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1 Introduction

In a recent paper, Fletcher proves a remarkable theorem, which he interprets as demon-
strating that “for any timelike curve in any spacetime, there is a light clock that measures
the curve’s length as accurately and regularly as onewishes” [11, p. 1370]. We take ‘measure-
ment of a curve’s length’ tomean that ameasuring device records intervals of proper time
along the curve as given by themetric field of that spacetime. Fletcher takes a kinematical
stance on the nature of light in relativistic spacetime theories, insofar as he takes it to be a
defining characteristic of light rays that they always traverse null geodesics of the metric
field. This turns out to be a crucial premise in the construction of his central theorem.
However, one might ask: is this strictly true, of physical light rays, constructed of Maxwell
fields? If the answer to this question is ‘no’, then there remains room to doubt the practical
import of Fletcher’s result.
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§1 Introduction

In this paper, we discuss a recent result by Asenjo andHojman [2], which demonstrates
that, at least in minimally coupledMaxwell theory in curved spacetime, the answer to
the above question is indeed negative: in certain spacetimes, light rays, to the extent that
they can be defined, do not traverse null geodesics; rather, their velocity is spacetime-
dependent (that is, is dependent upon the position in the spacetime manifold of the
light ray under consideration). In light of this dynamical (rather than kinematical) under-
pinning of the behaviour of light rays, we argue that it is not the case that physical light
clocks (even if idealised) can be used, in general, to measure a spacetime curve’s length
arbitrarily accurately.

The structure of this article is as follows. Having presented Fletcher’s theorem in
§2, and the central result from Asenjo and Hojman in §3, the remainder of the article
constitutes an in-depth exploration of the philosophical ramifications of the union of
these works.

Tobemore specific, in§4wediscuss the import of these results for the clockhypothesis—
that is, for the foundational principle in general relativity that there exist ideal clocks
which canmeasure the proper time along their worldlines, regardless of whether or not
those worldlines be geodesic. Here, our central point is that the results of Asenjo and
Hojman shake our confidence that certain clocks (in particular, light clocks) do indeed
satisfy the clock hypothesis—pace Fletcher.

This done, we proceed to discuss the operational meaning, or ‘chronogeometric
significance’, of the metric field in general relativity—that is, the metric field’s being
surveyed by rods and clocks built frommatter fields, in the sense of the latter reading off
proper time intervals given by the metric field. Since the results of Asenjo and Hojman
imply that the clock hypothesis need not be satisfied by what are traditionally understood
tobe ‘good’ clocks (viz., light clocks), a broaderproblemarises for theoperationalmeaning
of the metric field in general relativity—for it is harder for the metric field to be surveyed
by matter fields, and thereby to acquire chronogeometric significance, than has hitherto
been appreciated. This has consequences in particular for advocates of the ‘geometrical
approach’ to spacetime theories,1 according to whom the metric field (in some sense)
compels configurations ofmatter fields to survey its structure—for the results presented in
this paper provide evidence that, even in general relativity, such is not the case.2 Moreover,
if, following Knox [16, 17], one takes a field’s having chronogeometric significance to be a
necessary condition for its qualifying as spatiotemporal, then these observations raise
broader concerns regarding the status of spacetime in general relativity.
1 For works advocating this view, see e.g. [12, 19].
2 For further recent discussion of the geometrical approach to spacetime theories, see e.g. [7, 23, 24].
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§2 Fletcher’s Theorem

2 Fletcher’s Theorem

Fletcher situates his result in the context of Maudlin’s [19, ch. 5] argument regarding the
clock hypothesis in special relativity:

Maudlin ... has recently argued that, given some additional assumptions,
one can prove that the quantity an inertially moving light clock measures in
Minkowski spacetime is the proper time along its worldline ... The present
paper generalizes [Maudlin’s] result, indicating a direction in which one can
extendMaudlin’s argument to light clocks undergoing arbitrary acceleration
in arbitrary spacetimes. [11, p. 1370]

Anticipating our objection to Fletcher’s interpretation of his theorem, we use in this
paper the term ‘null clock’, rather than the more tendentious term ‘light clock’, to refer to
a Langevin clock in which the oscillating material traverses null geodesics.3

The structure of this section is as follows. We begin in §2.1 by introducing the clock
hypothesis (cf. §4) and examining Maudlin’s argument for its approximate validity in
special relativity; this relies on a particular idiosyncrasy of Minkowski spacetime—viz., its
globally flat metric and affine structure. We discuss, briefly, the representation of a
null clock and the manner in which it can be taken to read off intervals of proper time
along its worldline. We then consider Maudlin’s conditions for an ideal clock to measure
such intervals even when subjected to certain forces. In §2.2, we introduce Fletcher’s
notation and recast Maudlin’s argument in his terms. In §2.3, we remove the restrictions
that Minkowski geometry imposes, and present Fletcher’s result in its original context—
general relativity.

2.1 Maudlin on the clock hypothesis in special relativity
Maudlin states the clock hypothesis4 as follows:

The amount of time that an accurate clock shows to have elapsed between two
3 By ‘Langevin clock’, we mean (following [7, §2]) a clock consisting of two mirrors and an oscillating
medium. The light clock is the paradigm example of a Langevin clock.
4 AsMaudlin himself points out, ‘hypothesis’ is something of a misnomer for this statement. It is more
accurately seen as leading to a definition of a clock, as a physical body which measures the proper time
along its worldline. For a contrary attitude, see [6, §III.C], in which it is argued that no physical clock can
be regarded as satisfying exactly the clock hypothesis—for all clocks will break eventually, when subject to
sufficiently great accelerations. For these authors, what is of relevance is not exact satisfaction of the clock
hypothesis, but rather approximate satisfaction, to some requisite degree of accuracy—this is what they
dub the ‘clock condition’. We return to these matters in §4.

4



§2 Fletcher’s Theorem

events is proportional to the [i]nterval along the clock’s trajectory between the
two events ... [19, p. 75]

A significant point to note about this hypothesis is that it makes a claim regarding
clocks in all frames—not merely inertial frames. Maudlin argues for the validity of the
clock hypothesis in special relativity for a particular class of clocks—viz., null clocks. We
begin by reviewing his construction.

Consider a smooth, paracompact, Hausdorff, Lorentzian metric manifold 〈M, gab〉.5

In this subsection, we set gab to be ηab , the flat Minkowski metric field of special relativity.
Define two timelike (with respect to ηab ) curves γ : I → M and α

γ : J → M , where I and J

are some open intervals on the real line, R.
The Minkowski spacetime representation of a null clock consists of two material

‘mirror’ wordlines, represented by γ[I ] and α
γ[ J ], and a massless particle, the trajectory of

which is represented by a series of null geodesics, bouncing between γ[I ] and α
γ[ J ].6 Call

the trajectory of such a particle between two successive bounces a ‘null ray’. In a Lorentz
coordinate frame,7 a configuration in which the null clock is at rest can be represented as
in figure 1.
5Here we use abstract indices, in order to align with Fletcher. In the following sections of this paper, when
we perform physical calculations, we switch to coordinate indices. In addition, unless otherwise stated, in
this paper we work in natural units in which c = G = 1.
6 Both Maudlin’s and Fletcher’s discussions are situated wholly within the context of classical general
relativity. We therefore use the word ‘massless particle’ not to represent a quantum of some quantised field,
but rather to represent the geometrical-optical limit of a classical field defined on a spacetimemanifold.
For more on the geometrical-optical limit, see [14, ch. 10], [20, pp. 570-583], [22, ch. 5-6], and extensive
discussion below.
7 That is, an inertial frame of special relativity, in which the laws of physics are understood to take their
simplest form.
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§2 Fletcher’s Theorem

Figure 1: A null clock in an inertial frame of special relativity.

Introducing some useful notation, we consider the closed interval [I 1] = [s0, s1] of the
domain of γ; given its reparametrisation-invariance, we can assume that the intervals of
parameter values are intervals of proper time along a worldline. The ‘halfway point’ on
the image of γ (assessed with respect to ηab ) corresponds to t1 ∈ [I

1]. Let h be the spatial
distance, in a particular frame, between a point on γ[I ] and a point on α

γ[ J ], and let t be
the proper time between s0 and t1. By construction, this makes t the proper time between
t1 and s1 as well. Let S be the spatiotemporal distance between γ(s0) and

α
γ(j0).

Minkowski geometry tells us that

S2 = −t 2 + h2. (1)

By construction, the spatiotemporal distance between any two points on a null ray is
always zero. This means that

t 2 = h2. (2)

So, if we shoot a massless particle from γ(s0), the proper time elapsed on γ[I 1 (
I ] between γ(s0) and γ(s1) is just 2h. Clock ‘ticks’ correspond to points on γ[I ] where
the oscillating particle ‘bounces off’ γ[I ] and travels towards α

γ[ J ]. We label these as
γ(s2), γ(s3)...γ(sn), where n =

α
n ∈ N. The number of such points is referred to as the

‘bounce number’ for a segment of the trajectory, and denoted by α
n. If we extend our

interest to a larger segment γ[I ′ ⊂ I ] (where [I ′ ⊃ I 1]) of the image of γ[I ], then we will
discover more points that correspond to clock ticks. The proper time elapsed on this
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§2 Fletcher’s Theorem

Figure 2: Two configurations for possible null clocks, before and after a Lorentz push.
(The region over which the Lorentz push is implemented is shaded blue.) The clock on
the left violates the relativity principle, for it ticks at different rates before and after the
Lorentz push; the clock on the right satisfies the relativity principle, for it ticks at the same
rate before and after the Lorentz push.

larger segment of γ will then be

|I ′| = |s0 − sn | = 2
α
nh . (3)

What if we physically push our null clock, so that it changes its trajectory to one
with a non-zero constant velocity, with respect to our original Lorentz coordinates? Call
such an action a ‘Lorentz push’—a Lorentz push thus implements an active Lorentz
transformation. On intuitions imported fromclassical spacetimes likeGalilean spacetime,
it might seem reasonable to assume that the spatial distance between the mirrors be
preserved after the push, asmeasured in the original coordinate system. This hypothetical
situation is represented on the left of figure 2. If such were the case, since our oscillating
material traverses null rays, the post-Lorentz push clock would tick at a slower rate. This
particular clock, then, would violate the relativity principle, for it would tick at different
rates in different inertial frames.

The way out of this conundrum is well-known: as Maudlin states [19, pp. 112-113]
(essentially following the moral of Bell’s rocket experiment [4]), a Lorentz transformation
will bring the two mirrors together. (How exactly Maudlin argues to this conclusion is
elaborated below.) Thus, the post-Lorentz push state of the clock under considerationwill
appear as on the right hand side of figure 2. As a result, the null clockwill continue to tick
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§2 Fletcher’s Theorem

at the same rate, and so does satisfy the relativity principle. (In all of our considerations
up to this point, we are ignoring the behaviour of the clock during the period of its
acceleration over the course of the Lorentz push; we return to these matters shortly.)

In order to demonstrate the ‘approximate validity of the clock hypothesis’, Maudlin’s
argument proceeds in two phases: (A) demonstrate that inertially moving clocks measure
intervals of proper time along their worldlines as given by the metric field, even after a
Lorentz push; (B) demonstrate that clocks in arbitrary states of motion approximately
measure intervals of proper time on their worldlines as given by the metric field.

To achieve (A),Maudlin constructs anull clockby attaching the twomirrors to opposite
ends of a rigid rod. A rod is said to be ‘rigid’ just in case, after a Lorentz push, it assumes a
configuration which, when expressed in the coordinates of the boosted frame (i.e., its
rest frame after the Lorentz push), is identical to its configuration in the coordinates of
the original frame, before the Lorentz push.8 We say that the state of a rigid rod in its rest
frame is its ‘equilibrium state’. The result of this construction is that the Lorentz push will
cause the null clock to contract. The consequence, of course, is that such clocks satisfy
(A), as given above.9

Now to (B). If we restrict our attention to segments of the null clock’s worldline in
which the rigid rod is in an equilibrium state, then Lorentz pushes do not affect the
clock—in the sense that our story regarding the behaviour of the clock is restricted to
a story regarding its behaviour in its equilibrium states, in which (as we have already
seen) the clock does read off intervals of proper time along its worldline. In the limit
that we can approximate arbitrary motion as being composed of segments of inertial
motion separated by arbitrarily short Lorentz pushes, Maudlin claims to achieve (B): a
demonstration of the satisfaction of the clock hypothesis by null clocks in arbitrary states
of motion.10

Fletcher [11, pp. 1370-1371] correctly and reasonably points to the restricted scope of
Maudlin’s argument: it relies on the notion of an equilibrium state of a rigid rod, and,
moreover, is only approximate, in its application tonull clocks in arbitrary states ofmotion.
Motivated by these concerns, Fletcher generalises Maudlin’s argument to account (he
claims) for the satisfaction of the clock hypothesis by null clocks in arbitrary states of
motion in both special and general relativity.
8 Thus, a rigid rod would not be distorted by a Lorentz push in the manner of the null clock on the left of
figure 2, discussed above.
9One sense in which Fletcher generalises Maudlin’s work is that he is not committed to the existence of
such a rigid rod—see below.
10Note that this now includes the blue regions in figure (2), in which the clock is accelerated in order to
implement the Lorentz push.
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§2 Fletcher’s Theorem

2.2 Fletcher’s result in special relativity
Let us tell the first part of Maudlin’s story from Fletcher’s more general perspective, using
his notation. Consider the tangent spaceTp M at the point p = γ(ti ) ∈ M . SinceMinkowski
spacetime is a globally flat metric manifold, with a global smooth atlas, for an element
ρa ∈ Tp M , the ‘exponential map’, expp(dρ

a ), where d ∈ R, defines a smooth curve.11 The
metric also defines an inner product12 on each tangent space, which induces a norm.13

This norm generates an open-ball topology onTp M with respect to which one can define
a ‘normal open neighbourhood’.14 If a normal open neighbourhoodU0 of Tp M can be
exponentiated to recover an open neighbourhood U of p ∈ M , then U is known as a
‘simply convex neighbourhood’ [11, p. 1372].

For a timelike curve such as γ[I ], one can, at each point, identify an orthogonal unit
spatial vector ρa , thus defining a vector field on γ[I ]. Each vector can be exponentiated
to map a point on γ[I ] to a point on another timelike curve, αγ[ J ]. If γ[I ] is an inertial
trajectory, then multiplying each unit spatial vector by the same constant,

α
d , one can

map γ[I ] to another timelike inertial trajectory. Each choice of α therefore generates a
different parallel curve.

Call the exponential factor,
α
d , the ‘scalar radius’ of the curve α

γ. In Minkowski space-
time, this can be taken to be equal to the spatial distance between the points γ(t1) and
expp(

α
d ρa ) =

α
γ(j0).

15,16 So, (3) can be rewritten as

11 The exponential map at p ∈ M , expp : Up → M , is defined on a subset Up of the tangent space Tp M
as follows. First, 0 ∈ Up and expp0 = p. Then any nonzero αa ∈ Up if and only if there is a geodesic
γ : [0, 1] → M with tangent vector αa at p such that γ(0) = p. Finally, for such nonzero αa ∈ Up , exppα

a =
γ(1), which is well-defined since the geodesic γ corresponding to αa is unique [11, pp. 1371-1372].
12 A real vector spaceV is a real inner product space just in case there is a function 〈·, ·〉 fromV ×V toR such
that ∀x, y, z ∈ V, (i) 〈·, ·〉 is positive-definite, i.e. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0, (ii) 〈x, y +z〉 = 〈x, y 〉+ 〈x, z〉,
(iii) 〈x, αy 〉 = α〈x, y 〉, and (iv) 〈x, y 〉=〈y, x〉.
13 A norm | · | on a real vector spaceV is a real-valued function that associates a real number (a ‘length’)
to elements of a vector space and satisfies the following three conditions: (i) absolute homogeneity: ∀a ∈
R, ∀v ∈ V. |a · v | = |a | |v |, (ii) Triangle inequality: ∀x, y ∈ V, |x + y | ≤ |x | + |y |, (iii) Non-degeneracy: ∀x ∈

V, |x | = 0⇒ x = 0. An inner product on a vector space induces a norm as ∀x ∈ V, |x | =
√
〈x, x〉.

14Given p ∈ M , an open neighborhood U0 ⊂ Tp M containing the zero vector is called normal if and
only if (i) expp |U0

is well-defined and a diffeomorphism onto its image, and (ii)U0 is closed under scalar
multiplication by t ∈ [0, 1] [11, p. 1372].
15 This is because the tangent space at a point in Minkowski spacetime is isomorphic (as both a vector
space and a manifold) to Minkowski spacetime. So there is a canonical one-one correspondence between
vectors inTp M and straight lines in M .
16We should stress, as Fletcher does, that although in this case one can think of the scalar radius as being
equal to the distance between the mirrors, this is not a privileged measure. “One could very well pick some
other spacelike vector field on γ and some other scalar parameter to trace out the same companion curve,
and this new pair would bear a systematic functional relationship to ρa and [

α
d]. The constraints on [

α
d], as

determined by the theorem, would then fix constraints on this new scalar parameter” [11, p. 1381].
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§2 Fletcher’s Theorem

|I ′| = |s0 − sn | = 2
α
n
α
d . (4)

2.3 Fletcher’s theorem in general relativity
Maudlin’s argument applies only to Minkowski spacetime. We now generalise to arbitrary
Lorentzian manifolds. To do so, we drop the requirement that the metric field be flat
(indeed, we also drop the requirement that it have constant curvature). As a result, we lose
global simple convexity—i.e. the property thatM is itself a simply convex neighbourhood.
However, since we are dealing with a Lorentzian manifold, we still have ‘local simple
convexity’,17 i.e. with respect to the tangent space topology induced by the dynamical
Lorentzian metric field gab , ∃U0 ⊂ Tp M, d ∈ R : expp(dU0) = Un ⊂ M , and

⋃
n Un = M .

If M is not flat, then U ( M is an open neighbourhood of p ∈ M . In general, we can
now only recover local patches of the manifold by exponentiating element of the tangent
space at a point.

For a particular family of so-called ‘convergent companion curves’, {αγ}α∈N, Fletcher’s
theoremmakes two assertions, which we dub accuracy and regularity:

Accuracy: lima→∞2
α
n
α
d = |I ′|.

Regularity: lim supα→∞
{
|(
α
si −

α
s i−1) − (

α
sj −

α
s j−1)| : 1 ≤ i, j ≤

α
n
}
= 0.

Accuracy is the statement that the times elapsed between ‘ticks’ measured on γ[I ] are
proportional to proper time intervals on the worldline. Regularity asserts that the proper
time interval measured between any two arbitrary pairs of successive ticks is the same. If
we restrict our interest to physical clocks, we see that it is regularity, not accuracy, that
is significant. Maudlin expands:

An ideal clock is some observable physical device bymeans of which numbers
can be assigned to events on the device’s worldline, such that the ratios of
differences in the numbers are proportional to the ratios of [i]nterval lengths
of segments of the world-line that have those events as endpoints. [19, p. 106]

Accordingly, note that the null character of light rays does no operationally significant
workhere—wewould still be able to construct ideal clocks inwhich theoscillatingmaterial
traverses timelike paths. What is important is that the timelike curve γ[I ] is defined with
respect to the same metric as the one surveyed by the oscillating matter—this is what
17 See e.g. [21, p. 131] for a proof that all Lorentz manifolds are locally simply convex.
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§2 Fletcher’s Theorem

ensures regularity. This is guaranteed by Fletcher’s assumption that light travels on null
geodesics of gab , but would just as easily be achieved by any oscillating material which
travels at a constant velocity between the mirrors.18

Looking at Fletcher’s theoremmore closely, we see that, in general, we can still interpret
α
d as being equal to the distance between the mirrors—

α
d is constrained to be non-zero [11,

p. 1376]—but only for the specific configurations of the null clock discussed below. As we
will see, this is an important constraint on Fletcher’s theorem: the theorem is only valid
for clock configurations where this identification can be made.

Given
α
d > 0, the curve γ[I ] is not an element of {αγ}α∈N. This ensures that a physical

‘bounce’ is always possible. The limit in the family of convergent curves is required to
ensure that the two curves are sufficiently ‘nearby’ that αγ can be arrived at by exponenti-
ating the unit spacelike vector field, ρa , on γ[I ]—in other words, it ensures that they are in
the same non-disjoint union of simply convex neighbourhoods. In Minkowski spacetime,
global simple convexity ensures that these two curves can be arbitrarily far apart, and the
null clock (in principle) still functions as an ideal clock.

Since spacetimes in general relativity can be arbitrarily curved, the bounce number,
α
n, for a given timelike curve γ[I ]will, in general, depend upon the path traversed by the
massless particle between γ[I ] and (the image of) the selected companion curve, αγ[ J ]. In
order to avoid this dependence, oneneeds tobe careful aboutwhich companioncurveone
chooses. This is where local simple convexity comes in. In regions in which it is possible,
for any timelike curve, γ[I ], to find a companion curve, αγ[ J ], which can be reached by
exponentiating the spacelike tangent field on γ[I ], Fletcher’s theorem holds.19 In such
regions, the scalar radius

α
d does approximate the spatial distance between exponential

map-related points across the curves. The fact that every point on a Lorentzian metric
has a local simply convex neighbourhood guarantees that Fletcher’s theorem holds for all
Lorentzian spacetimes.

The physical interpretation that Fletcher gives of his use of the local simple convexity
assumption is the following: it allows a light clock to expand and contract arbitrarily as it
moves through the manifold, thereby accounting for possible gravitational tidal forces in
generic general relativistic spacetimes. As long as the clock is sufficiently small that both
mirrors are always within the same simply convex neighbourhood, Fletcher argues, it
will measure proper time along γ[I ], and thereby satisfy the clock hypothesis. One way
of putting our disagreement with Fletcher is the following: we argue (see §3) that the
18 Fletcher makes this observation at [11, p. 1382].
19 Technically, what is required is that for any segment, γ[

k
I ], of the curve γ[I ], such that

⋃
k γ[

k
I ] = γ[I ], there

exists a α
γ[

m
J ] such that expp (

α
r ρa ) =

α
γ[

m
J ], ∀p ∈ γ[

k
i ] and

⋃
m

α
γ[

m
I ] =

α
γ[I ].
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§3 Electromagnetism and the Geometrical-Optical Limit

light rays themselves in physical light clocks will manifest spacetime-dependence. This
dependence is what spoils the ideality of a light clock—see below.20,21

Let us return now toMaudlin’s null clock. Recall that the rigid rod between themirrors
ensures that their spatial separation, as measured in the rest frame of the pre-Lorentz
push clock, is less after the push than before. But, as mentioned earlier, Maudlin says
nothing about what goes on during the Lorentz push and in the time that it takes for the
rod to reach its equilibrium state post-push. Therefore, his clock can only be guaranteed
to measure proper times on trajectories to within the level of accuracy that the rigidity
of the rod allows. One might abstract away from the use of the rigid rod, and instead
impose a ‘clock constraint’, which restricts us to clocks whose mirrors’ spatial separation
changes in accordance with what an idealised rigid rod would have imposed on their
configuration. But then one is presented with the non-trivial problem of showing that
such systems exist.

In effect, the simple convexity of the open neighbourhoods around points on timelike
trajectories in Lorentzianmanifolds is what allows Fletcher to impose the clock constraint,
andwith it to prove the clock hypothesis for null clocks. More precisely, since, ex hypothesi,
light travels onnull geodesics andmassive particles on timelike geodesics of gab , Fletcher’s
theorem proves that, within a given simply convex neighbourhood of a point on the
manifold, an abstract version ofMaudlin’s construction holds, and any timelike trajectory
can be approximated as a series of inertial trajectories linked by Lorentz pushes.

3 Electromagnetism and the Geometrical-Optical Limit

As discussed, Fletcher’s assumption that light propagates on null geodesics—call this
the ‘relativistic null hypothesis’—is central to his theorem, for it suffices to ensure regu-
larity. It is often taken for granted that the relativistic null hypothesis is satisfied in the
‘geometrical-optical limit’ of general relativity, in which, roughly speaking, the length
scale over which thewavelength of thewave under consideration changes ismuch shorter
than the length scale over which curvature changes in the ambient spacetime (cf. [20,
§22.5]). In this section, we reconsider the physicality of the geometrical-optical limit, and
thereby whether is it indeed true that light rays, qua solutions to Maxwell’s equations in
curved spacetime, invariably traverse null geodesics.
20 It is important to note that we are conceding to Fletcher many things—e.g. that it is possible to find a
physical medium which emulates the behaviour of the mirrors of his light clock. In our view, there is good
reason to doubt whether any suchmedium can be found—though we set thematter aside in the remainder
of this paper.
21Note that Maudlin’s sense of the ideality of a clock is different from that deployed in footnote 31.
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§3 Electromagnetism and the Geometrical-Optical Limit

It turns out that the answer is ‘no’—though a full explication of this answer will require
some setup. First, some remarks on the field of optics. Research in this area is concerned
with aspects of the behaviour of electromagnetic waves that are determined by how
those waves propagate in the domain in which they can be approximated as rays. In
this approximation, information about interference and diffraction is discarded, but, in
compensation, one is able to derive a plethora of theorems and results regarding the
observed behaviour of light. The approximation here is that the wavelength of the light
being studied is significantly smaller than (a) the distances over which its amplitude
varies, and (b) the distances over which curvature effects are non-negligible. Given that
the wavelength of light studied in the context of optics is of the order of 100-1000nm, and
typical experiments are conducted over distances at least 104 times as large, this optical
approximation is generally a reasonable one.

In the following, we focus upon the behaviour of light in the limit that (a) and (b) are
always satisfied. Since, for light of any wavelength, one can always find a Lorentzian
manifold whose curvature varies on a scale comparable to that wavelength, the only way
of guaranteeing the generality of a statement (such as Fletcher’s) made on the basis of
such optical approximations, is by considering light in the limit that its wavelength tends
to zero (equivalently, its frequency tends to infinity), and its amplitude is constant—this
is what we mean, precisely, by the ‘geometrical-optical limit’.

It is worth pausing here, briefly, to discuss the physical intuitions behind taking this
limit. Recall from §2 that what the construction of a null clock is intended to capture is the
periodic motion of a particle bouncing back and forth between twomirrors. In classical
physics, although light is not described by a particle, it is common to refer to the ‘path
traversed by light’. The standard interpretation of this locution is in terms of some limit.
To the extent that we can interpret a solution to Maxwell’s equations as instantiating a
wave packet that is sufficiently localised and dynamically robust (i.e., continues to exist
as a wave packet on the time scales of interest), we can talk about a path traversed by
light. Moreover, the wave packet can be approximated as a plane-wave solution—the
divergence in behaviour between the two types of solution only manifests itself on large
length and time scales.

By choosing a suitably short wavelength, then, this wave packet can be localised to
well below the length scale of interest. The trajectory of the wave packet can then be
thought of as an integral curve to some vector field—these integral curves are the light
rays. Call each element of this vector field a ‘wave vector’, k µ . By construction, the wave
vector always points in the direction of propagation of the wave in spacetime. In the
plane-wave approximation, the wave vector is perpendicular to the ‘wave front’—the line
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§3 Electromagnetism and the Geometrical-Optical Limit

or surface connecting all points on a wave that are in phase. Therefore, if we know the
wave vector field and the metric, we can calculate the wave fronts, which then constitute
the one-form, kµ , which is orthogonal to the vector field.

We can now reverse this construction. If we begin with the wave fronts, we can there-
from construct the wave vector field, and with it the integral curves that represent the
wave packet’s trajectory. On this picture, it is clear that a coherent picture of light as
traversing any kind of path presupposes a robust notion of a wave front. Therefore, the
solutions to Maxwell’s equations that describe light as traversing paths have to be such
that the wave fronts of the initial configuration are preserved under the dynamical evolu-
tion of the field. In Minkowksi spacetime, it is easy to come by such solutions—all plane
wave solutions, for example, have this feature.

A plane wave in Minkowski spacetime satisfies what we refer to in §3.1 as a ‘standard
wave equation’—these are equationswhose solutions are (possibly infinite superpositions
of) plane waves, whose wave fronts move at a constant velocity, thus defining a constant
wave front one-form kµ . As a result, the wave vector field is also constant, since themetric
is constant. Therefore, the following equation, known as a ‘dispersion relation’, describes
the propagation of light in Minkowski spacetime:

ηµνk µk ν = 0. (5)

The wave vector is determined by the Maxwell wave equation, which itself depends on
the background geometry, and from the dispersion relation it is clear that the wave vector
k µ is null—so light propagates on null geodesics.

When considering the propagation of light in curved spacetimes, we still need to
hold onto the notion of wave front preservation. But, as will be shown explicitly in §3.2,
the generalisation of the notion of a plane wave in Minkowski spacetime to arbitrarily
curved spacetimes (call them ‘generalised plane waves’) loses this important feature. It
is therefore crucial to discover whether there exists some approximation in which this
feature is still valid—this is what motivates the use of the geometrical-optical limit. Note
that, in a generically curved spacetime, neither themetric field nor the one-form kµ corre-
sponding to a solution of the curved-spacetimeMaxwell equations is, in general, constant
across the manifold. More importantly, these kµ need not even carry a straightforward
interpretation as wave fronts of a propagating wave packet.

In generically curved spacetimes, what we call the ‘generalised dispersion relation’ is
of the form

gµν(x)k
µ(x)k ν(x) = f (x), (6)
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§3 Electromagnetism and the Geometrical-Optical Limit

where f (x) is some function of spacetime.
In the limit that thewavelength of light tends to zero, it can be shown that the evolution

of generalised plane waves does preserve (at least locally) wave fronts and wave vectors
[20, pp. 574-575]. In this limit, we have recovered a notion of the trajectory of light. In
order for it to be the case that these light rays are null, a further condition needs to be
met,

gµν(x)k
µ(x)k ν(x) = f (x) = 0. (7)

Call such a dispersion relation a ‘null dispersion relation’. In a certain class of rotating
spacetimes, an example of which is discussed in §3.3, if we consider an arbitrary solution
to the vacuum Maxwell equations, which does not describe the propagation of light
rays, and then take the geometrical optical limit, the result is not guaranteed to be a
solution to those vacuumMaxwell equations. In other words, f (x) is not guaranteed to
vanish for the dispersion relation associated with exact generalised plane wave solutions
that preserve wave fronts, even though it might do so in the dispersion relation arrived
at from geometrical-optical limit of an approximate solution. Although Fletcher never
explicitly mentions geometrical optics, his assumption of the validity of the relativistic
null hypothesis, irrespective of the background spacetime inwhich thewave is embedded,
is equivalent to this assumption.

The purpose of this section, therefore, is to argue against Fletcher’s use of this assump-
tion, by demonstrating that, in a certain class of spacetimes, there is no solution of the
Maxwell equations which gives rise to a null dispersion relation. We will show that this
leads to a violation of the condition of regularity, and this is ultimately what undermines
the purported generality of Fletcher’s theorem. In §3.1, we introduce the vacuumMaxwell
equations in curved spacetime, which describe the propagation of light. We then discuss,
in §3.2, how the geometrical-optical limit can—if physically appropriate—demonstrate
that light rays traverse null geodesics. Finally, we turn, in §3.3, to the vacuumMaxwell
equations in certain rotating spacetimes. We see that such solutions deliver a startling
verdict on the behaviour of light rays—that they violate the relativistic null hypothesis.
We should stress that, in this section, our concern is with certain spacetimes violating
the relativistic null hypothesis due to the misalignment between approximate and exact
solutions that arise from rotation, rather than curvature effects.22

22We intend to explore possible violations of the relativistic null hypothesis due to curvature couplings in
dynamical equations for matter fields, such as those discussed in [24, §2], in a future article.
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§3 Electromagnetism and the Geometrical-Optical Limit

3.1 Maxwell’s equations in curved spacetime
It is worth distinguishing between two types of ‘wave equation’—a ‘standard wave equa-
tion’ and a ‘Maxwell wave equation’. A standard wave equation for, say, a scalar field ψ
takes the form

∂2ψ

∂x2
−
1

c2
∂2ψ

∂t 2
= 0, (8)

where c is the wave propagation speed. Themost general solution to this kind of equation
is a superposition of ‘plane wave solutions’, i.e. solutions of the form

ψ (x, t ) = ψ0 exp
{

i
(
®k · ®x ± ω · t

)}
, (9)

where ψ0 is a constant. The associated four-dimensional wave vector is k µ = (ω, ®k ), and
the four-dimensional wave front is kµ = ηµνk ν. From this, we see that a general formula
for a four-dimensional wave vector is

k µ = ∇µθ, (10)

where θ is the phase of the wave and ∇µ is the Minkowski metric-compatible derivative
operator. This definition of the wave vector applies even to position-dependent phases.
For any given plane wave, therefore, it makes sense to talk about a trajectory—it is just
the integral curve associated with k µ . Since k µ is a constant, these integral curves are
a family of straight lines in Minkowski spacetime corresponding to trajectories of rays
travelling at velocity c .

The Maxwell equations in curved spacetime are given by23

∇µF µν = 0, (11)

∇µF ∗µν = 0, (12)

where ∇µ is the derivative operator compatible with a generic Lorentzian metric field gµν

(with respect to which index contraction is performed),

Fµν := ∇µAν − ∇νAµ = ∂µAν − ∂νAµ (13)

is theantisymmetric Faraday tensordefined in termsof the electromagnetic four-potential
23 Throughout this section, we switch to (Greek) coordinate indices, since we will find it convenient to
perform calculations in a particular coordinate basis.
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Aµ ,24 and F ∗µν := 1
2ε

µνα βF µν the dual of F µν.25

As we are dealing with the source-free Maxwell equations, (12) amounts to nothing
but a Bianchi identity. So, the only equations that are not identically satisfied are (11);
using (13), we have (cf. [20, p. 569])

∇µ∇
µAν + R µ

ν Aµ = 0. (14)

This is the second type of wave equation discussed in this paper— a Maxwell wave
equation.

Consider a solution of theMaxwell wave equation in curved spacetime of the following
form—call it a ‘generalised plane wave’:

Az (t , x) = ξ (x) exp {iS (x) ± iω · t } . (15)

Associated with this solution are k µ = (ω, ∂i S(x)), and kµ = gµνk ν, both of which are
spacetime dependent. Moreover, given the spacetime dependence of k i , in general this
will not have an interpretation as a wave vector for a wave packet state, since such states
do not, in general, exist in curved spacetimes. In order for wave packet states to be
guaranteed to exist, it must be the case that the spacetime-dependence of the amplitude
and phase are negligible. So we go to the geometrical-optical limit in which ξ, S and
gµν are approximately constant. In this case light rays are solutions to a standard wave
equation, so guaranteed to travel at constant velocity, although the claim that this velocity
is c requires further argument.
24 (13) holds in any coordinate basis, since connection components in this equation vanish by the symmetry
of the connection. For details, see e.g. [9, p. 39].
25Of course, in general relativity, the dynamical equations for the gµν field are the Einstein field equations,
which take the form

Gµν := Rµν −
1
2

gµνR = 8πTµν,

whereGµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci scalar, and Tµν is the stress-energy
tensor associated with the matter fields that serve as sources for the gravitational field. The contribution of
the electromagnetic field to the energy-momentum tensor is given by

T µν
Maxwell := F µλF ν

λ −
1
4

g µνFλρF λρ.

These equations are called the ‘Einstein-Maxwell equations’. In this article, we largely drop consideration of
the Einstein equations, forwe are not in general concernedwith back-reaction effects of the electromagnetic
field on the metric field.
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3.2 The geometrical-optical limit
The statement that light, even in arbitrarily curved spacetimes, can be taken to traverse
null geodesics in the geometrical-optical limit26 relies on an insufficiently general as-
sumption about the behaviour of solutions to Maxwell’s equations in curved spacetime.
On this limit, Misner et al. state that

[t]he fundamental laws of geometric optics are: (1) light rays are null geodesics;
(2) thepolarizationvector is perpendicular to the rays and isparallel-propagated
along the rays; and (3) the amplitude is governed by an adiabatic invariant
which ... states that the number of photons is conserved. [20, p. 571]

They are careful to stress, however, that these laws are derived from the basic as-
sumption of geometrical-optics (viz., (a) and (b)) mentioned above. The relativistic
null hypothesis (that is, Misner et al.’s (1)), follows from the basic assumptions of the
geometrical-optical limit, only when one further important criterion is met—that the
solutions arrived at in this limit do, in fact, approximate exact solutions to arbitrary accu-
racy. In this section, beginning with the pedagogical setup of Misner et al., we discover
the conditions under which the relativistic null hypothesis is valid.

Recall that a light ray is, by definition, a curve that is perpendicular to a surface of
constant phase (i.e., a wave front) [20, p. 573]. In what follows, we look in detail at the
behaviour of approximate solutions that allow us to recover the ray-like characterisation
of light familiar from optics—perhaps the easiest way to think about the approxima-
tion at play is to see it as being motivated by a desire to make the curved spacetime
model resemble the flat spacetime model by considering progressively smaller regions of
spacetime.

So we begin with the picture in flat spacetime—here the electromagnetic equations
are just the standard Maxwell equations (11) and (12), defined with respect to the fixed
Minkowski metric field ηµν.

Consider a vector potential Aµ , which is a solution to (14). As a solution to a wave
equation, it can always be decomposed into an ‘amplitude’ piece αµ , and a phase piece
θ ∝ l

λ , where l is the distance propagated by the wave and λ is its wavelenth. Thus,

Aµ = Re
(
αµe iθ

)
. (16)

26 Such a statement is certainly pervasive in the literature. See, for example, Wald: “[I]n this approximation
(known as the geometrical optics approximation), light travels on null geodesics, a suggestion which can
be confirmed by studies of the Green’s function” [28, p. 71]. Or Malament: “[The behaviour of] light [is
determined by] the behavior of solutions to Maxwell’s equations in a limiting regime (“the optical limit”)
where wavelengths are small ... [W]hen one passes to this limit, packets of electromagnetic waves are
constrained to move along (images of ) null geodesics” [18, p. 147].
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Since we are in Minkowski spacetime, the curvature of the manifold, by definition,
does not vary with distance. We can consider a wave-like solution the amplitude of which
is constant across themanifold—such solutions are guaranteed to exist, since theMaxwell
wave equation in Minkowski spacetime is a standard wave equation.

In curved spacetimes, the geometrical-optical approximation attempts to preserve
the wave packet behaviour associated with certain solutions of the Maxwell equations.
If we start with a specific solution to the Maxwell equations the amplitude of which
does not change appreciably over the length scale of interest, and for which the ambient
spacetime is approximately flat over the same length scale then, as the wavelength is
decreased, these approximations apply to a larger class of spacetimes (i.e., solutions to
the Einstein field equations). Eventually, in the limit that the wavelength tends to zero,
and the amplitude variation becomes negligible, it seems reasonable to assume that
such solutions will coincide with exact ray-like solutions of the wave equation in any
spacetime.

Let us examine one of the above-discussed limits—the constant amplitude limit. A
general solution to the Maxwell equations in curved spacetime will describe a wave
whose phase is a function of spacetime. If we restrict attention to regions of spacetime
over which the amplitude varies very slowly, then minor corrections can be made to the
amplitude at every point:

αµ = a µ + b µλ + c µλ2 + d µλ3 + . . . . (17)

Since the amplitude really depends on the choice of length scale L, the expansion is in
powers of ε := λ

L , so the vector potential in (16) can now be expanded as

Aµ = Re
{(

a µ + εb µ + ε2c µ + . . .
)

e iθ/ε
}
. (18)

Substituting our expansion into the source-free versionof theMaxwellwave equations (14)
and once again gathering terms that are to the order (1/ε2), we get our familiar dispersion
relation, k µkµ = 0:

0 = −∇µ∇
µAν + R ν

µ Aµ

= Re
{[

1
ε2

k µkµ

(
a ν + εb ν + ε2c ν + . . .

)
− 2

i

ε
k µ∇µ (a

ν + εb ν + . . .)

−
i

ε
∇µk µ (a ν + εb ν + . . .) − ∇µ∇

µ (a ν + . . .) + R ν
µ (a

µ + . . .)

]
e iθ/ε

}
. (19)
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The relativistic null hypothesis is important for Fletcher’s result only to the extent that
it guarantees that light travels on trajectories of constant velocity—the actual value of
this velocity is largely irrelevant. It is possible, therefore, that light rays travel at constant
velocities, as judged by the affine connection, even if those geodesics are not null. In
the terminology of §2, this would lead to a violation of accuracy but not regularity. So
Fletcher’s theorem would remain intact. If the dispersion relation were non-trivially
spacetime-dependent, on the other hand, then the integral curves corresponding to
the vector field defined by the wave vectors would not be straight lines according to the
connection. This is what spells trouble for regularity, and so also for Fletcher’s theorem.

In the class of curved spacetimes considered in [2, §2], for example, in the geometrical-
optical limit, light does propagate on null geodesics of the metric, determined by the
coupled Maxwell and Einstein field equations. Consequently, in such spacetimes, both
accuracy and regularity are preserved. The important assumption that allowed us to
derive this result was that the perturbative expansion presented was treated as approxi-
mating the exact solution with arbitrary accuracy. As we will see in the following, this is
not guaranteed to be the case.

3.3 Rotating spacetimes
Consider two possible means of arriving at solutions of theMaxwell wave equation (14) in
curved spacetime for an arbitrarily smallwavelength. Thefirst is to solve it exactly by some
technique. The second is to solve the wave equation for a relatively large wavelength, and
then take the geometrical-optical limit. These two techniques are not guaranteed to agree
on the space of solutions. More precisely, it is not guaranteed that a particular solution, in
the geometrical-optical limit, remains a solution to theMaxwell wave equations in curved
spacetime. An example from Asenjo and Hojman [2, §3], pertaining to Gödel spacetimes,
demonstrates clearly this fact.

The Gödel metric, in Cartesian coordinates, reads

g00 = −1 = −gxx = −gz z,

gy y = −2 + 4exp(
√
2xΩ) − exp(2

√
2xΩ),

g0y =
√
2[1 − exp(

√
2xΩ)], (20)

where Ω is a constant related to the angular velocity of the rotating universe.27 Consider
27 For a discussion of the difficulties in classifying a spacetime as ‘rotating’, as well as further foundational
details on Gödel spacetime, see [18, ch. 3].

20



§3 Electromagnetism and the Geometrical-Optical Limit

now the z-component Maxwell wave equation (14) in curved spacetime,

∂20Az +
1

√
−g g 00

∂x
(√
−g ∂x Az

)
= 0. (21)

For the Gödel metric, there is no choice of coordinates such that (21) takes the form
of a standard wave equation. There is, however, a choice of coordinates such that this
equation takes the form

∂20Az + σ (ζ) ∂
2
ζ Az = 0, (22)

where ζ = −e−
√
2xΩ/
√
2Ω. This looks somewhat similar to a standard wave equation, but

with a position-dependent function determining the ‘velocity’ of the wave.
Let us approach (22) with a generalised plane wave ansatz of the form

Az (x, t ) = ξ (x) exp [iωt ± iS (x)] . (23)

In the geometrical-optical limit, this solution does have the form of a standard plane
wave solution, for in that limit, S(x) ∝ x and ξ(x) ≈ const. However, outside that limit, the
wave vector takes the form k0 = ω;ki = ±∂i S(x), where S(x) need not be a linear function
of x . Therefore, k µkµ is not guaranteed to vanish. The exact form, derived from (23), using
the formula for a wave vector for a generalised plane wave (10), is

kµk µ =
1

ξ
√
−g
∂x

(√
−g ∂x ξ

)
. (24)

(21) also allows us to derive the condition

∂x

(
√
−g kx ξ

2
)
= 0. (25)

Recall that, for the notion of a trajectory to be meaningful, the geometrical-optical
approximation is used, in order to approximate solutions as plane waves. So, what we
are looking for is a solution to (21), (i) for which the geometrical-optical approximation
holds, and (ii) which satisfies (24) and (25). This is demonstrably impossible—there are
no exact solutions to (21) for which k µkµ = 0.

For the exact solution to (21), one first uses (25) to obtain

ξ (x) =
ξ0

(−g )
1
4 k

1
2

x

, (26)

which can be plugged back into the dispersion relation (24) (cf. [2, pp. 3-4]), yielding the
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dispersion relation

k µkµ =
Ω2

2
−

k ′′x
2kx
+
3k ′2x

4k 2
x

. (27)

Of central importance to the argument of this article is the fact that the expression is
spacetime-dependent. The presence of first and second spatial derivatives of the spatial
wave vector kx indicates a dependence on (up to) third spatial derivatives of the function
S(x). The phase velocity vp := ω

kx
, and the group velocity vg := ∂ω∂kx

, will thus both generally
deviate from c .

Consider for instance (following [2, §3]) the case of very small spacetime length scales
(Ωx � 1), such that the expression for the wave vector becomes

ω ≈

(
1 +

1
2
Ω
2x2

)
kx . (28)

We therefore find a phase velocity

vp =
ω

kx
= 1 +

1
2
Ω
2x2, (29)

and thus a group velocity

vg =
∂ω

∂kx
≈ 1 +

1
2
Ω
2x2, (30)

for 0 ≤ Ω2x2 � 1.
Both the phase and the group velocity of waves thereby exceed the speed of light.

However, this does not necessarily mean that electromagnetic waves in Gödel spacetime
can be used for faster-than-light signalling—it is a commonmisconception that the group
velocity can straightforwardly be associated with the speed of information propagation
(see [8] for a pedagogical clarification). Rather, it is the ‘front velocity’—the velocity with
which sharp pulses modulated onto the wave can propagate—which denotes signalling
speed.28

But propagation of a signal requires that there can exist a well-defined signal in the
first place. Thus, the pertinent question which arises now is the following: Does it make
sense to talk about the propagation of wave front in Gödel spacetime at all? And thus,
does it make sense to speak of a front velocity in such a spacetime? This would make
sense only if the right-hand side of the dispersion relation (27) varied only moderately
with spacetime position. Only then would we be licensed to assume that there exists
a well-defined package of information to be sent from one side of a clock to another,
28 Even the claim that the front velocity denotes the signal speed in an actual experimental setting has not
gone unchallenged—see [13].
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allowing us to realise a Langevin light clock in the first place.
We now face a dichotomy. Either (a) no reliable disturbance (against noise) can be

propagated via light; or (b) if this is possible, then this signal will be propagated at a speed
varyingwith spacetime location (as the front velocity varieswith spacetime location). Both
cases are problematic for Fletcher, for in scenario (a), one cannot construct a Langevin
light clock at all, whereas in case (b), such a clock will violate regularity.

3.4 Aren’t Gödel spacetimes unphysical?
An immediate response to the above argument suggests itself: if this result has only been
shown to be applicable to Gödel spacetimes, and we have good reason to believe that our
universe is not described by such a solution (on various conceptual grounds related to
casuality [10, ch. 6] and the ability to define a consistent quantum theory [25], for example),
then why should this result bother us? In more ‘physical’ spacetimes (Schwarzschild,
FLRW, and de Sitter, for example), light rays do travel on null geodesics according to
Maxwell’s equations.

The most straightforward response to this objection is to note that it is plausible that
the results presented in §3 generalise to more physical spacetimes—and indeed, Asenjo
and Hojman discuss the case of Kerr spacetimes in [2, §4]. Even this notwithstanding,
however, the above response overlooks the epistemological crisis to which the results of
§3 give rise. In showing that, in a consistent solution to the Einstein field equations, a
model of what is generally thought to be an ideal clock does not survey themetric, we have
undermined any straightforward reasons for believing that we live in the sort of universe
in which we can trust such a measuring device.29 All empirical claims about the sort of
universe in which we live are made based uponmeasuring devices that respond to the
behaviour of matter and the metric field. This result shows that we have no way of using
light clocks to determine whether the metric field we claim to have measured is, in fact,
the metric field of the particular solution to the Einstein equations under consideration.
In other words, it might be the case that our solution to the Einstein equations does
contain, for example, closed timelike curves in the gab field, but the metric surveyed by
29 At this point, we are only referring to light clocks when discussing ‘such measuring devices’. We do not
rule out the possibility that other dynamical systems might exist which do satisfy the clock hypothesis.
However, wemust countenance the existence of possible worlds which consist only of material fields which
consistently violate the clock hypothesis as light clocks do in Gödel spacetimes. It is to these spacetimes
that the discussion in this subsection applies. In addition, two further points are in order here: (a) we find it
plausible that our arguments regarding light clocks generalise to a wide class of clocks typically considered
to be ‘good’ clocks (cf. §4.2); (b) once the epistemological crisis delineated in this section arises for light
clocks, it plausibly generalises to other clocks. Both of these matters are discussed in more detail below,
and in §4.
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our measuring devices (whose dynamics depends on gab , but are such that they do not
survey gab ) does not. The putative unphysicality of gab does not imply that the geometry
associated with measuring devices governed by laws expressed with respect to gab is
unphysical. This is another way of demonstrating the two distinct roles that the metric
of general relativity—in any case equipped with own physical degrees of freedom—can
play: (i) that it is a component of the formalism that allows us to articulate the laws, and
(ii) that, in addition, it compels matter fields to behave in such a way as to survey it.

We find ourselves in a situation in which the very reason that we have for believing
that we live in a particular spacetime is that we assume that ideal clocks always survey
the metric field of the Einstein field equations, i.e. we accept (ii). We cannot, therefore,
be guaranteed by our own theory that there exists a reliable method of inference from the
behaviour of light rays to the geometry of the gab field. It is fitting that the solution which
demonstrates that there might be truths about a spacetime that cannot be determined
from observations confined to that spacetime bears Gödel’s name!30

4 The Clock Hypothesis and Chronogeometry

Consider a clock—realised as a particular configuration of matter fields—in a particular
frame of reference. Call this clock ‘ideal’ in this frame just in case it can be used to read off
intervals of proper time along its worldline, as given by the metric field. Now ask: under
what further conditions does this clock read off intervals of proper time along its worldline
in all frames, i.e. in a frame-independent manner? As already elaborated in §2, a clock
that satisfies this condition is one that satisfies the clock hypothesis.31

We have seen that a necessary condition for a clock to satisfy the clock hypothesis
is that it satisfy regularity—viz., the condition that the proper time interval measured
between any two arbitrary pairs of successive ticks is the same. However, the results of
Asenjo and Hojman [1, 2] presented in §3 demonstrate that this principle is not satisfied
30Whether or not one finds this troubling may boil down to one’s stance on what constitutes an adequate
justification of thismethodof inference. This is analogous to debates in epistemology over the status of rules
of inference such as induction and abduction—inference rules which are themselves rule circular. Adopting
an externalist position would entail that the observations in this paper are not necessarily problematic,
since all the externalist requires to be the case for us to be justified in believing that light surveys the metric
field is that light does, in fact, survey geodesics of the metric field, whether or not we can point to some
calculation or model that justifies (internally) our belief in its doing so.
31 A clock which reads off intervals along its worldline in all inertial frames may be called ‘ideal’ tout court.
Note that ideality is a much weaker condition than satisfaction of the clock hypothesis. While it would be
reasonable to claim that we do not need a clock satisfying the exact clock hypothesis in order to obtain
operational access to the metric field, but only a clock which satisfies the ‘clock condition’ (cf. footnote
4), or (weaker still) an ideal clock (in this sense), in our view none of these apparata are immune from the
epistemological concerns raised in §3.4, and below.
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for light clocks in Gödel spacetimes, for in such cases the velocity of signal propagation is
a function of spacetime coordinates. Thus, light clocks in such spacetimes do not satisfy
the clock hypothesis.

What is the philosophical upshot of this work? Such results demonstrate that what are
often considered the simplest,most reliable conceivable clocksmay, in certain spacetimes,
not accurately measure intervals as given by the metric field—that is, they may fail to be
good clocks in these spacetimes. Such an observation gives rise to broader operational
concerns: if such clocks, built using light rays, need not accurately survey the metric
field, should we expect that the situation be any different for other clocks, built from
different matter fields? If not, there arise pressing concerns regarding how one is to gain
operational access to the metric field tout court.

The purpose of this section is to explore some of these philosophical concerns inmore
detail. In §4.1, we begin by framing the results of this paper in terms of Synge’s distinction
between ‘natural observations’ and ‘mathematical observations’. In §4.2, we present a
heuristic argument to the effect that one should not expect generic (Langevin) clocks to
accurately record intervals along their worldlines. In §4.3, we consider the operational
ramifications of situations in which different clocks read off different intervals along the
same worldline, and in which we have no epistemic access to which of these readings, if
any, correspond to the interval along this worldline as given by the metric field.

4.1 Natural andmathematical observations
It is helpful to view the work of this paper through the lens of Synge’s distinction between
mathematical observations (MOs) and natural observations (NOs) (cf. [26, pp. 103-107]).32

The distinction is roughly the following: while NOs are empirical observations,33 MOs are
mathematical facts, constructs, and laws. Now, as Synge writes,

The peculiar fascination of theoretical physics lies in the art of forcing mean-
ingful truth out of the meaningless equation NO =MO, which is a symbolic
form of the assertion that natural phenomena obey exact mathematical laws.
The true inequality NO,MOshould not be spoken above awhisper, because it
is extremely dangerous. If believed, it would sever mathematics from physics,
and reduce both to sterility through lack ofmutual fecundation. It is whispered
here only as an apology to those readers who expect to see the mathematics
of relativity tied to the physics of relativity by a strong chain of clear thought.

32We are grateful to an anonymous referee for this suggestion.
33 Synge distinguishes at [26, p. 103] between uncontrolled, controlled, and imagined NOs; this more fine-
grained distinction will not be important for our purposes.
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It cannot be done. We have to muddle through. And if this book is dishonest
in confusing MOwith NO, it is no more dishonest than all similar books are,
and necessarily must be. This sad state of affairs is not peculiar to relativity;
every branch of mathematical physics has in its cupboard the skeleton MO ,
NO. [26, p. 104]

Our work in the current paper brings to the fore an unexpected case of MO ,NO.34

To see this, consider a particular interval along a timelike path in a solution of general
relativity, and consider the proper time along this path as given by the metric field. Since
this is a theoretical construct, it is an MO; call it MOg. Now consider the time along this
path as given by a theoretical model of a Langevin clock in which the oscillating matter is
described byMaxwell fields. Again, this is a theoretical construct, and therefore a MO;
call it MOF. In rotating spacetimes, we have seen in this paper, in light of the work of
Asenjo and Hojman, that MOg ,MOF.35

Now, to which of MOF or MOg are associated the NOs of physical light rays? Naïvely,
onemight think, to both: toMOF as light is described byMaxwell fields, and toMOg given
the mainstream view in relativistic physics that light rays propagate on null geodesics.
But clearly, if in doubt, MOF—being directly concerned with the physical nature of light—
should be given priority, so let us say that MOF = NO. And since (as it turns out) MOg

,MOF, we have that MOg , NO. This result is more radical than standard cases of the
kindMO ,NO, precisely in virtue of its being radically unexpected. And to put Fletcher
in these terms: he has provided a mathematical model to read off MOg, but since (as
discussed) we expect that MOg ,NO, the physicality of his model is questionable.

4.2 Clock registry discord
In this subsection, we argue that a generic Langevin clock should not be expected to
record its worldline interval as given by the metric field in generic spacetimes. This
result is significant, for it calls into question a basic assumption in relativity theory, again
brought out in an illuminating discussion by Synge:

It is necessary to expose here a certain physical assumption inherent in the
structure of relativity. LetC [figure suppressed] be the world-line of a material

34Of course, not one about which we should merely whisper!
35 Interesting questions arise even at this juncture. For example, could one define from the paths traversed
by propagating light rays constructed fromMaxwell fields—just as it is usually done for light rays assumed
to move on null geodesics—inMOF the conformal structure associated with the metric field gab in MOg? In
light of the position-dependence of the behaviour of the rays in MOF, one is inclined to say ‘no’. We are
grateful to an anonymous referee for valuable input on these matters.
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particle, and B , A two events on it, with B before A. The particle carries two
standard clocks consisting of atoms of different types, or two atoms of the
same type but with the use of different energy levels. Each clock registers a
definite number of ticks between B and A; let these number be denoted by n1

and n2. The physical assumption just referred to is the following hypothesis
of consistency: For two standard clocks, the ratio n1 : n2 is a natural constant,
independent of the world-line on which the observations are made and of the
events on that world-line. [26, p. 106] (Emphasis in original.)

To bring out the sense in which our present work casts doubt upon this hypothesis of
consistency, we reconsider the circumstances under which a given clock does indeed read
off its worldline interval as given by the metric field. The worldline length of a timelike
path γ[I ] is given by

∆s =

∫
γ

gµνdX µdX ν . (31)

Dividing up the curve into equidistant segments {γi } with respect to an arbitrary curve
parameter λ ∈ I gives

∆s =
∑

i

∫
γi

gµνdX µdX ν . (32)

Denote the beginning of each segment γi by the point pi . Choosing small enough seg-
ments, and taking each point pi as the origin for normal coordinates, the metric around
the origin is given by (cf. [27, p. 22])

gµν = ηµν −
1
3

Rµλνρqλq ρ + . . . , (33)

where q ρ denotes the components of the vector to the point q considered in normal
coordinates (the metric is Minkowskian at the origin). The wordline interval of the path γ
thus splits into a curvature-free and a curvature-dependent part, i.e.

∆s =

∫
γ
ηµνdX µdX ν −

∑
i

∫
γi

1
3

Rµλνρqλ
i q ρ

i dX µdX ν + . . . . (34)

Remember now that a Langevin clock is realized through a back-and-forth signalling
process in an oscillating medium. Such a physical clock can effectively read off the
worldline interval just in case, for each segment γi , it can be seen to evolve as if it were
situated in local Minkowski spacetime, while also being sensitive to curvature in just
such a way as to register the higher-order terms on the right hand side of (34). However,
different matter fields are governed by different dynamical equations, which in turn may

27



§4 The Clock Hypothesis and Chronogeometry

feature different curvature couplings.36 Thus, even for Langevin clocks, it is (as we see
it, on the above heuristic grounds) to be regarded as implausible that clocks built from
two or more different matter fields should correctly record—or even agree upon—the
full interval along a given worldline, as given by the metric field (34). But in that case, we
have no guarantee—or even good reason to think—that the hypothesis of consistency
will hold.

4.3 Chronogeometry
Consider cases in which regularity is lost—such as those discussed in §3—and in which
Langevin clocks built fromMaxwell fields accordingly do not correctly read off intervals
as given by the metric field. Since such is the case for Maxwell fields, it is prima facie
plausible that Langevin clocks built from other matter fields also do not correctly read off
intervals as given by the metric field in such cases; moreover, in light of the reflections
presented in §4.2, there exists no a priori reason to expect that such clocks will agree on
the intervals read off along a particular section of a given worldline.37 In this subsection,
we reflect upon some operational concerns which would arise in such a scenario. The
central question to be discussed is the following: if different clocks all read off different
intervals along the same worldline, then how does one get a bead on the ‘true’ geometry
of the metric field—that is, how is the metric field afforded its operationalmeaning?

Focusing upon Langevin clocks for simplicity, there exist two scenarios worthy of
consideration here: (A) the dispersion relation of the oscillating mediummanifests con-
stant spacetime dependence, and (B) the dispersion relation of the oscillating medium
manifests variable spacetime dependence. In scenario (A), the matter fields constituting
the oscillating media in the Langevin clocks under consideration possess dispersion
relations of the form k µkµ = const. In this case, since this dependence is constant across
spacetime, all clocks satisfy regularity, as discussed in §§2-3. Therefore, clock ticks re-
main proportional, and hence a universal notion of the time along a given worldline may
be recorded. As mentioned above, this scenario is compatible with Fletcher’s theorem,
for all Fletcher requires is that the signal in one’s clock travel at a constant velocity—he
explicitly acknowledges that this may differ from c . In scenario (B), the matter fields
constituting the oscillating media in the Langevin clocks under consideration possess
dispersion relations of the form k µkµ , const. In this latter scenario, genuine operational
concerns do arise—for in this case, the variable spacetime dependence in the dispersion
36Not to mention different sensitivities to rotation—cf. §3.
37 By extending the results of Asenjo andHojman to othermatter fields, we hope tomake precise in a future
technical paper whether such is, in fact, the case in rotating spacetimes of the kinds considered in [1, 2].
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relations of the oscillating media means that the ticks of the clocks need no longer be
proportional to one another; hence, regularity is lost. In this case, one cannot take the
ratios of such intervals and infer universally the proper time along a given worldline;
indeed, there appears to be no way, using these matter fields alone, to gain epistemic
access to the intervals of proper time along this worldline as given by the metric field.

What are the consequences of the above results for our notion of spacetime more
generally? From a purely terminological point of view, we call a structure ‘spatiotemporal’
just if, at least to a satisfactory degree, it relates to what we think is (or rather would be)
measured by rods and clocks (if present).38 Now, the metric field of general relativity
is usually considered to be spatiotemporal in this sense as it is expected that rods and
clocks—if present—would at least to a satisfactory degree measure distances and times
as given by the metric field. The above findings, however, make a compelling case that
Langevin clocks built from different matter fields may not agree on the interval along a
given worldline. If, however, all clocks differ significantly in their operational temporal
readings, and the term ‘spacetime’ is associated with the behaviour of rods and clocks,
then it becomes questionable whether the metric field of general relativity deserves the
title of ‘spacetime’ at all—for this field ceases to play the operational role of codifying the
behaviour of rods and clocks.

So, whether themetric field of general relativity can be conceived of as spatiotemporal
is contingent not only upon the types of matter fields at play (cf. [24]), but also upon the
nature of the solution to Einstein’s field equations under consideration: with respect to
a flat metric, for example, matter fields may be used to realise a clock which measures
the worldline interval linked to the metric—for in this case, scenario (A) obtains. With
respect to other solutions, however, scenario (B) may obtain, and there may exist no
straightforward means of procuring epistemic access to intervals of proper time as given
by the metric field.

The current line of thought serves as a further argument (developing upon [5, 23,
24]) against the so-called ‘geometrical approach’ to spacetime theories, according to
which rods and clocks in general relativity invariably survey the metric field gµν (cf. [23,
§5]). Whereas e.g. [5, §9.5.2] presents various spacetime theories (such as the Jacobson-
Mattingly theory [15], and Bekenstein’s Tensor-Vector-Scalar theory (TeVeS) [3]) in order
38We take this to be the essence of Knox’s ‘spacetime functionalism’—cf. [16, 17]. Of course, one may deny
this view, and maintain (e.g.) that the metric field is inherently spatiotemporal. Though we do not find this
view plausible, those readers who do embrace it (or another view diverging from that articulated above) are
asked to consider the reflections in the body of this section in conditional form. Note also that our modal
qualifications in the above mean that we are not committed in this paper to an extreme form of material
operationalism.
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to argue that, locally, metric and dynamical symmetries need not coincide, and so the
metric field need not have chronogeometric significance, the results presented in this
paper go further, for they demonstrate that, even in the presence of such symmetry coin-
cidence, the metric field need not necessarily have chronogeometric significance. This
constitutes further grist to the mill of the argument that the metric field does not pos-
sess its chronogeometric significance necessarily (as on the geometric approach), but
“earns its spurs” (to use Brown’s phrase—cf. [5, p. 151]) via considerations of the dynamical
behaviour of matter fields.

5 Conclusion

While both Maudlin and Fletcher argue for the satisfaction of the clock hypothesis in the
purely kinematical setting in which light rays necessarily propagate along null geodesics,
in this paper we have called into question the extent to which such arguments remain
sound, once it is recognised that light is a dynamical entity, which in generic spacetimes
need not propagate at c . We have found particular trouble in this regard in the classes
of rotating spacetimes considered by Asenjo and Hojman, in which regularity is lost.
Consequently, light clocks cannot be regarded as ideal clocks in generic spacetimemodels.

These results lead to broad operational concerns: in certain spacetime models, it
is not necessarily the case that wemay have any operational access to the metric field.
Such results also raise difficulties for the ‘geometrical approach’, for they provide further
evidence that the metric field need not be surveyed by matter fields. In scenarios in
which the metric field is not surveyed by rods and clocks built frommatter fields, it is
questionable whether this entity deserves the appellation ‘spacetime’ at all—thus, even
in classical general relativity, spacetime may be significantly harder to come by than has
hitherto been appreciated.
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