005b) Could life evolve by random mutations? Biophysics (Biofizika) 50(5):959–960

    Google Scholar 

  • Paun G, Rozenberg G, Salomaa A (1998) DNA computing new computing paradigms. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Shapiro JA (2002) A 21st century view of evolution. J Biol Phys 28:1–20. doi:10.1023/A:1021207310080

    Article  Google Scholar 

  • Theissen G, Saedler H (2001) Floral quartets. Nature 409(6819):469–471. doi:10.1038/35054172

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No Free Lunch Theorems for optimization. IEEE Trans Evol Comput 1:67. doi:10.1109/4235.585893

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Melkikh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melkikh, A.V. DNA Computing, Computation Complexity and Problem of Biological Evolution Rate. Acta Biotheor 56, 285–295 (2008). https://doi.org/10.1007/s10441-008-9055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-008-9055-8

Keywords

Navigation