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This paper proposed the H∞ state feedback and H∞ output feedback design methods for unstable plants, which improved the
original H∞ state feedback and H∞ output feedback. For the H∞ state feedback design of unstable plants, it presents the
complete robustness constraint which is based on solving Riccati equation and Bode integral. For the H∞ output feedback
design of unstable plants, the medium-frequency band should be considered in particular. Besides, this paper presents the
method to select weight function or coefficients in the H∞ design, which employs Bode integral to optimize the H∞ design. It
takes a magnetic levitation system as an example. The simulation results demonstrate that the optimal performance of
perturbation suppression is obtained with the design of robustness constraint. The presented method is of benefit to the general
H∞ design.

1. Introduction

Some constraints are often ignored in theory design so
that the designed system could not been achieved [1].
The unstable poles should be considered in the design of
unstable plants, which will have an impact on the system
running [2]. For example, the performance index of fight
aircraft is with a phase margin of 45° and however, the
phase margin is 35° at last after lots of money is poured
[3]. There is another type of unstable plants such as a
magnetic levitation system, which has been built in some
universities at home and abroad. But these systems could
not run, and there exists a large peak in the data of sensi-
tivity function [4]. And after X-29, the unstable poles
are considered under the research on the Fight Aircraft
JAS-39 and X-30, which succeeds. This paper solves the
problem that it is how to make the control system
obtained the optimal disturbance suppression.

There are two types of H∞ design, which are cycle for-
mation based on coprime factorization, H∞ state feedback
and H∞ output feedback such as DGKF [5, 6]. Cycle for-
mation applies to control design of the flexible system

such as instances in [7]. This paper proposes H∞ state
feedback and H∞ output feedback design together with
the magnetic levitation system, which is applicable to
unstable plants.

The key to achieve the H∞ control design is up to the
weight function. The weight function is considered partic-
ularly for an unstable plant in H∞ control design. There
are two different types of unstable plants. The first type
is that the frequency band of mathematical model is 10
times larger than unstable mode, for example, in designing
autopilot, the unstable mode is less than 1 rad/sec but the
bandwidth is larger than 40 rad/sec [2, 8]. These systems
will utilize the common H∞ design in general. The second
type is that the unstable mode and the bandwidth of the
closed-loop system are approximate, for example, in mag-
netic levitation systems in [9, 10], the unstable mode is
60~70 rad/sec and the bandwidth is 100 rad/sec. For the
latter, there is obvious feature and it is to be considered
in particular when using H∞ control design. This paper
mainly discusses the second type of unstable plants, and
the analysis results will benefit the explanation of the
design of the first type.
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2. Control Problem of Unstable Plants

In terms of control theory, there may be instability in control
design for an unstable plant. Feedback characteristics must
be considered in the design of the feedback system. Feedback
systems have some performance such as robustness, sen-
sitivity, and disturbance rejection, which can be changed
only by feedback. The low sensitivity and disturbance
rejection are the reasons why a system needs feedback
control, but the robustness is essential performance in
the feedback system. Therefore, the purpose of feedback
control system design is to achieve low sensitivity and
disturbance rejection.

2.1. Control System Performance Description. It is known that
the sensitivity function describes the performance of the
control system. The schematic of the feedback control system
is shown in Figure 1, where K is the controller and G is the
controlled plant. Then, its transfer function is given by

T =
KG

1 + KG
1

Define the sensitivity function S of the system as

S = d ln T
d ln G

= dT/T
dG/G

, 2

which shows the sensitivity function is the change of closed-
loop function T with respect to the controlled plant. If the
sensitivity of the designed system is low, it demonstrates that
the designed system is robust to modeling error.

Taking derivative of (1) with respect to G and substitut-
ing into (2), the sensitivity function S is given by

S =
G
T
dT
dG

=
1

1 + KG
, 3

which demonstrates the robustness and also other charac-
teristics of the control system.

Figure 2 shows the Nyquist curve of a system, K jω
G jω , and p is the minimum distance between KG and
(−1, j0), which can be obtained by

p =min 1 + KG 4

Define the maximum peak of sensitivity as MS,

MS =max S jω =
1
p

5

It is known that the response curve for open-loop systems
is closer to the point (−1, j0) asMS is larger, which will make
the system unstable while there is parameter perturbation of
the plant G. The peak MS is an index to robustness of the
closed-loop system.

As is shown in Figure 3, the relation between sensitivity
function and phase margin γ is formulated as

1
S jω

= 1 + KG = 2 sin
γ

2
6

The inequation can be obtained by

p ≤ 2 sin
γ

2
, 7

which shows that phase margin γ just decides the upper
limit value but not the truth value of MS. In fact, MS
may be very large and not robust while the system owns
good phase margin and amplitude margin. Therefore, the
maximum MS of sensitivity is the real index reflecting
the robustness of the system, which is often in the range
of 1.2~2.0. If MS in the designed system is 3, the system
is unable to control [11, 12].

Equation (3) gives the method to measure the sensitivity.
Figure 4 shows the systematic scheme with disturbance, and
S can be seen as the transfer function from d to y. Equation
(3) gives a method to measure the sensitivity. Figure 4 is
the schematic with perturbation d, and S is the transfer
function from d to y. The small S means that the output
is not sensitive to perturbation, which is an important
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Figure 1: Feedback control system.
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Figure 2: Nyquist curve of a system.
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Figure 3: The relationship between phase margin γ and p.
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characteristic of the feedback system. But it will enlarge
the perturbation with S > 1.

As shown in Figure 4, the transfer function from
reference input r to error signal e is the sensitivity,

E s
R s

=
1

1 + KG
= S 8

Then, the sensitivity reflects the ability of the sys-
tem to track the input signal and smaller response to
little error.

The sensitivity demonstrates that the effect of the system
and the robustness could be reflected by its peak. The
performance of the system is often reflected by the
sensitivity function, which should be decreased in the
design. Therefore, the purpose of this paper is to obtain the
optimal peak of sensitivity function.

2.2. Unstable Plant Performance Limitation. In this section,
the characteristic of the system in combined design and the
limitation of the characteristic in an unstable plant are
discussed.

Theory 1. Assuming that the open-loop transfer function
K s G s owns unstable poles p1,… , pN , relative degree
ν = n −m > 1 and the closed-loop system is stable. Then,
the sensitivity function of the system satisfies the fol-
lowing equation:

∞

0
ln S jω dω = π〠

N

i=1
Re pi , 9

where n and m are the order of the denominator and
numerator, respectively. The proof is seen in [3]. The
Bode integral theory is of the linear system, and the design
of the linear system will be limited by this integral.

If the controlled plant is stable, the integral is zero,
∞
0 ln S jω dω = 0. Equation (9) is the logarithm of the

sensitivity function, and S = 1 is the boundary which
decides whether the integral is positive or negative. The
sensitivity is above 1 in some frequency band, and then,
it will be below 1 in others, which means that the shadow
area is fixed in Figure 5. The positive area is larger than
the negative are for unstable plants [2].

There, Bode integral is not a real limitation and the
negative area is limited between some frequency bands while
the positive area is distributed over others small in average. It

means ln s = ε in the wide-frequency band, and the Nyquist
curve of open-loop transfer function is a circle with center
−1, j0 and radius ≈1 − ε. Therefore, the open-loop trans-
fer function could not decrease in the high-frequency band
due to the plant with uncertainty and unmodel dynamics.
The bandwidth is generally finite in designing the control
system, in which the unmodeled dynamics is described
by multiplied uncertainty with its perturbation much less
than 1. This means that the characteristics of the system
are in coincident with the mathematical model and GK
is much less than 1 beyond the bandwidth Ωa. The out-
side logarithmic integral is zero in terms of the sensitivity
S = 1/ 1 + GK ≈ 1. Then, the Bode integral is given by

Ωa

0
ln S jω dω = 0  stable plants , 10

Ωa

0
ln S jω dω = π〠

N

i=1
Re pi   unstable plants 11

This is the real constraint with the integral interval Ωa
in application.

From (10) and (11), the integral constrains unstable
plants more important than stable plants because the pos-
itive area must be larger than the negative area, to be say
that MS is bigger. The minimal MS is the value of S with
rectangular sensitivity characteristics (Figure 6), of which
the robustness is optimal. The constraint (11) is fixed
for unstable plants, which is the key and the difficulty.
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Figure 4: Suppression of output disturbance d.
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Figure 5: Sensitivity reduction at low frequency unavoidably leads
to sensitivity increase at higher frequencies.
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This instance adjusts the weight coefficients to keep the
logarithmic sensitivity horizontal flat in bandwidth, which
derives the minimal Ms.

There is an unstable pole 6 rad/s and a bandwidth of
40 rad/sec about the fighter jet X-29 in [2], and the opti-
mal sensitivity peak MS ≈ 1 73 is derived in terms of (11)
[2, 13]. The standard performance is a phase margin of
45° for the fighter jet, but the phase margin of the
designed optimal system is 35°, which is not able to
improve [2].

Although this is theoretical analysis without the practical
system and the constraint of Bode integral is independent of
design methods, it can be used to assist the design. The H∞
control design for the unstable magnetic levitation system is
detailed in the following.

3. Linearized Model of the Unstable Magnetic
Levitation System

Figure 7 shows a model of the electromagnetic levitation sys-
tem [10]. For a nominal operating point z0 = 4 0 × 10−3 m,
i0 = 3 054A with N = 280, m = 15 kg, am = 1 024 × 10−2 m2,
and Rm = 1 1Ω; the linearized equations of the levitation
system can be given as [14]

x = Ax + B1w + B2u

=

0 1 0

4900 0 −6 4184

0 763 45 −8 7228

x +

0
1
15
0

w +

0

0

7 9298

u,

12

where the state vector x t = z t z t i t T, x1 = z is the gap
between electromagnet and rail, x2 = z is the derivative of
x1 = z, and x3 = i is the current in the coil. w is the perturba-
tion force applied to magnetically levitated train, and u is the
voltage in the coil.

4. H
∞

Optimal Performance Design of the
Unstable Magnetic Levitation Control System

4.1. H∞ State Feedback Design. State feedback is the basic
control method, and H∞ state feedback design is the simplest
control method in H∞ control. But state feedback is not a
standard problem in H∞ [6] and it is very different from
H∞ output feedback design, which will be discussed in this
section and next section. The relation between the solution
of state feedback and H∞ norm γ is focused by previous
articles about state feedback [13] such as bounded real
lemma [6] and HJI inequality in a nonlinear problem [10].
However, the real design is not equal to bounded real lemma
and HJI inequality. The whole design is that the robustness is
restricted by the conditions of solving Riccati equation and
Bode integral theory.

4.1.1. H∞ Norm γ in State Feedback. The weighted output is
first set in H∞ design and define the output q as

q =C1x +D12 u =

β1 0 0

0 β2 0

0 0 β3

0 0 0

x1

x2

x3

+

0

0

0

Wu

u,

13

where βi and Wu are weighted coefficients.
Assume that the transfer function from inputw to output

q is Tqw, then the goal in H∞ design is

Tqw ∞
< γ 14

The solution of H∞ state feedback is the central con-
troller in the full information problem, and the Riccati
equation is

ATP + PA + P γ−2B1BT
1 − B2D−1BT

2 P +CT
1C1 = 0,

15

where D =DT
12D12.

Theory 2. Assuming that C1,A is detectable, there exists a
state feedback control law,

u = Kx, 16

which make the system asymptotic stability and the
necessary and sufficient condition of Tqw ∞

< γ is that the
solution in (4) is greater than or equal to zero. Then,

K = −D−1BT
2P 17

This theory is a proof result [1, 15].
From Theory 2, the feedback control law (16) could be

obtained by solving (15) with MATLAB full information
problem function hinffi() if the weight coefficients and γ are
given. Therefore, to confirm weight coefficients and γ is the
main problem in H∞ design. But the norm γ in H∞ state
feedback should not be set directly to γ = 1 because it has a
dimension. For example, γ = 1 means 1N responds 1m with

u (t)
i (t)

F (i,z)

Electromagnet

Guideway

mg

z

Figure 7: Model of the electromagnetic levitation system.
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disturbance force and displacement in (12), which requires
the index of the system smaller than 1m/N = 103 mm/N.
This is available for the system with mm dimension, which
is an index with γ =∞ and is of no use.

So, γ should be confirmed in practical applications
and the output q is the weight product of x and u in
(13). Take the displacement x1, for example. If the unit
of displacement is millimeter and the weight coefficient
is 1000, γ = 1 just means 1mm/N. So it is appropriate
to set γ = 0 1 or 0.2.

4.1.2. Robustness and Constraints of the State Feedback
System. Theoretically, it is possible to minimize γ because
H∞ state feedback design is just to solve Riccati equation
(15). But it makes nonsense without any constraints, which
may lead to much larger bandwidth. Therefore, it is a
complete design to add robustness constraint. There are
two problems, unmodeled dynamics and model error under
parameter perturbation, in robustness design. The robust-
ness due to unmodeled dynamics could be controlled by
the bandwidth and the robustness due to model error is
described in terms of the sensitivity S.

It is considerable that H∞ state feedback is to suppress
disturbance signal w in the state feedback scheme and
then the bandwidth could be optimized by the LQR
method [16].

Together with weighted output (13), the index using the
LQR method is given by

J =
∞

0
xTQx + uTR u dt, 18

where Q and R are DT
12D12 and DT

12D12, respectively.
Define the open-loop transfer function of the state

feedback system as

L s =Kc sI −A −1B2 19

The crossover frequency can be approximated by [3, 16]

ωc =
σ C1B2

ρ
, 20

where σ is the maximum singular value and ρ is DT
12D12.

Substituting (12) and (13) into (20),

ωc =

σ

β1 0 0

0 β2 0

0 0 β3

0 0 0

0

0

7 9298

Wu
=
7 9298β3

Wu

21

The weight coefficients is set as

β3 = 1,

Wu = 0 12
22

And the crossover frequency is

ωc = 66 08 rad/sec, 23

where ωc is a proper value. The natural frequency of the
unstable plant is ω0 = 4900 = 70 rad/sec in terms of
(13), and if ωc and ω0 is in the same order matching with
mathematical model, the system will not be affected by
nonmodel high-frequency dynamics, which has an impact
on the robustness.

The bandwidth is controlled by weight coefficients using
(22), and then, the robustness is up to the sensitivity S.
Figure 8 shows signal flow graphic of state feedback.

The plant is the part after the input current of electro-
magnetic coils, and the controlled input is the current i as
shown in Figure 8. The power amplifier and the read and
amplifier circuits of all the state variables belong to the con-
troller. Then, the controller equation of the state feedback
system in robustness analysis is given by

di
dt

= −8 7228i + 7 9298 k3i + k2z + k1z 24

The corresponding transfer function is as follows:

K s =
I s
Z s

=
7 9298 k1 + k2s

s + 8 7228 − 7 9298k3
25

And the transfer function of the plant is given by

Z s =G s I s + αW s , 26

where

G s =
−6 4184
s2 − 4900

m/A 27

α is the coefficient of input force to current,

α = −
1/15
6 4184

= −0 0104A/N, 28

where the coupling term (763.45 in (12)) is not included in
(27), which is equal to the counter electromotive force caused
by the velocity z and is calculated combining with feedback

u

w

i

k1

k2

k3

1/s1/s 1/s
1/15

−6.4184
−8.7228

763.45

7.9298

4900

z = x1

x2

Figure 8: Signal flow diagram of the system with state feedback.
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gain k2. The input sensitivity function of the plant is
described by K s in (25) and G s in (27).

From (27), the plant owns an unstable pole p1 =
4900 = 70 and the result in (11) is π × 70 = 220 rad/sec,

which means that the logarithmic integral of the sensitivity
is 220 in terms of Bode integral law. Then, the design’s
purpose is to make the logarithmic sensitivity same as
shown in Figure 6 and minimize MS by selecting weight
coefficient under the constraint Ωa

0 ln S jω dω = 220.

4.1.3. Choice of Weight Coefficient and Controller Design. It
should be noted that gamma is just a design parameter
in designing H∞ state feedback and the purpose is to
achieve the minimum peak MS of sensitivity function
under bandwidth constraint. In terms of 4.1.1, it is reason-
able to set γ = 0 2 and β1 = 1000 in this case. In terms of
(22) and (27), β3 = 1 and Wu = 0 12 could be set. The
parameter β2 could be computed by solving (15) under
the condition that S jω of the system mostly approximates
the curve in Figure 6.

When β2 = 25, a flat curve of sensitivity function S jω is
obtained and all the parameters own proper values. The
parameters in this design is as follows:

β1 = 1000,

β2 = 25,

β3 = 1

29

When γ = 0 2, using the function hinffi() in MATLAB,
the state feedback matrix is obtained by

K = 30954 68 387 86 −25 40 30

4.2. H∞ Output Feedback Design. Notice that the H∞
standard problem is an output feedback problem [7]. In this
case, if x1 is used as an output feedback variable, a H∞
controller is theoretically possible to design. However, if
considered from the point of view of engineering practice,
the system should add current feedback to suppress various
disturbances in the current loop to improve the response
characteristic of the current (i.e., electromagnetic force) [3].
First, the current feedback is applied to the system (12), in
this example. The equation of the current feedback is
combined with formula (30); if the feedback coefficient is
set to k3 = −25, then the bandwidth of the current loop is
206 97 rad/sec, see the data in the following formula (32).
For system (12), the bandwidth is wide, but it can be
realized. Substituting the formula (31) into the (12), the
state equation of the system with current feedback is gained
as follows:

u = k3x3 + v, 31

x =
0 1 0

4900 0 −6 4184

0 763 45 −206 97

x +
0

0

7 9298

v,

y = 1 0 0 x

32

Let us discuss with the most commonly used mixed
sensitivity problem in H∞ control. The following H∞ opti-
mization problem is alluded to as mixed sensitivity problem:

γ =min
W1S

W2T ∞

≤ 1 33

In the formula, S refers to the sensitivity of the system,
which stands for the system performance. T is the closed-
loop transfer function, also known as the complementary
sensitivity, and its high frequency is constrained by robust
stability.W1 andW2 are the corresponding weight functions.
The H∞ controller is designed to ensure the stability of the
system, while the performance and robustness correspond
to the low-frequency and high-frequency characteristics of
the system, so the weight function of S and T is generally con-
sidered only from the requirements of the low-frequency and
high-frequency segments but not the requirements of the
medium-frequency band. But it is dissimilar for the control
of the unstable plant, because according to the Nyquist stabil-
ity criterion, the frequency characteristic of the system is
required in encircling counterclockwise the point −1 + j0
and this part is exactly in the middle-frequency section. So
for unstable plants, weighting functions should take into
account the performance characteristics of the middle-
frequency band. In addition, the effect of Bode’s integral
constraint (11) should also be considered in the determina-
tion of the weighting function. This limitation is more several
if the plant is open-loop unstable.

The rectangular characteristic shown in Figure 6 can be
considered as an ideal characteristic for system design.
Therefore, the weight function W1 s of sensitivity should
be determined according to this characteristic. Its amplitude
should be kept flat before bandwidth and not be greater
than 1/MS.

W1 jω ≤
1
MS

34

In the Nyquist diagram shown in Figure 9, notice that the
vector p from the point −1 to a point on the frequency char-
acteristic curve K jω G jω is just the 1 + K jω G jω . So, if
S is the constant value shown in Figure 6, the frequency
characteristic K jω G jω of the system at ω>0 will be the
next half circle with −1 + j0 point as the center of the circle.
Certainly, this is an ideal case. Generally, the Nyquist curve
of the unstable plant system will be in the shadow area as
shown in Figure 9. This area is composed of two rings with
a radius of 0.5 and 0.7, corresponding to S = 2 and 1 43,
respectively. Due to the constraint of Bode integral, S is not
smaller and it is not expected to make S bigger than 2.
Figure 2 shows the unit circle, and the crossover frequency
ωc is the point of intersection of KG and unit circle. From
the layout of the curves in Figure 9, it can be seen that the
nearest distance between KG and the critical point −1 occurs
near the crossover frequency ωc, that is, the sensitivity S jω
reaches the maximum value Smax near ωc and then gradually
attenuates to 1. This case should be considered in the weight
function W1 s .

6 Complexity



Figure 9 shows the readable M circle in the closed-loop
magnitude-frequency characteristics. Define the intersection
of KG and M= 1 in Figure 9 as ωb, and the value of closed-
loop transfer function T jωb is 1. After passing the peak
and then a long section of frequency, the closed-loop transfer
function will decrease to 1, which appears only in unstable
plants. The weight functionW2 should be calculated in terms
of this.

If the designed control law includes integral law, K jω
G jω will get into the shallow area in the third quadrant
from the second quadrant as shown Figure 9. The shallow
area is just up to the performance and Bode integral con-
straint. The responding sensitivity S jω increases from zero,
and as ω rises, the integral in control law decreases and S
increases gradually, which derives the flat curve of S in
Figure 6. Because Ωa could reach 300 rad/sec much larger
than the low-frequency band (<10 rad/sec) in second quad-
rant, the sensitivity could also be approximated in Figure 6.
It is applicable for the design of integral control law based
on Figures 6 and 9.

If the unstable pole of the magnetic levitation system is
70 rad/sec and the bandwidth is designed in the same order
of 70 rad/sec, the mathematical model in (12) is applicable
in the work frequency band without nonmodeled dynamics
problem in high frequency. Considering this point, the
weight function W1 s in this case is given by

W1 s =
0 65 × 180
s + 180

, 35

where it limits the horizontal section by set MS = 1/0 65 =
1 538, which is a good index under Bode integral constraint,
to make S jω decrease before 180 rad/sec is set by 180 in
(35), which could limit the bandwidth.

The sensitivity design in conventional S/T is to limit
bandwidth depending on the weight function T and it is to
obtain optimal performance by maximizing the weight func-
tion of S. But the weight function W1 in (35) determines the

bandwidth in controlling unstable plants. In this paper, the
purpose is to use W1 to control MS and bandwidth by
adjusting W2.

The weight function W2 is given by

W2 s =
s2

ρ2
, 36

where ρ is an adjustable frequency at the intersection of
W2 and 0dB. If ρ is large enough in H∞ design, the solu-
tion to (33) is mainly demonstrated by W1S in the much-
frequency band. Here, the H∞ optimal solution is all-pass
characteristics and if demonstrated by W1S, S will rise up
to meet the all-pass characteristics due to W1 decreasing
when ω is over 180 rad/sec, which make Smax lager than
the designed MS. For this case, ρ should be decreased
and substituted W2T for W1 to keep all-pass characteristics.
That means the optimal solution is composed of W1S and
W2T , which makes the sensitivity characteristics flat and
meet the bandwidth. The weight function W1 s should be
fixed to adjust ρ of W2 s to make the optimal solution
γ→ 1 in (33).

Figure 10 is the block diagram of the S/T problem in this
case. The dashed line is the generalized plant P, G is the
system formula (32), W1 and W2 are the corresponding
weight functions, w and u are the inputs of the generalized
plant, and z1 z2

T and y is the output of the generalized
plant. K is the H∞ controller to be designed. From
Figure 10, the generalized plant P in the form of transfer
function matrix can be written as

0

W1 W1GP11 P12P(s) = = W2GP21 P22 I G
. 37

It is noted that the P12 matrix of the formula (37) does
not satisfy the requirement of the rank of the D12 matrix.
Because takeW2G, for example, the denominator of the plant
G is three-order (see (32)), while the numerator of W2 is the
two-order (see (36)). Therefore, a term 0 001s + 1 is added
toW2 s to make P12 ∞ full column rank. So, the weighting
functionW2 is now chosen (38), using (35), (37), and (38), to
solve the H∞ optimization problem. We use MATLAB
function hinfsyn() to get ρ = 185 3248 when γ = 1 0000.

G

K

z2

W1(s)

W2(s)

z1w

u y

P

+

+

Figure 10: Black diagram of the S/T problem.
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The resulting H∞ controller (after neglecting the high-
frequency term 1010) is

W2 s =
s2 0 001s + 1

ρ2
, 38

K1 s =
674833 866 s + 173 1 s + 155 4 s + 95 3

s + 951 7 s + 307 2 s + 180
,

39

where the unit of the controller K1 s is V/mm and
K1 0 = 32 873V/mm could be achieved in practical appli-
cation if using mm.

5. Simulation Results

5.1. Results Analysis of H∞ State Feedback Design

5.1.1. Sensitivity Characteristics. Figure 11 shows the Bode
plot of sensitivity function S jω with the controller (30) in
H∞ state feedback design, and its logarithmic integral equals
to 220 in coincident with (11). Although Figure 11 is not
rectangular like Figure 6, it can be approximated as a rectan-
gle with average height MS = 1 9 = 5 57 dB. The equivalent
bandwidth is Ωa = 342 76 rad/sec From (11) and Figure 6,
the value 1.9 is the minimum sensitivity peak MS achieved
by using state feedback.

5.1.2. The Relation between Disturbance Suppression and
Sensitivity. The purpose of H∞ state feedback is to suppress
disturbance so that the norm from w to q is smaller than
γ. There, γ is set to be 0.2. The curve 1 is a singular
value σ Tqw of the last section in Figure 12, and the sys-
tem norm is Tqw ∞

= −22 8 dB = 0 0724< 0.2. Here, q is
weighted output in design and the real output is displace-
ment variable z of the magnetic levitation system. Due to
amplifying z = x1 multiplied by β1 = 1000, the curves in
Figure 12 are the output β1 ⋅ σ Tzw multiplied by β1 and its
norm is −31 8 dB and it is Tzw ∞ = 0 0257 × 10−3 m/N,
equivalent to that the gap in the magnetic levitation system
changes within 0 257mm under perturbation force of 10N.

This is the best performance of this system for the relation-
ship of perturbation suppression and sensitivity. The transfer
function of disturbance suppression is given by

Tzw s =
Gw s

1 + K s G s
=Gw s S s , 40

where Gw s is the transfer function w from z disturbance
input to output as shown in Figure 8,

Gw s =
1

15 s2 − 4900 41

Because Gw s is fixed for the given plant, the pertur-
bation suppression is up to sensitivity function. The curve
3 in Figure 12 is amplitude-frequency characteristics of
(41), and the difference of curves 2 and 3 is sensitivity
characteristics of Figure 4. Therefore, the performance of
perturbation suppression is directly up to the designed
minimal MS.

5.2. Result Analysis of H∞ Output Feedback Design. The
sensitivity function S jω is approximately the same as in
Figure 11 under the controller (39) in H∞ output feedback
design, and it is rectangular in practical application, which
decreases after the bandwidth. It shows that the area of the
rectangle is equivalent in Figure 6 and is the limitation of
Bode integral and flat S. The sensitivity function S jω of
H∞ output feedback design under the controller (39) is the
same as Figure 6.

Figure 13 shows the characteristics with the H∞ con-
troller (39). γ = 1 in σ Tzw is the optimal solution and
all-pass characteristics with 0 dB. W1S and W2T are
the components of this solution. The closed-loop char-
acteristics T jω and sensitivity S jω are also drawn
in Figure 13.
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Figure 12: The disturbance attenuation performance of the system.
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The crossover frequency KG of open-loop characteris-
tics is ωc = 80 rad/sec, and the sensitivity S is flat with peak
frequency 90 rad/sec, which is because W2T rises up to
complement W1S . W2T will shift right with large ρ in
W2 due to that S is increased by the all-pass solution and a
large peak comes out after ωc. This case demonstrates the
effect of the adjustable parameter ρ of weight function
W2 in H∞ optimal design.

The above is designed according to the weight function
W1 of (35), so there is no integral control law in the control-
ler K1 s . If we need to add integral law, we can add PI to the
designed K1 s . And the obtained controller is

K2 s = 1 +
ki
s

K1 s , 42

where ki = 1 sec−1. Figure 14 shows the sensitivity charac-
teristics with and without integral law, and it can be seen
from the figure that the peak of the sensitivity with inte-
gral law is a little larger. Increasing ki, the peak will also
be enlarged, even over 6 dB, which causes the robustness
of the system to decline. So the good design is to keep
the sensitivity flat. The integral law mainly affects the sen-
sitivity when ω < 10 rad/sec. When Ωa ≥ 300 rad/sec, the
medium-frequency band is very narrow and the design
method above is feasible by Figure 6.

Of course, this kind of sensitivity characteristic with inte-
gral control can also be obtained by specifying the weight
function in the H∞ design. For example, when the perfor-
mance weighting function W1 s is as the following

W1 s =
a
s
, 43

where a is the design parameter and in this case as shown
in Figure 14, a is set as 2 rad/sec. The crossover frequencies
ωc1 of W1 and ωc2 of W2 are set as ωc1 = a = 2 rad/sec

and ωc2 = ρ = 185 32 rad/sec. However, in the common
H∞ mixed sensitivity design, the approximate equation
ωc1 ≈ ωc2 [8] is established when the optimal solution is
reached. The large difference between ωc1 and ωc2 is due
to the particular demand for the medium-frequency band
in the unstable plant, which demonstrates the difficulty of
(43) in general design. This instance is too much between
ωc1 and ωc2 because unstable plants have a particular request
for the medium-frequency band. Therefore, the designW1 s
in (43) is not feasible.

The first kind of unstable plants with a small unstable
mode will not be discussed because the difference between
ωc1 and ωc2 is small while achieving the optimal solution.
The general S/T design could not achieve the needed per-
formance for the plants with a large unstable mode, and
the weight function and H∞ design could be applied in
terms of the flat curve in Figure 6. For the small unstable-
mode plants as discussed in Section 1, when achieving opti-
mal solution, ωc1 is almost equal to ωc2. However, for the
large unstable-mode objects, the traditional design S/T is
not able to provide necessary performance and the weight
function is needed by the characteristics in Figure 6 to
use H∞ design.

6. Conclusions

This paper presents H∞ state feedback control and H∞ out-
put feedback control with respect to the unstable plant, of
which the key is the design of weight function or coefficients.
In this paper, the weight function or coefficients are obtained
subject to the Bode integral constraint, avoiding the repeated
attempt. The deficiency in usual designs has been modified,
which adds robustness constraint under Bode integral law
into H∞ state feedback control design and points out that
the purpose of H∞ design is to achieve optimal performance
by adjusting γ and weight coefficients, not to minimize γ.
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Figure 13: Singular value characteristic of the system.
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The medium-frequency band should be considered to select
weight function in H∞ output feedback design, and together
with the magnetic levitation system, it is pointed that the
sensitivity function is an adjustable weight function to
obtain all-pass and weight sensitivity to control sensitivity
peak and bandwidth. Simulation results demonstrate that
the H∞ design of state feedback control and output feedback
control subject to the Bode integral constraint could achieve
optimal performance.
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