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Abstract

The fundamental principle of the theory of possible worlds is that
a proposition p is possible if and only if there is a possible world
at which p is true. In this paper we present a valid derivation of
this principle from a more general theory in which possible worlds
are defined rather than taken as primitive. The general theory uses
a primitive modality and axiomatizes abstract objects, properties,
and propositions. We then show that this general theory has very
small models and hence that its ontological commitments — and,
therefore, those of the fundamental principle of world theory — are
minimal.
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1 Introduction

The fundamental principle of the theory of possible worlds can be ex-
pressed as follows, where p stands for a sentence or proposition:

The Equivalence Principle
It is possible that p if and only if there is a possible world at which
p is true.

The left-to-right direction of the Equivalence Principle effectively re-
quires that every metaphysical possibility is realized at some world. It
therefore constitutes a sort of plenitude principle that ensures there are
“no gaps in logical space...where a world might have been, but isn’t”
(Lewis 1986, 86). In the presence of modal claims such as that there
might have been talking donkeys or that there might have been million
carat diamonds, the left-to-right direction guarantees the existence of
worlds where there are talking donkeys or million carat diamonds. This
direction, therefore, allows one to derive the existence of non-actual pos-
sible worlds from claims of the form: p is false but possibly true.1 The
right-to-left direction of the Equivalence Principle seals the connection
between worlds and possibilities by ensuring that anything true at some
world is in fact a genuine metaphysical possibility.

We can express the Equivalence Principle in a formally precise way if
we use the modal language of a hybrid logic containing primitive sym-
bols p, q, . . . , a necessity operator (�), variables w, v, . . . ranging over
worlds, and sentences of the form ‘w |= p’ that assert p is true at w.2

For the moment, it doesn’t really matter whether the symbols p,q, . . . are
sentence letters or variables ranging over propositions. What matters is
that statements of the form w |= p are governed by an axiom of Coherence
which asserts that the negation of p is true at w if and only if it is not the
case that p is true at w:

1Assuming, of course, (a) that whenever q is true at w but not at w′ , then w , w′ , and (b)
that whenever q is false, then q is false at the actual world w∗. Given these assumptions, we
can prove that there are nonactual possible worlds if we consider some false but possibly
true sentence or propositions p. Since p is possibly true, there is a world, say w1, at which
it is true, by the left-to-right direction of the Equivalence Principle. But since p is false,
then by (b), it is false at w∗. So by (a), w1 isn’t the actual world w∗.

2In this paper, the symbol ‘|=’ is used both as a metalinguistic symbol with its usual
model theoretic meaning as well as an object language symbol indicating truth at a world.
It is always abundantly clear from the surrounding context which is intended.
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Co (w |= ¬p)↔ (¬w |= p)

If we now add to this basis the usual definition of the possibility operator
‘^’, we can then express the Equivalence Principle formally as follows:

EP ^p↔∃w(w |= p)

Note that, given Coherence and some basic modal and propositional
logic, the Equivalence Principle is equivalent to:

The Leibniz Principle
It is necessary that p if and only if p is true at every possible world.

More formally, in terms of the language at hand:

LP �p↔∀w(w |= p)

Given this equivalence between the two principles,3 one can take either
principle as a basic axiom and derive the other. In what follows, how-
ever, our focus will be on EP rather than LP, as the former involves an
explicit existence claim about possible worlds that is independent of Co-
herence.

One of the most interesting and important philosophical questions
is: Independent of any particular modal beliefs about what is or is not
possible, what are the ontological commitments of EP? Since EP does not
wear its commitments on its sleeve, a natural way of approaching the
question is to reframe it thus: What are the smallest models in which EP
is true?

If the variables p,q, . . . are interpreted as sentential letters for which
one can substitute complex sentences ϕ, then it is already known that EP
is true in any model of any standard language for a hybrid modal logic
that contains a modal operator and world quantifiers (see, e.g., Bräuner
2011). Taking the semantic values of sentences as usual to be sets of pos-
sible worlds, all that is needed is a single primitive possible world w so

3 Here is a derivation of EP from LP:

1. �¬p↔∀w(w |= ¬p) Instance of LP, with ¬p substituted for p.
2. �¬p↔∀w¬(w |= p) From 1 and Co.
3. ¬�¬p↔¬∀w¬(w |= p) From 2 by basic propositional logic.
4. ^p↔∃w(w |= p) From 3 and the interdefinability of �/^, ∀/∃.

To show the converse and, hence, that EP is equivalent to LP, substitute ¬p for p in EP and
follow reasoning similar to the above.

4 Christopher Menzel and Edward N. Zalta

that {w} can serve as the value of every true sentence and the empty set
∅ as the value of every false sentence. Sentences w |= ϕ are then inter-
preted to be true just in case the semantic value of ‘w’ is a member of the
semantic value of ϕ. So endorsing EP commits one only to an ontology
with a single possible world, although of course the domain of worlds
might grow significantly if we add our modal beliefs as assumptions to
the logic.

When the symbols p,q, . . . are interpreted as variables ranging over
propositions, then the smallest models in which EP is true include a do-
main of propositions. Of course, if the domain of propositions is allowed
to be empty, then since EP is, under this interpretation, an (implicit)
universally quantified claim, it would be vacuously true. The small-
est model in which EP is non-vacuously true requires a domain with
just two propositions p and ¬p (assuming the domain of propositions is
closed under negation). We can then easily construct a 3-element model
of EP containing two propositions and one possible world w: take p to
be true at w (and hence ¬p to be false at w) and the extension of ‘|=’ to
be {〈w,p〉}.

Consequently, no matter how we interpret the symbols p,q, . . ., the
ontological commitments of the Equivalence Principle per se are meager.
This, indeed, is part of the philosophical attraction of the principle. It
expresses a fundamental relationship between possibilities and worlds
that when spelled out formally, doesn’t entail any significant ontological
claims in the absence of the data (i.e., in the absence of our modal beliefs
about what is possibly true).

However, there are two ways in which one can endorse the Equiva-
lence Principle. The first way is to take the Equivalence Principle in one
of its forms as fundamental or axiomatic. Thus far, we’ve been examin-
ing the ontological implications of such a position. The second way is to
derive the Equivalence Principle as a theorem from a more general theory
in which possible worlds are defined rather than primitive. Our interest
in what follows is in examining the resources needed to do this. Note
that we are not talking about deriving the Equivalence Principle from
one of its equivalent forms; nor are we talking about deriving it from ax-
ioms that already quantify over primitive possible worlds. Rather, what
interests us here is finding more fundamental principles that imply the
Equivalence Principle in one of its forms as a consequence. If that can be
done, then the focus of the question of ontological commitment moves
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from EP proper to the more general theory.
Most possible world theorists take one of the above forms of the

Equivalence Principle as basic and give no thought whatsoever to the
idea of deriving it as a theorem of a more general theory. Thus, Kripke
(1959; 1963) takes the Leibniz Principle as the fundamental insight un-
derlying his interpretation of modal languages with sentential letters
and alethic modal operators. But he doesn’t introduce a hybrid lan-
guage containing both modal operators and quantifiers over worlds in
the attempt to derive the Leibniz Principle. Lewis asserts the left-to-
right direction of the Equivalence Principle using ‘ways a world could
be’ instead of propositions, for he says “absolutely every way that a world
could possibly be is a way that some world is” (1986, 2, 71, 86). But there
is no derivation of this principle from his other principles; rather, as
Lewis acknowledges (87), under his identification of ways worlds could
be with worlds themselves, the principle is rendered trivial.4

Most other philosophers who work with possible worlds take some
form of the Equivalence Principle to be such a truism that they rarely
bother to explicitly endorse it, much less attempt to derive it. This
is true, for example, of almost all of the abstractionists about possi-
ble worlds, such as Adams (1974), Plantinga (1974, 44–46), Stalnaker
(1976), Chisholm (1981), Pollock (1984), Prior (1968), and Sider (2002,
299). A notable exception is the attempted derivation in Plantinga (1985)
though, unfortunately, his attempt failed in various ways.5 The basic
problem for the abstractionists about worlds is that, in order to prove

4More specifically, it becomes the principle that every world is identical with some
world. Likewise it is rendered trivial if ways are identified with propositions, which in
turn are identified with sets of worlds — it becomes the principle that every nonempty
set of worlds is identical with some nonempty set of worlds. By contrast, the Equivalence
Principle seems to postulate a substantive connection between genuine metaphysical pos-
sibilities and the existence of possible worlds, and what makes the connection between the
two substantive is their conceptual independence.

5Plantinga’s attempted derivation rests on: (a) an unspecified theory of propositions
that includes at least one strong existence principle (namely, that for any set S of propo-
sitions, there is a proposition, ∧S, that is the conjunction of the propositions in S); (b) no
formal identity conditions for propositions, which in particular means there is no guar-
antee that there is a unique actual world (McNamara 1993); (c) a fragment of set theory
that includes the axioms of Pairing, Union, and Choice (which entail an infinite ontology
of sets); (d) the (highly problematic) thesis that for any proposition p, there is a set Ap of
propositions that are possible and entail p; and (e) an unjustified modal principle (namely,
that the conjunction ∧B of any “maximal” chain B of propositions in Ap is possible). For
further details regarding (c)–(e) see Menzel 1989.
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the existence of the actual world, one has to ensure the existence of some
sort of construct — a large conjunction or set of propositions, for exam-
ple — that implies all and only the true propositions. And to ensure that
there is a distinct possible world corresponding to each distinct possi-
bility, one has to have a mechanism in place for generating similar con-
structs, each of which implies all and only those propositions that would
have been true had things been otherwise in some way. As soon as one
asserts principles strong enough to guarantee the existence of such con-
structs, there are issues to confront: in the case of conjunctive proposi-
tions, issues about the existence and identity of such propositions, and in
the case where sets are employed, issues concerning the strength of the
set-theoretic principles needed, such as whether they commit one to an
infinite domain or raise the specter of Russellian paradoxes concerning
sets of propositions.6

To the best of our knowledge, the literature contains only one suc-
cessful attempt to prove EP. Using the resources of his theory of abstract
objects, Zalta (1983, 84) derives LP and, in 1991 (109), offers a one-line
proof sketch of EP as a corollary to LP, citing only “contraposition and
modal negation”. It should be noted that in those theorems, the symbols
p,q, . . . were construed as propositional variables, not sentence letters.

However, in the works just cited, several interesting research issues
are not addressed:

• No direct proof of EP is ever developed, and the proof of LP is, at
best, a sketch that takes some shortcuts.

• The derivation of LP takes place in a context in which the full re-
sources of the theory of abstract objects are available — no attempt
is made to isolate only those resources needed for the proof of EP,
thus leaving open the question of which minimal group of axioms
are needed for a direct proof of EP.

• No attempt is made to identify the smallest model of those axioms
needed for the proof of EP, thus leaving open the question of the
minimum ontological commitments of the theory.

The goals of the present paper, therefore, are to improve and advance
this research in several ways:

6See Menzel 2012. See also Chihara 1998, in particular regarding the significant threat
of paradox implicit in Plantinga’s world theory.
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• We produce a direct proof of EP, in which the symbols p,q, . . . are
interpreted as variables ranging over propositions.

• We extract from the proof of EP a list of only the axioms required
for the proof.

• We develop a minimal theory based upon those axioms and in-
vestigate the smallest models of the theory, thereby identifying its
minimal ontological commitments.

These results prepare the ground for future research. For one of the
fundamental questions of the theory of possible worlds is, what is the
epistemological justification for the Equivalence Principle? Though our
attempt to answer this question will be reserved for another occasion, the
present investigations will enhance one’s ability to develop an answer
and evaluate the various alternatives. The developments in this paper
will bring out into the open the minimal resources needed for a proof
of EP. When such resources are clarified, philosophers will be able to
compare the present approach to the theory of possible worlds with that
of others.

2 Object Theory and Possible Worlds

Our derivation of EP will be presented in detail in Section 3. But since
we already know what axioms are used in the derivation, we present in
this section only the the core theory containing those axioms (and the
language and definitions needed to express them). This theory consti-
tutes a monadic subtheory of the axiomatic theory of abstract objects of
Zalta 1983, 1993. For purposes here, the theory divides naturally into
two parts, a logical core, which we will refer to as monadic object theory,
or MOT, for short, and the addition of a comprehension schema (OC)
to this core. The theory MOT + OC is called MOTC. In Section 4, we
construct models that reveal the minimal ontological commitments of
MOTC by laying out its model theory and showing that the theory has
very small models.

2.1 The Languages of Monadic Object Theory

Languages for MOT. A language L for MOT contains the usual logi-
cal apparatus of monadic second-order quantified modal logic including
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the logical operators ¬,→, ∀, and � and denumerably many individual
variables, denumerably many 0-place predicate variables, and denumer-
ably many 1-place predicate variables; the operators ∧, ∨, ↔, ∃, and ^
are defined as usual. Informally, the three classes of variable range over
objects, propositions, and properties, respectively. The actual shapes of
these variables are irrelevant; the metavariables x, y, and z (possibly with
numerical subscripts) will range over individual variables; likewise p, q,
r, and F, G, H will range over 0- and 1-place predicates, respectively.
Lower case Greek letters may be used as metavariables as well, typically
when a variable is needed to range over more than one syntactic class.
Additionally, L contains a distinguished 1-place predicate constant A!
which, intuitively, expresses the property of being an abstract object. L
may also contain any (countable) number of individual constants and
predicate constants which, for purposes here, we will indicate by means
of the lower case metavariables a and P . (We will also use boldface vari-
ables for semantic entities, but these latter don’t make an appearance
until Section 4.) Henceforth we shall assume that L refers to a specific
language for MOT.

A Grammar for the Languages. In addition to this more or less stan-
dard lexicon, the grammar for L introduces a rich array of complex pred-
icates that, intuitively, denote logically complex propositions and prop-
erties. However, only those formulas deemed predicable can be used to
form such predicates — indeed, such formulas will themselves serve as
the complex 0-place predicates; more standard λ-notation will be used
to form complex 1-place predicates, where some notion of variable bind-
ing is needed. Object theory also introduces a new primitive mode of
predication, called encoding. Like exemplification, encoding is not ex-
pressed by means of an explicit predicate but structurally by means of a
new type of atomic formula; specifically, in addition to familiar formu-
las like Fx, L also includes formulas like xF. Those of the former sort
can be read as “x exemplifies F” and those of the latter sort as “x en-
codes F”.7 These features force us to define the grammar for L rather
more delicately than for most standard higher-order languages; notably,
our grammar must define six notions — term, predicate, formula, predica-

7In full object theory with n-place predicates and n-place exemplification formulas, en-
coding formulas are always monadic and the predicate in a well-formed encoding formula
is always unary.
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ble, subformula, and free in — by means of a simultaneous recursion. As
the last two are ancillary only, we separate the clauses in their definition
from those of the first four for the sake of readability.

1. Every individual constant or individual variable is a term.

• If x is an individual variable, then the occurrence of x itself in x is
free in x.

2. Every 0-place (1-place) predicate variable or predicate constant π
is a 0-place (1-place) ( primitive) predicate.

• If π is a predicate variable, then the occurrence of π itself in π is free
in π.

3. If π is a 0-place primitive predicate, then π is an (atomic) formula
and π is predicable. If τ is a term and π is a 1-place predicate, then
πτ and τπ are (atomic) formulas and πτ is predicable.

• If τ is an individual variable, then (i) the rightmost occurrence of τ
in πτ is free in πτ and the leftmost occurrence of τ is free in τπ, and
(ii) every free occurrence of a variable in π is a free occurrence in πτ
and τπ.

• Every formula is a subformula of itself.

4. If ϕ is predicable, then ϕ is a 0-place predicate.

5. If ϕ and ψ are (predicable) formulas, then ¬ϕ, �ϕ, and (ϕ → ψ)
are (predicable) formulas.8

• Every occurrence of a variable that is free in ϕ is free in ¬ϕ and �ϕ;
likewise, every occurrence of a variable that is free in ϕ or ψ is free
in (ϕ→ ψ).

• ϕ and its subformulas are subformulas of ¬ϕ and �ϕ; ϕ and ψ and
their subformulas are subformulas of (ϕ→ ψ).

6. If ϕ is a formula and α any variable, then ∀αϕ is a (quantified)
formula. If in addition (i) ϕ is predicable, (ii) α is an individual
variable and (iii) there is no free occurrence of α in any 1-place
predicate occurring inϕ or in any quantified subformula ofϕ, then
∀αϕ is predicable.

8We will follow standard practice and drop outer parentheses when the conditional is
the main connective.
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• Every free occurrence of a variable other than α in ϕ is a free occur-
rence of that variable in ∀αϕ.

• ϕ and its subformulas are subformulas of ∀αϕ.

7. If (i) ϕ is predicable, (ii) x is any individual variable, and (iii) there
is no free occurrence of x either in any 1-place predicate occurring
in ϕ or in any quantified subformula of ϕ, then [λx ϕ] is a 1-place
(λ-)predicate.

• Every free occurrence of a variable other than x in ϕ is a free occur-
rence in [λx ϕ].

8. Nothing is predicable, or free in something, or a term, a predicate,
a formula, or a subformula of something unless it can be so dem-
onstrated by the clauses above.9

9The exclusion of encoding formulas in clause 3 is required to avoid the paradoxes of
object theory (see Zalta 1983, pp. 158–160) and the restriction to individual variables in
clauses 6(ii) and 7(ii) and the restrictions concerning free occurrences of individual vari-
ables in λ-predicates in clauses 6(iii) and 7(iii) all arise out of certain properties of the
logical structure of relations. We believe both of these restrictions can be justified on philo-
sophical grounds (for the latter, see Menzel 1993). By contrast, the restriction on free oc-
currences of variables in quantified subformulas in clauses 6(iii) and 7(iii) is forced upon
on us by our monadic framework and might appear to impose severe expressive restric-
tions on our framework, as they rule out such formulas as ∀x∀y(Fy ∧Gx) from serving as
(proposition denoting) predicates and such 1-place predicates as [λx ∀y(Fy → Gx)]. More
generally, say that a formula ϕ satisfies the scope condition if neither ϕ itself nor any of its
subformulas is a quantified formula containing a free occurrence of a variable. Then we
can put the matter thus: many useful and seemingly innocuous formulas fail to satisfy the
scope condition and, hence, are neither predicable nor can be used to form predicates. The
clauses might therefore appear at first sight to impose a serious (and somewhat embarrass-
ing) limitation on the expressiveness of our framework. But the situation is not so dire. In
the case of formulas involving no modal operators, at least, in virtue of our λ-conversion
principle and well-known normal form theorems of propositional and predicate logic, it
is always possible to to a convert a formula θ that violates the scope condition into a logi-
cally equivalent formula that does not. (For example, the non-predicable formula above is
equivalent to ∀yFy ∧∀xGx and the formula in the illegitimate λ-predicate above is equiv-
alent to ∃yFy→ Gx.) Moreover, in virtue of the validity of the Barcan schema and its con-
verse the basic logic of MOT and basic principles of modal propositional logic, the same
sort of conversion is possible for many modal formulas. (The proof of this is tedious but
straightforward.) Only those formulas in which a universal (existential) quantifier is in the
scope of a possibility (necessity) operator is the conversion not always possible in virtue
of the general invalidity of ^∀xϕ ↔ ∀x^ϕ (�∃xϕ ↔ ∃x�ϕ). (Our thanks to a referee for
pointing out that we had omitted consideration of the modal case in an earlier draft.) Note,
however, that these restrictions on occurrences of free variables disappear entirely in full
object theory.
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Given the presence of complex predicates, the notion of substitutability
that is needed for stating a number of axiom schemas has to be expressed
a bit more generally than usual. Towards this end, let us say that two
expressions are of the same type if both are terms, both are 0-place predi-
cates, or both are 1-place predicates, and let ϕατ be the result of replacing
every free occurrence of α in ϕ with an occurrence of τ . Given this, say
that a term or predicate τ is substitutable for the variable α in ϕ if (a) τ
and α are of the same type, and (b) every free occurrence of a variable β
in τ is still free in ϕατ .

2.2 MOT: Logical Axioms, Definitions, and Proofs

Basic Logical Axioms. The basic logical axioms of MOT consist of the
axioms of classical S5 modal propositional logic and classical monadic
second-order quantification theory (without identity). For clarity, we
express the universal instantiation axiom explicitly — every instance of
the following is an axiom:

UI ∀αϕ→ ϕατ , where α is any variable, and τ is substitutable for α in
ϕ.

Recall that all predicable formulas are 0-place predicates and so can be
substituted for universally quantified propositional variables.

The Logic of Abstraction. In general, abstraction principles say that
the n-place relation (n ≥ 0) defined by a certain condition ϕ is true of n
objects y1, ..., yn just in case the condition holds of (alternatively, is satis-
fied by) those objects:

Λ [λx1...xn ϕ]y1...yn↔ ϕx1...xn
y1...yn , where each yi substitutable for xi in ϕ.

This principle — often also known as λ-conversion — is in fact included
in full object theory for all n ≥ 0. In the case where n = 0, the principle re-
duces to [λ ϕ]↔ ϕ, which asserts that the proposition [λ ϕ] is true just in
case ϕ.10 In the language L of MOT developed here, where our concern
is primarily with the derivation of EP and the minimal commitments of

10We introduce ‘is true’ into the reading because truth is the 0-place case of exemplifi-
cation. In full object theory, these 0-place λ-predicates prove useful in applications other
than the theory of truth, e.g., in the theory of belief.
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that derivation, we do not need to quantify over n-place relations gener-
ally, but only propositions and properties. Hence, we need only 0- and
1-place complex predicates. However, it is also the case that, for our pur-
poses here, complex 0-place predicates have simply been identified with
the conditions that define them — viz., predicable formulas — which
renders the 0-place abstraction principle trivial. Consequently, we only
need the 1-place case:

Λ1 [λxϕ]y↔ ϕxy , where y is substitutable for x in ϕ.

Informally, that is, Λ1 says that an object y exemplifies the property being
such that ϕ just in case ϕ holds of y.

Definition of Identity for Objects. As noted, L does not include iden-
tity as a primitive; rather, identity is a defined notion in object theory.
In fact, there are is a separate definition for each of the three basic log-
ical types in MOT: objects, properties and propositions. We first define
identity for objects.

Abstract objects can be thought of as pure objects of thought — the
properties they encode are the ones by which we conceive of them. Thus,
different objects of thought have to differ in some respect. Hence, ab-
stract objects, qua pure objects of thought, are taken to be identical just
in case they encode the same properties:

IdA! x =A! y =df A!x∧A!y ∧�∀F(xF↔ yF)

The distinction between ordinary and abstract objects does not play
a role in the derivation of EP. However, as the identity conditions for
ordinary objects in object theory are quite different than those for ab-
stract objects, for the sake of completeness once again it is good to state
them explicitly. To this end we introduce a defined predicate ‘O!′ which,
intuitively, expresses the property of being an “ordinary” object:11

O! O!x =df ¬A!x

11This departs from previous developments of object theory, which almost always start
with a primitive predicate ”E!” (expressing the property being concrete) and which define
an ordinary object as one which is possibly concrete and an abstract object as one that
couldn’t possibly be concrete. However, for the present development, it simplifies matters
to simply take A! as primitive and define ordinary objects as those that are not abstract,
thereby eliminating the need for a concreteness predicate E!.



The Fundamental Theorem of World Theory 13

Ordinary objects are then defined to be identical just in case they neces-
sarily exemplify all of the same properties:

IdO! x =O! y =df O!x∧O!y ∧�∀F(Fx↔ Fy)

Identity for objects generally can now be defined as the disjunction of
these IdA! and IdO!:

Id x = y =df x =A! y ∨ x =O! y

Definition of Identity for Properties and Propositions. One of mo-
nadic object theory’s virtues is its ability to provide identity conditions
for properties and propositions that do not require them to be identical
if necessarily coextensive. To state the definitions, note that there is no
condition on λ-predicates [λxϕ] requiring x to occur free in ϕ. Thus,
in particular, for every proposition p, there is the propositional property
[λxp] of p expressing, intuitively, the property being such that p is true.
Given this, we have the following definitions:

Id1 F = G =df �∀x(xF↔ xG)

Id0 p = q =df [λy p] = [λy q]

Id1 tells us that properties are identical if encoded by the same abstract
objects. The intuition here is that, if properties F and G are distinct, then
there is a pure object of thought that encodes the one but not the other.
And if there isn’t a pure object that encodes F without encoding G, then
there is nothing in their nature to distinguish them and, hence, F and G
must be identical. Id0, in turn, tells us that propositions are identical if
their property correlates are.

Principles of Identity. It is straightforward to prove that, on the above
definitions, the reflexivity of identity falls out as a theorem:12

Ref ∀α(α = α), for any variable α.

The indiscernibility of identicals, restricted to ordinary objects, are also
theorems of MOT,13 However, it is convenient to state the principle gen-
erally for all entities:

12The proof is by cases. In the first case, when α is the variable x, then use a disjunctive
syllogism starting with the fact that A!x∨O!x, i.e., by definition O!, A!x∨¬A!x. The second
and third cases, when α is the variable F or α is the variable p, the proof is trivial.

13A proof sketch of the principle for ordinary objects is given in fn 31.
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Ind α = β → (ϕ → ϕ′), where β is substitutable for α in ϕ, and ϕ′ is
the result of replacing zero or more free occurrences of α in ϕ with
occurrences of β.

We note that an instance of Ind for propositions only is used in the
derivation of EP.

We also include a “reducibility” schema for λ-predicates that avoids
intuitively unnecessary multiplication of properties.

Red [λx Fx] = F

Logical Axioms for Encoding. Recall that the intuition behind abstract
objects is that they are objects of pure thought; the properties such an
object encodes are thus constitutive of the object. One aspect of this idea
has been captured in the definition IdA! of identity for abstract objects. A
second aspect, however, is modal: it cannot be a mere matter of happen-
stance that an abstract object encodes the properties it does. Otherwise
put, encoding is rigid; any property an abstract object happens to encode
is one that it encodes necessarily:

RE xF→ �xF

Moreover, being an abstract object cannot itself be a mere matter of hap-
penstance; thus:

�A! A!x→ �A!x

Finally, whereas both abstract objects and non-abstract, or ordinary, ob-
jects such as those typically given in experience exemplify properties,
only abstract encode them. This property of abstract objects is in fact
not needed in the derivation of EP but we include it here for the sake of
completeness:14

AE xF→ A!x

14In previous versions of object theory, where abstract objects are defined as ¬^E!x and
ordinary objects, O!x, are defined as ^E!x, the following was taken as an axiom: O!x →
�¬∃FxF. This axiom is equivalent to AE.
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Proofs and Theorems. A proof in MOT is understood as usual as a se-
quence of formulas consisting of either logical axioms (as given in this
subsection §2.2) or formulas that follow from preceding formulas in the
sequence by a rule of inference: Modus Ponens, Generalization, and Ne-
cessitation in the following form:

RN �ϕ follows from ϕ.

A formula ϕ is a theorem of MOT (
M̀OT
ϕ) if there is a proof in MOT whose

last member is ϕ. Note that, where α is any variable, all instances of the
first- and second-order Barcan schema ^∃αϕ→∃α^ϕ and the Buridan
schema^∀αϕ→∀α^ϕ are theorems of MOT; indeed, they are derivable
in the basic logic alone.

For any set Γ of formulas of L, we will say that ϕ is provable in MOT
from Γ (written Γ

M̀OT
ϕ) if there are formulas ψ1, ...,ψn ∈ Γ such that

M̀OT
(ψ1 ∧ ...∧ψn)→ ϕ.

For purposes below we note the following two theorems of MOT:15

(1) ^xF→ �xF

(2) ^A!x→ A!x

2.3 MOTC — MOT with Object Comprehension

The fundamental principle of object theory is Object Comprehension. This
is a sort of plenitude principle for abstract objects: it captures the idea
that any possible conceptualization corresponds exactly to a (unique) ab-
stract object. More exactly: necessarily, for any condition ϕ on proper-
ties, there is an abstract object that encodes exactly the properties satis-
fying ϕ:

OC �∃x(A!x∧∀F(xF↔ ϕ)), where x not free in ϕ.

We have not here counted OC among the logical principles of MOT for
two reasons: The question of logical status of comprehension principles

15For (1), note that, by RE and RN, we have �(xF → �xF) and by basic modal logic
^xF → ^�xF. By the characteristic S5 schema we have ^�xF → �xF. So (1) follows by a
hypothetical syllogism. (2) is derived similarly, albeit with an application of the T schema
as well.

16 Christopher Menzel and Edward N. Zalta

(notably, Frege’s Axiom V) is a controversial one, to say the least. In
fact, we believe one can reasonably argue for OC’s logicality but we will
not contest the matter here. More to the point for present purposes,
however, OC is not logically valid in the rather simplified model theory
for L that we develop in §4.1. Thus, for present purposes, we present
Object Comprehension as a non-logical, or proper, axiom schema.

Theorems of MOTC. Let MOTC be MOT+OC, i.e., MOT supplemented
with the Object Comprehension schema. In the special case of the prov-
ability of a formula ϕ from Γ where Γ consists of zero or more instances
of OC, we say simply that ϕ is provable in MOTC, or that ϕ is a theorem
of MOTC, and we may alternatively write

M̀OTC
ϕ.

2.4 World Theory

A simple but powerful theory of possible worlds falls out of the axioms
of object theory by means of a few definitions. As noted above, L con-
tains predicates of the form [λx p] — intuitively, expressing the proposi-
tional property being such that p is true. By Object Comprehension (OC)
there will be abstract objects that encode only such properties; these are
the situations:

Sit Situation(x) =df A!x∧∀F(xF→∃p(F=[λy p]))

Next we say that a proposition p is true at a situation (or other abstract
object) x just in case x encodes [λy p]:

Tr x |= p =df x[λy p]

Finally, we say that a situation x is a possible world if it could be the case
that all and only the truths are true at x:

PW World(x) =df Situation(x)∧^∀p(x |=p ↔ p).16

Since worlds are situations, they are abstract objects (by Sit), and so the
identity of worlds reduces to the identity of abstract objects — they are
identical whenever they encode the same properties. Since they are sit-
uations, and hence encode only propositional properties, they are iden-
tical whenever the same propositions are true at them (by Sit and Tr).

16To remove an ambiguity, we take |= to bind more tightly than the connectives. Thus,
x |= r↔ r is to be parsed as (x |= r)↔ r. To represent the claim that x makes the proposition
r↔ r true, we would write x |= (r↔ r).
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3 Deriving the Equivalence Principle

We begin this section by noting that, in MOT, the use of restricted world
variables is defined notation; specifically:

∀wϕ =df ∀x(World(x)→ ϕ)

∃wϕ =df ∃x(World(x)∧ϕ)

3.1 The Derivation

MOTC is the minimal general theory that is required to systematize the
expressions and inferences used in the derivation of EP. To derive EP in
MOTC, we first derive the left-to-right direction and then the right-to-
left direction.

(=⇒) We prove the left-to-right direction ^p→∃w(w |= p) in MOTC by
hypothetical syllogism in two stages:

Stage A: Show that
M̀OTC
^p→ ^∃w(w |= p).

Stage B: Show that
M̀OTC
^∃w(w |= p)→∃w(w |= p).

Stage A. Our strategy is first to show that �Φ → �(p → ∃w(w |= p)) is
a theorem of MOT, where �Φ is a particular instance of OC. By basic
modal logic, it will follow that �Φ → (^p → ^∃w(w |= p)) is a theorem
of MOT and, hence, by definition, that ^p→ ^∃w(w |= p) is a theorem of
MOTC.

We begin with the following assumption:

Φ : ∃x(A!x∧∀F(xF↔∃q(q∧F=[λy q])))

Φ asserts that there exists an abstract object that encodes all and only the
“true” propositional properties, i.e., only those properties F such that,
for some true proposition q, F is the property being such that q is true.
Our first task is to show that, from this assumption, p → ∃w(w |= p)
follows.

So assume p. Let a be an arbitrary object instantiating Φ ; that is,
assume:

(3) A!a∧∀F(aF↔∃q(q∧F=[λy q]))

We will show that a is a possible world where p is true. To do so, the
definitions PW and Tr tell us we must establish:
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(4) Situation(a)

(5) ^∀q(a |=q ↔ q)

(6) a |= p

To establish (4), the definition Sit requires that we establish
A!a ∧ ∀F(aF → ∃q(F = [λy q])). We’ve already established the left con-
junct, A!a, since it is the first conjunct of (3). Now assume aG, for con-
ditional proof. By (3), ∃q(q∧G= [λy q]). A fortiori, ∃q(G= [λy q]). So by
conditional proof, aG→ ∃q(G= [λy q]). By Generalization, we infer the
right conjunct.

To establish (5), we first establish ∀q(a |= q ↔ q) and then apply the
^ version of the T schema (i.e., χ → ^χ). Assume a |= r (i.e., a[λy r]),
where r is an arbitrary proposition. Then by the right conjunct of (3),
∃q(q ∧ [λy r] = [λy q]). Let s be an arbitrary such proposition. Then we
know that s and [λy r]=[λy s], and so by definition Id0, r = s. But since s
is true, we know by Ind that r is.17 Hence, we have established a |= r→ r.
Now assume r. By Ref, [λy r] = [λy r], so we have r ∧ [λy r] = [λy r]. So
∃q(q∧ [λy r]=[λy q]). Hence, by the right conjunct of (3), it follows that
a[λy r], i.e., a |= r. Hence, we have established r → a |= r. So we may
conclude a |= r↔ r and so, as r was arbitrary, ∀q(a |=q ↔ q). Thus, by the
T schema, ^∀q(a |=q ↔ q).

To establish (6), we simply note that it follows from the combination
of our assumption that p and the claim that ∀q(a |= q ↔ q), which we
established as an intermediate step in the argument for (5).

So from our assumption (3) we have established (4), (5), and (6) and,
hence, from them, that World(a)∧a |= p and, therefore, that ∃x(World(x)∧
x |= p), i.e., ∃w(w |= p). So by conditional proof, p → ∃w(w |= p). Since
we’ve proved this conditional from an instance of Φ , and the conditional
doesn’t contain an occurrence of ‘a’, it follows from Φ . Therefore, by
conditional proof again, we have shown:

(7) Φ→ (p→∃w(w |= p))

By RN we infer:

(8) �(Φ→ (p→∃w(w |= p)))

17A bit more exactly, we are using the (derivable) instance s = r → (s → r) of Ind for
propositions here.
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and thence, by some basic modal logic,18 we have:

(9) �Φ→ (^p→ ^∃w(w |= p))

But, as noted above, �Φ is an instance of OC and, hence, we have shown
that ^p→ ^∃w(w |= p) is a theorem of MOTC. This concludes Stage A.

Stage B. We begin this stage by assuming ^∃w(w |= p); our goal is to
show ∃w(w |= p). Eliminating the restricted variable w in our assump-
tion, we have ^∃x(World(x)∧ x |= p). By the Barcan Formula, it follows
that ∃x^(World(x)∧ x |= p). Let a be such an object; that is assume

(10) ^(World(a)∧ a |= p).

Since the conjuncts of a possibly true conjunction are possible, it follows
that ^World(a)∧^a |= p. We now establish that each possibility is a non-
modal fact.

To see that ^World(a) implies World(a), assume the former. Then, by
PW and Sit, ^(A!a∧∀F(aF→∃p(F=[λy p]))∧^∀p(a |=p↔ p)). Since the
conjuncts of a possibly true conjunction are possible, it follows that:

(11) ^A!a ∧ ^∀F(aF→∃p(F=[λy p])) ∧ ^^∀p(a |= p↔ p)

To derive World(a) from (11), we need to show, by the definitions PW and
Sit, that:

(12) A!a

(13) ∀F(aF→∃p(F=[λy p]))

(14) ^∀p(a |= p↔ p)

(12) follows from the first conjunct of (11), by our theorem (2). To derive
(13), consider the second conjunct of (11). By the Buridan schema, the
second conjunct of (11) immediately implies ∀F^(aF → ∃p(F = [λy p]));
call this statement Ω. Now let G be an arbitrary property and assume
aG, for conditional proof. �aG follows by RE. By instantiating Ω to G, it
follows that ^(aG→∃p(G = [λy p])). Hence, applying some basic modal
logic to the two preceding results we have ^∃p(G = [λy p]). It is sep-
arately provable in MOT that, for any property H , ^∃p(H = [λy p]) →

18Specifically, the theorems �(q→ (r→ s))→ (�q→ �(r→ s)) and �(r→ s)→ (^r→ ^s).
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∃p(H = [λy p]).19 Hence, from the preceding result, ∃p(G = [λy p]) fol-
lows. Thus, by conditional proof, we infer that aG → ∃p(G = [λy p]).
As G was arbitrary, we may conclude: ∀F(aF → ∃p(F = [λy p])). Finally,
note that (14) follows from the third conjunct of (11) by the character-
istic schema of S4, which is derivable in S5. So we have established
^∀p(a |= p↔ p).

So from^World(a) we have established (12), (13), and (14) and, hence,
World(a).

Next we show that^a |= p→ a |= p. Note that^a |= p, by definition Tr,
means ^a[λy p]. By (1) it follows that �a[λy p]. And by the T schema, it
follows that a[λy p], i.e., a |= p.

So, from (10), we’ve established World(a)∧ a |= p and, hence, we may
infer ∃x(World(x) ∧ x |= p). And, once again, as this result does not in-
volve our arbitrary instance a, we may infer that it follows from (10)’s
generalization ∃x^(World(x)x |= p) which, recall, we had inferred from
^∃x(World(x)∧x |= p), i.e., reintroducing our restricted variable,^∃w(w |=
p). By conditional proof we conclude that ^∃w(w |= p) → ∃w(w |= p).
Combining Stages A and B, we have shown that ^p → ∃w(w |= p) is a
theorem of MOTC.

(⇐=) We now show that the right-to-left direction of EP is a theorem of
MOT (hence of MOTC). So assume ∃w(w |= p), i.e., ∃x(World(x)∧ x |= p).
Let a be such an object:

(15) World(a)∧ a |= p

From the left conjunct we have by definition PW that ^∀q(a |=q↔ q). By
the Buridan schema, we have ∀q^(a |= q ↔ q) and hence, in particular,
^(a |= p ↔ p) and so, a fortiori, ^(a |= p → p). But by (15) we have a |= p
and hence, by RE, �a |= p. Since it is a theorem of basic modal logic
that (^(ϕ→ ψ)∧�ϕ)→ ^ψ, we have ^p. So we have deduced ^p from
(15). As this conclusion does not involve the arbitrary world a, we may
conclude that ^p follows from ∃x(World(x)∧x |= p). By conditional proof
it follows that ∃w(w |= p)→ ^p. We note that our reasoning was entirely
in MOT (since we invoked no instances of OC) and, hence, trivially, in
MOTC. Putting together our proofs of the left-to-right and right-to-left
directions have shown that EP is a theorem of MOTC. ./

19The consequent follows quickly from the antecedent by applying, in order, the Barcan
formula, the definition Id1 of property identity, and the characteristic S5 schema.
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Inspection of the above derivation shows that MOTC offers two spe-
cial axioms that play a key role in the proof of EP: the logical axiom
RE and an instance of the principle of Object Comprehension OC. The
other axioms presented in Section 2.2 that are used in the proof can be
found in any second-order quantified modal logic with identity, propo-
sitions (defined as 0-place relations), and λ-expressions.20 Interestingly,
although the properties denoted by λ-expressions play critical roles in
the proof, the λ-abstraction principle Λ1 that governs those concepts is
not itself used in the proof. But we have included this principle because
we want to systematize the concepts that play these critical roles.

3.2 Other Consequences

Given that EP is a theorem of MOTC, we can prove that there are non-
actual possible worlds with the following two steps. First we define:

Actual(x) =df ∀p(x |=p→ p)

Second, we assert that there are propositions that are false but possibly
true:

∃p(¬p&^p)

This last claim is not provable in MOTC, for reasons that we discuss
in more detail in the next section. (Specifically, it will be shown that
MOTC is true in a model with just one primitive possible world and two
propositions. In such models, all true propositions are necessarily true
and all false propositions are necessarily false.)

Once we have the definition Actual(x) and the claim that there are
contingently false propositions, it follows from EP that:

∃x(World(x)∧¬Actual(x)).

For if q is some false but possibly true proposition, then by EP there is a
world, say w1, where it is true, i.e., such that w1 |= q. But by hypothesis,
q is false, and so w1 is not actual.

Our derivation of EP in the previous subsection offers some evidence
that the other theorems of world theory derived in Zalta (1983, 1991)

20The only qualification that needs to be made here is that our formulation of Ind,
though identical in form to the usual principle of identity substitution, is stated in terms
of defined notions of identity.
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are still derivable in the more limited context of MOTC. For example, it
is of significant philosophical interest to verify that one can still derive
the claim that there is a unique actual world.21 It is also provable that
every world w is maximal, i.e., that ∀p(w |= p ∨w |= ¬p), and that every
world w is consistent, i.e., that ¬∃p(w |= p ∧ w |= ¬p). From these two
theorems, it is easy to establish that every world w is coherent, i.e., that
∀p(w |= ¬p↔ ¬w |= p).22 Since truth at a world (|=) is coherent and the
0-place predicate ‘¬q’ also denotes the negation of the proposition q, we
can derive the equivalence of EP and LP as we did in footnote 3, by
universally instantiating ¬q for p in the first line of both directions of
the proof. So, our proof of EP yields LP as a corollary.

4 MOTC and Ontological Commitment

Our proof of EP in the previous section appears to use some heavy-duty
logical and metaphysical machinery. But appearances can be deceiving.
We now turn to the question: What are the smallest models of MOTC?
After a preliminary definition, we lay out the model theory of our lan-
guage L. We then construct the smallest model of MOTC. Finally, we
contruct the smallest non-trivial model of the theory. These models re-
veal the minimal ontological commitments of MOTC and, hence, the
minimal ontological commitments needed to derive EP as a theorem.

4.1 Model Theory for L
An interpretation I for L can be thought of as a 7-tuple 〈D,W,P,Op,ex,
en,V〉 such that:

1. D and W are non-empty sets (“objects” and “worlds”, respectively)
where the latter contains a distinguished element w∗ (the “actual”
world). D is the union of two mutually disjoint sets A (the domain

21The derivation proceeds from the following instance of OC:

∃x(A!x∧∀F(xF↔∃p(p∧F=[λy p])))

To complete the proof, call such an object b and then show that b is a world, that b is actual,
and that anything else y that is an actual world is identical to b.

22Here’s how. (→) Let w and q be any world and proposition, respectively, and assume
w |= ¬q. It follows by w’s consistency that ¬(w |= q). (←) Assume ¬w |= q. Then by w’s
maximality, it follows that w |= ¬q.
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of abstract objects) and O (the domain of ordinary objects); A must
be nonempty.

2. P is the union of two mutually disjoint, nonempty sets P0 (the do-
main of propositions) and P1 (the domain of properties), the latter
of which contains a distinguished element p∗.

3. Op is a set of logical operations neg,cond,univ,nec,vac,plug de-
scribed more fully below.

4. The exemplification extension function, ex, is a total function on
W × P that maps W × P0 into {0,1} and W × P1 into ℘(D). In par-
ticular, we set the exemplification extension of the distinguished
property p∗ to be the set A at every world: ex(w,p∗) = A, for all
w ∈W. (ex is subject to further constraints described below.)

5. The encoding extension function, en, maps P1 into ℘(A) in such
a way that, (i) for distinct a1,a2 ∈ A, there is a p1 ∈ P1 such that
a1 ∈ en(p1) iff a2 < en(p1); and (ii) for distinct p1,p2 ∈ P1, en(p1) ,
en(p2). (Condition (i) ensures that distinct abstract objects cannot
encode the same properties and condition (ii) ensures that distinct
properties cannot be encoded by the same abstract objects.)

6. The valuation function V maps each term of L to a member of D,
each 0-place primitive predicate of L to a member of P0, and each
1-place primitive predicate of L to a member of P1;23 in particular,
we stipulate that V(A!) = p∗.

Intuitively, P ∪D and Op together can be thought of as an algebra,
where the elements of P are generated from an initial set of primitive
properties, propositions, and objects by the operations in Op (Bealer
1982; Zalta 1983; Menzel 1986). All of these operations (with the
exception of vac) correspond semantically to the syntactic operations
whereby complex formulas are constructed from the primitive lexicon
of L. Specifically, the operation plug : P1 ×D −→ P0 corresponds to the
formation of an atomic formula from a 1-place predicate; thus, intu-
itively, plug(r,a) is the atomic “singular” proposition that a exemplifies

23To avoid variable assignments, we are treating variables as “quantifiable constants”
and assigning them fixed values via V. This does not substantially affect the metatheory.
See, e.g., Menzel 1991.

24 Christopher Menzel and Edward N. Zalta

r. For 0 ≤ i ≤ 1, the operations neg : Pi −→ Pi , cond : Pi × Pi −→ Pi ,
univ : P1 −→ P0, and nec : Pi −→ Pi are semantic counterparts of the
usual logical operators of quantified modal logic. And for each proposi-
tion r, the operation vac : P0 −→ P1 — which is stipulated to be one-to-
one — generates the “propositional property” being such that r. These
latter properties, as we’ve seen, are critical to the definition of possible
worlds in object theory.

Given the logical structure of properties and propositions determined
by these operations, ex, in turn, must assign exemplification extensions
systematically in a way that reflects this structure. Specifically, for r0,s0 ∈
P0 and r1,s1 ∈ P1:

E1. ex(w,plug(r1,a)) = 1 iff a ∈ ex(w,r1)

E2. ex(w,neg(r0)) = 1− ex(w,r0)
ex(w,neg(r1)) = D \ ex(w,r1)

E3. ex(w,cond(r0,s0)) = max{1− ex(w,r0),ex(w,s0)}
ex(w,cond(r1,s1)) = (D \ ex(w,r1))∪ ex(w,s1)

E4. ex(w,nec(r0)) = min{ex(w′ ,r0) | w′ ∈W}
ex(w,nec(r1)) =

⋂
{ex(w′ ,r1) | w′ ∈W}

E5. ex(w,univ(r1)) = 1 iff ex(w,r1) = D

E6. ex(w,vac(r0)) =
{

D if ex(w,r0) = 1
∅ otherwise

In contrast to these conditions on the exemplification extension func-
tion ex, the encoding extension function en has two features: (a) it is not
relativized to worlds, and (b) there are no systematic connections be-
tween the encoding extensions of properties and their logical structure
— e.g., an object can encode the conditional property cond(r1,s1) with-
out encoding either neg(r1) or s1.

Valuation and Truth. The valuation function V for terms and primi-
tive predicates of L determines a unique function V that extends V so
as to assign semantic values to the non-primitive predicates of L recur-
sively in accordance with their form. Specifically, for terms and primi-
tive predicates α, V(α) = V(α); and for the rest:
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V1. V([λx ρx]) = V(ρ), for 1-place predicates ρ of L
V(πτ) = plug(V(π),V(τ))

V2. V(¬ϕ) = neg(V(ϕ))
V([λx¬ϕ]) = neg(V([λxϕ])), if x occurs free in ϕ

V3. V(ϕ→ ψ) = cond(V(ϕ),V(ψ))
V([λxϕ→ ψ]) = cond(V([λxϕ]),V([λxψ])), if x is free in ϕ→ ψ

V4. V(�ϕ) = nec(V(ϕ))
V([λx�ϕ]) = nec(V([λxϕ])), if x is free in ϕ

V5. V(∀xϕ) = univ(V([λx ϕ]))24

V6. V([λxϕ]) = vac(V(ϕ)), if x is not free in ϕ.

The truth of a formula ϕ at a world w under an interpretation I =
〈D,W,P,Op,ex,en,V〉, written w |=I ϕ, is defined more or less as usual
in a possible world semantics with a fixed domain of individuals, except
that the truth conditions for 0- and 1-place atomic formulas are given
in terms of the relevant extensions of the denotations of their component
predicates:

T1. w |=I π iff ex(w,V(π)) = 1
w |=I ρτ iff V(τ) ∈ ex(w,V(ρ))
w |=I τρ iff V(τ) ∈ en(V(ρ)).

The clauses for the Boolean and modal operators are as usual:

T2. |=I ¬ϕ iff, w 6|=I ϕ

T3. w |=I ϕ→ ψ iff w 6|=I ϕ or w |=I ψ

T4. |=I �ϕ iff, for all w ∈W, w |=I ϕ.

As we are doing without separate variable assignments the quantifica-
tional clauses take on a slightly different form than in most definitions
of truth. If α is a variable and e ∈D∪P, let Vα

e be the valuation function
that differs from V (at most) in that it assigns entity e to the variable
α. That is, Vα

e (β) = V(β) for terms and primitive predicates β , α and
Vα

e (α) = e. Now let Iαe = 〈D,W,P,Op,ex,en,Vα
e 〉. Then we have:

24Note that the coordination betweeen condition 6(iii) on the construction of predicable
quantified formulas and condition 7(iii) on the construction of λ-predicates in the gram-
mar for L in §2.1 guarantees that ∀xϕ is predicable if and only if [λx ϕ] is a 1-place predi-
cate of L. This clause would be illegitmate otherwise.
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T5. w |=I ∀xϕ iff, for all a ∈D, w |=Ixa ϕ
w |=I ∀Fϕ iff, for all pi ∈ Pi , w |=IFpi ϕ, for i-place predicate vari-

ables F (i ∈ {0,1}).

With these definitions, we may define the truth of a formula ϕ under
an interpretation I , written |=I ϕ, as w∗ |=I ϕ. ϕ is then logically true,
written |= ϕ, if and only if |=I ϕ, for all interpretations I .

4.2 The Smallest Models of MOTC

The abstraction principle Λ1 together with the definitions Id0 and Id1
of identity for propositions and properties, respectively, are consistent
both with the thesis that necessarily equivalent properties and proposi-
tions are identical and with the thesis that they are distinct. Our own
philosophical intuitions lean toward the latter. However, because EP
makes no assumptions either way on this issue, in the smallest models
of the fragment of object theory needed to derive EP, necessarily coex-
tensional properties and propositions are identified. In the appendix we
show that all instances of the schema Λ1 are logically true.

Note also that for any given interpretation I of L, there is no con-
dition on its set A of “abstract objects” beyond non-emptiness. There is
therefore no guarantee that, for any condition ϕ on properties, there will
be an abstract object in A that encodes (i.e., that is in the encoding ex-
tension of) exactly the properties satisfying ϕ. Consequently, in contrast
to the axioms of MOT, not all instances of OC are logically true relative
to our model theory.

With this in mind, we can construct a smallest model of MOTC, and
thus a smallest interpretation of L, in which all instances of OC are true.
Such a model contains only one world, two properties (complements of
each other), two propositions (negations of each other), and four abstract
objects (one for each of the four sets of properties). This is because the
smallest interpretation of L requires that there be at least two properties
(the universal property and the empty property) and at least two propo-
sitions (the True and the False). OC in turn requires that there be four
abstract objects — intuitively, for each set of properties, the object that
encodes exactly the properties in that set.

We don’t plan to define these smallest models formally, as they triv-
ialize modality — since there is only one possible world, the modal op-
erators are rendered otiose. That is, �ϕ, ^ϕ, and ϕ are all equivalent in
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the model, for all ϕ. In addition, these models collapse materially equiv-
alent properties and materially equivalent propositions. These facts ex-
plain why the claim ∃p(¬p & ^p) is not true in the smallest model of
MOTC, since ¬p and �¬p have the same truth value.

But once we add this latter claim, MOTC can only be true in non-
trivial models, that is, models in which necessary truth and necessary
falsity do not collapse into mere truth and falsity. By adding the asser-
tion that there are contingently false propositions, non-trivial models are
forced to contain both contingently true and contingently false propo-
sitions, as well as necessarily true and necessarily false propositions.
Thus, such models will contain nonactual possible worlds. Moreover,
non-trivial models will also include properties that are contingently true
(false) of everything and properties necessarily true (false) of everything.
Thus, such models will include as many abstract objects as there are ex-
pressible sets of properties. (This will make OC true.)

Although the general model theory of L doesn’t force us to identify
properties and propositions whenever they are necessarily equivalent,
this is something one can do to define the smallest non-trivial models of
MOTC. Specifically, any such model contains:

• four propositions: one of which is contingently true, one contin-
gently false, one necessarily true, and one necessarily false;

• four corresponding properties: one contingently true of everything,
one contingently false of everything, one necessarily true of every-
thing, and one necessarily false of everything;

• two possible worlds, one of which is nonactual; and

• sixteen abstract objects.

This, we claim, is all that is (non-trivially) presupposed by MOTC. In
particular, we do not include any contingent objects in the model, as the
existence of contingent beings is not required by logic. Note also that
our work earlier in the paper establishes that the two possible worlds
can be identified with certain abstract objects. However, for the model-
theoretic purposes of this section, we don’t make this identification ex-
plicit. (See Section 5, especially footnote 29, for the explicit identifica-
tion.)

28 Christopher Menzel and Edward N. Zalta

4.3 The Smallest Non-Trivial Models of MOTC

A smallest non-trivial model of MOTC, in a language L, is an interpre-
tation I ∗ = 〈D,W,P,Op,ex,en,V〉 for L such that:

• D = A∪O, where O = ∅, A = ℘(P1) and P1 is defined as below;

• W = {w0,w1} (i.e., two primitive “possible worlds”) and w∗ = w0;

• P = P0 ∪ P1, where P0 = {p0,p0,q0,q0}, P1 = {p1,p1,q1,q1},25 and
p∗ = p1;

• Op is as specified below;

• ex(w,p0) = 1 and ex(w,p0) = 0, for w ∈W
ex(w0,q0) = ex(w1,q0) = 1; ex(w1,q0) = ex(w0,q0) = 0

ex(w,p1) = D and ex(w,p1) = ∅, for w ∈W
ex(w0,q1) = ex(w1,q1) = D; ex(w1,q1) = ex(w0,q1) = ∅;

• en(r) = {a ∈A | r ∈ a};

• V is any mapping on the terms and primitive predicates of L that
comports with clause 6 in the definition of an interpretation.

Thus, our model contains two worlds in which different sets of propo-
sitions are true (notably, q0 is true at w0 — by stipulation, the “actual”
world w∗ of the model — and false in w1) and hence it is non-trivial.
P, as noted, contains four properties and four propositions. Intuitively
(and as reflected by the definition of ex), p0 is a necessarily true propo-
sition (indeed, the only one), q0 is a contingent proposition, and p0 and
q0 are their complements. Thus, p0 is impossible and q0 is also contin-
gent but, at any world, is true if and only if q0 is false. Likewise, p1 is
a property that necessarily holds of everything, q1 a property that con-
tingently holds (or fails to hold) of everything, and p1 and q1 are their
complements.

As noted, there are no ordinary objects in the model; the domain
D consists solely of abstract objects, which are themselves represented
simply as sets of properties — each abstract object is simply identified
with the set of properties it encodes (as reflected in the definition of
en). We believe this comports well with I ∗’s being a simplest non-trivial

25As will be seen below, r indicates the negation of the property or proposition r.
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model, as we do not believe that the existence of contingent individuals
is a matter of logic and hence such individuals can be omitted from a
simplest model. D, then, consists of the sixteen abstract objects there
can be, given our initial stock of four properties. Note that the non-
world-relative definition of en ensures that encoding is rigid and hence
the truth of the principle RE. The fact that abstract objects are simply
sets in the model ensures that both condition (i) — that distinct abstract
objects do not encode exactly the same properties — and condition (ii)
— that distinct properties are not encoded by exactly the same abstract
objects — of the definition of en are met. Moreover, because there are
no ordinary objects, we can identify the property p1 with the property
of being abstract. For p1 holds of everything — hence, of exactly the
abstract objects — at every world. This is reflected in the definition of V.

Finally, we need to specify the operators in Op. The central chal-
lenge here is to specify the operators so that they satisfy the constraints
imposed by the definition of an interpretation for L. Specifically, we
need to show that (i) every non-primitive predicate denotes a property
or proposition in P whose logical form comports with the grammatical
form of the predicate, and (ii) that the extension of every property or
proposition is determined appropriately by its logical form.

To begin, then, note that three of our operators — neg, cond, and nec
— are defined on all of P. Accordingly, for i ∈ {0,1}, we have:

• neg(ri) = ri , for ri ∈ {pi ,qi}
neg(ri) = ri , for ri ∈ {pi ,qi}.

• nec(pi) = pi
nec(qi) = nec(qi) = nec(pi) = pi .26

• cond(pi ,ri) = ri , for ri ∈ Pi
cond(pi ,ri) = pi , for ri ∈ Pi
cond(qi ,pi) = cond(qi ,qi) = pi
cond(qi ,pi) = cond(qi ,qi) = qi
cond(qi ,pi) = cond(qi ,qi) = pi
cond(qi ,pi) = cond(qi ,qi) = qi

26That is, the proposition that the necessarily true proposition is necessary is the nec-
essarily true proposition; the proposition that r is necessary, where r is either of our con-
tingent propositions or the impossible proposition, is simply the impossible proposition;
analogously for properties.
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Unlike the preceding operations, the remaining operations — vac,
univ, and plug — yield values in domains other than the domains of
their arguments. To facilitate their definition, for our properties p1, p1,
q1, q1, respectively, let us say that the corresponding propositions are p0,
p0, q0, q0, respectively. Then, where r1 is any of our properties and r0
its corresponding proposition, we have:

• vac(r0) = r1;

• univ(r1) = r0;

• plug(r1,a) = r0, for all a ∈D.

That is, the property r1 can be identified with the property vac(r0) of
being such that r0. (Note that this means that vac is one-to-one, as
required.) The proposition r0 can be identified with the proposition
univ(r1) that everything exemplifies the property r1. And, given how
we have assigned exemplification extensions to our four properties, for
all a ∈ D, the proposition plug(r1,a) that a exemplifies r1 can be identi-
fied, for every a, with the corresponding proposition r0.27

To illustrate the construction, consider the following complex predi-
cate:

(16) [λx ∀yP y→¬Qx],

Then, where V(P ) = p1 and V(Q) = q1, we may apply our definition of V
for λ-predicates to identify the denotation of this predicate as follows:

V([λx ∀yP y→¬Qx]) = cond(V([λx ∀yP y]),V([λx¬Qx]))
= cond(vac(V([λ∀yP y])),neg(V([λxQx])))
= cond(vac(univ(V([λy P y]))),neg(V(Q)))
= cond(vac(univ(V(P ))),neg(q1))
= cond(vac(univ(p1)),q1)
= cond(vac(p0),q1)
= cond(p1,q1)
= q1

27This element of the construction in fact reflects an important theorem of object theory,
namely, that there are distinct abstract objects that exemplify all the same properties. In
our simplest model, this in fact happens to be true of all pairs of distinct abstract objects.
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We have therefore shown that our construction I ∗ is an interpreta-
tion of L. All seven elements of an interpretation have been specifically
identified and, as our example above should sufficiently illustrate, every
complex 1-place predicate of our language denotes one of the four prop-
erties in the interpretation and every complex 0-place predication of our
language denotes one of the four propositions.

Since we have shown in the Appendix that all the axioms of MOT are
valid, it follows that they are all true in I ∗. It therefore only remains to
be shown that all instances of OC are also true in I ∗. But this is imme-
diate. For OC says that there is a unique abstract object for any defin-
able collection of properties. But, in our construction, every collection of
properties determines a unique abstract object, since the set of abstract
objects is simply identified with the set of all sets of properties.28

5 Concluding Observations

In the foregoing, we have derived EP, the fundamental principle of world
theory, from the general principles of (a minimal version of) object the-
ory. Within object theory, worlds have a clearly defined nature that is
given by the definition PW, which reveals them to be abstract objects
that encode properties. As abstract objects, they also have clear iden-
tity conditions as given by IdA! and clear existence conditions as given
by EP. The proof of EP utilizes the comprehension principle OC and we
included the abstraction principle Λ1 in our minimal object theory be-
cause it systematizes the properties that play a crucial role in the proof.
All of these principles might seem to have serious ontological commit-
ments when considered jointly. But our work shows that this is not the
case. The general principles of object theory have minimal ontological
commitments. Indeed, given our object-theoretic definition of possible
worlds, we may suppose that in the smallest model of MOTC, the single
possible world is one of the four abstract objects, and in the smallest non-
trivial models of MOTC, the two possible worlds are among the sixteen
abstract objects.29 This further reduces the ontological commitments of

28Note that paradox is avoided here because, in our model, properties are primitive en-
tities and are not identified with sets of objects in the domain of the model. Hence, there
can be fewer properties than there are sets of objects.

29 Specifically, in the non-trivial model, the actual world w∗ is the abstract object repre-
sented by {p1,q1} and the nonactual possible world is the abstract object represented by
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MOTC and, hence, of EP. So we have a proof of EP that preserves it as an
unrestricted plenitude principle committed only to small, finite domain,
no matter whether one takes it as an axiom as most world theorists do or
derives it from more general principles as we have done.

Of course, when we apply the above theory to our modal beliefs, the
ontology of properties, propositions, and abstract objects, and thus, pos-
sible worlds, will grow. It is only by committing ourselves to a large body
of data — specifically, a large body of false but possibly true proposi-
tions — that we become committed to the existence of a large body of
nonactual possible worlds. But, of course, this is no fault of our theory.
Indeed, it is precisely when we add those beliefs that our results become
epistemologically significant. For in light of our work, we don’t need, for
each possible world in the ontology, special evidence for the existence of
that world. Instead, we can cite EP as the principle that justifies our be-
lief in the nonactual worlds that correspond to false, but possibly true,
propositions. In turn, the justification of EP is grounded in the axioms
of MOTC, and in particular, OC and RE. Thus, the epistemological jus-
tification for belief in possible worlds rests on two special principles of
MOTC.

We conclude with one final observation, namely, that metaphysical
questions concerning such matters as the ontological commitments of
EP, the nature of possible worlds and what it means for a proposition to
be true at a world simply have no definite meaning until one has a the-
ory precise enough to answer them. In this paper we have provided such
a theory. As other theories of possible worlds are founded upon simi-
larly rigorous bases, philosophers will be in a better position to develop
meaningful comparisons between them.

Appendix: A Soundness Theorem for MOT

In this appendix it will be shown that MOT is sound, i.e., that all in-
stances of the schema Λ1 and all of the remaining logical axioms and
rules of MOT found in §2.2 are true in every interpretation of L. (As

{p1,q1}, where p1 = vac(p0), q1 = vac(q0), and q1 = neg(q1) = neg(vac(q0)). The actual
world is {p1,q1} because it encodes the two propositional properties constructed out of the
two propositions true at w∗ (= w0), and the non-actual possible world is {p1,q1} because
it encodes the two propositional properties constructed out of the two propositions true at
w1.
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noted above, we are not arguing here that OC is a logical truth and hence
we have not added conditions to the model theory for L that guarantee
its validity.)

The Validity of the Basic Logic. As our model theory is classical, our
basic apparatus of classical propositional logic and second-order monadic
quantification theory is unproblematically valid. That all the axioms of
S5 are valid follows from the fact that no accessibility restrictions are
placed on worlds in an interpretation. Moreoever, it is easy to verify by a
straightforward induction that, if ϕ is valid, i.e., true at the actual world
of every interpretation, then ϕ is true at every world of every interpre-
tation of L. Hence, if ϕ is valid, so is �ϕ. Consequently, the rule of
Necessitation RN is sound.

The Validity of λ-Conversion. Next we show that all instances of our
1-place abstraction principle Λ1 are valid. Actually, however, we will
show something stronger, namely, that every instance of Λ1 is true at
every world of every interpretation. More exactly, where WI is the set of
“worlds” of an interpretation I , we will show:

Lemma 1: For every 1-place predicate [λx ϕ] and term τ of L, and for
every interpretation I of L, w |=I [λxϕ]τ iff w |=I ϕxτ , for every w ∈WI .

We need no corresponding lemma for 0-place predicates, of course, be-
cause 0-place predicates are also formulas of L. This eliminates the need
for λ-predicates of the form [λ ϕ] and, hence, the need to prove the va-
lidity of a 0-place abstraction principle, [λ ϕ] ↔ ϕ. However, because
of the semantic interplay of 0- and 1-place predicates, particularly in
condition V6, there is still a corresponding model theoretic fact about
0-place predicates ϕ that we need to establish in concert with Lemma
1, viz., that such predicates are semantically “harmonious”, i.e., that the
truth value of the proposition that a 0-place predicate ϕ denotes qua
predicate walks in lockstep with the truth value of ϕ qua formula from
world to world. More exactly, say that a 0-place predicate ϕ is harmo-
nious in an interpretation I of L just in case ex(w,V(ϕ)) = 1 iff w |=I ϕ,
for all w ∈WI . Then we need also to show:

Lemma 0: All 0-place predicates are harmonious in all interpretations
of L.
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So let I = 〈W,P,D,Op,ex,en,V〉 be an arbitrary interpretation. The
first task is to show that every predicate of L has a well-defined deno-
tation of the appropriate arity. That denotations have the appropriate
arity follows from the fact that, if an i-place predicate π (i ∈ {0,1}) has
a denotation V(π) at all, it is a member of Pi. That all such predicates
do in fact have unique denotations follows from the fact that (i) every λ-
predicate fits exactly one of the semantic clauses V1–V6 in the specifica-
tion of V in §4.1, (ii) the denotations of the primitive predicates of L are
well-defined, and (iii) all of the logical functions in terms of which the
denotations of predicates are defined are total on their given domains.
These facts are easily, if somewhat tediously, verified.

Given that the predicates of L all denote appropriately, we now need
to show that our two lemmas hold. Given the semantic interplay of 0-
and 1-place predicates just noted, we must prove this by induction on
predicable formulas ϕ simultaneously for both lemmas. We begin with
a simple fact about 1-place predicates with vacuous λ-operators30 that
we appeal to at several points below:

Fact 1: Let [λx ϕ] be a 1-place predicate such that x does not occur free
in ϕ and suppose that ϕ is harmonious in I . Then, for any term τ , w |=I
[λxϕ]τ iff w |=I ϕxτ , for all w ∈W.

Proof. Fact 1 follows directly by the semantics of the vac operator: w |=I
[λxϕ]τ iff V(τ) ∈ ex(w,V([λxϕ])) (by T1) iff V(τ) ∈ ex(w,vac(V(ϕ))) (by
V6). But the latter is the case only if ex(w,vac(V(ϕ))) , ∅; and by E6,
that means ex(w,vac(V(ϕ))) = D, in which case V(τ) ∈ ex(w,vac(V(ϕ))).
So the latter is the case iff ex(w,vac(V(ϕ))) = D which, by E6 again, is so
iff ex(w,V(ϕ)) = 1 and hence, given that ϕ is harmonious, iff w |=I ϕ, i.e.,
as ϕ = ϕxτ (since x does not occur in ϕ), iff w |=I ϕxτ .

Now for the proof of our lemmas. We first prove that atomic formu-
las ϕ are harmonious. In the case where ϕ is simply a 0-place atomic
formula (i.e., a primitive 0-place predicate) π, the result is immediate
by T1. For 1-place atomic formulas ρτ , we have: ex(w,V(ρτ)) = 1 iff
ex(w,plug(V(ρ),V(τ))) = 1 (by V1) iff V(τ) ∈ ext(w,V(ρ)) (by E1) iff w |=I
ρτ (by T1).

Now for the atomic case of Lemma 1. We first consider the case where
ϕ is either a 0-place atomic formula π or a 1-place atomic formula ρσ ,

30Such predicates, recall, denote “propositional” properties, which are critical to the
object theoretic analysis of worlds.
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where σ is not the variable x. Then in either case — the latter by clause 7
of the grammar for L— if [λxϕ] is a 1-place predicate, x does not occur
free in ρ and hence in ϕ. But we have just established that, in either
case, ϕ is harmonious. Hence, by Fact 1, w |=I [λxϕ]τ iff w |=I ϕxτ . So
suppose instead that ϕ is a 1-place atomic formula ρx. Then we have:
w |=I [λx ρx]τ iff V(τ) ∈ ex(w,V([λx ρx])) (by E1) iff V(τ) ∈ ex(w,V(ρ))
(by V1) iff w |=I ρτ (by T1), i.e., w |=I ρxxτ .

Assuming now ϕ is of the form ¬ψ and that the lemmas hold for ψ:
ex(w,V(¬ψ)) = 1 iff ex(w,neg(V(ψ))) = 1 (by V2) iff ex(w,V(ψ)) = 0 (by
E2) iff w 6|=I ψ (by our induction hypothesis) iff w |=I ¬ψ, i.e., ¬ψ is har-
monious. And for the case of Lemma 1: If x does not occur free in ψ,
then, as we have just shown that ¬ψ is harmonious, our result is imme-
diate by Fact 1. So suppose x does occur free in ψ. Then w |=I [λx¬ψ]τ iff
V(τ) ∈ ex(w,V([λx¬ψ])) iff V(τ) ∈ ex(w,neg(V([λxψ]))) (by V2) iff V(τ) ∈
D\ex(w,V([λxψ])) (by E2) iff V(τ) < ex(w,V([λxψ])) iff w 6|=I [λxψ]τ (by
T1) iff (by our induction hypothesis) w 6|=I ψxτ iff w |=I ¬ψxτ (by T2).

Assuming ϕ is of the form ψ→ θ and our lemmas hold for ψ and θ:
ex(w,V(ψ → θ)) = 1 iff ex(w,cond(V(ψ),V(θ))) = 1 (by V3) iff
max{1 − ex(w,V(ψ)),ex(w,V(θ))} = 1 (by E3) iff ex(w,V(ψ)) = 0 or
ex(w,V(θ)) = 1 (by T3) iff w 6|=I ψ or w |=I θ (by our induction hypoth-
esis) iff w |=I ψ → θ, i.e., ψ → θ is harmonious. For the case of Lemma
1: Given the preceding and Fact 1, our result is immediate if x does not
occur free in ψ → θ, so suppose it does: w |=I [λx ψ → θ]τ iff V(τ) ∈
ex(w,V([λx ψ → θ])) iff V(τ) ∈ ex(w,cond(V([λx ψ]),V([λx θ]))) (by V3)
iff V(τ) ∈ (D \ ex(w,V([λx ψ]))) ∪ ex(w,V([λx θ])) (by E3) iff
V(τ) < ex(w,V([λx ψ])) or V(τ) ∈ ex(w,V([λx θ])) iff w 6|=I [λx ψ]τ or
w |=I [λx θ]τ iff (by our induction hypothesis) w 6|=I ψxτ or w |=I θxτ iff
w |=I ψxτ → θxτ (by T3) iff w |=I (ψ→ θ)xτ .

Assuming ϕ is of the form �ψ and that the lemmas hold for ψ:
ex(w,V(�ψ)) = 1 iff ex(w,nec(V(ψ))) = 1 (by V4) iff min{ex(u,V(ψ)) | u ∈
W}) = 1 (by E4) iff, for all u ∈W, ex(u,V(ψ)) = 1 iff, for all u ∈W, u |=I ψ
(by our induction hypothesis) iff w |=I �ψ (by T4). For the case of Lemma
1, assuming again, given Fact 1 and the harmoniousness of �ψ just estab-
lished, that x occurs free in ψ: w |=I [λx�ψ]τ iff V(τ) ∈ ex(w,V([λx�ψ]))
iff V(τ) ∈ ex(w,nec(V([λxψ]))) (by V4) iff V(τ) ∈

⋂
{ex(w,V([λxψ])) : w ∈

W} (by E4) iff, for all u ∈ W, V(τ) ∈ ex(u,V([λx ψ])) iff, for all u ∈ W,
u |=I [λx ψ]τ iff (by our induction hypothesis), for all u ∈ W, |=I ψxτ iff
w |=I �ψxτ (by T4).
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Finally, we have the quantifier case. Assuming that ϕ is of the form
∀yψ and the lemmas hold for ψ and formulas of equal or lesser complex-
ity: ex(w,V(∀yψ)) = 1 iff ex(w,univ(V([λy ψ]))) = 1 (by V5)
iff ex(w,V([λy ψ])) = D (by E5) iff, for all a ∈ D, a ∈ ex(w,V([λy ψ]))

iff, for all a ∈D, Vy
a(y) ∈ ex(w,Vy

a([λy ψ])) iff, for all a ∈D, w |=Iya [λy ψ]y
iff for all a ∈D, w |=Iya ψ (by our induction hypothesis) iff w |=I ∀yψ (by
T5), i.e., ∀yψ is harmonious. But now the needed instance of Lemma 1
follows as well by Fact 1. For by clause 7 of the grammar for L, x cannot
occur free in ∀yψ in a 1-place predicate of the form [λx∀yψ]. So there is
nothing more to prove in this case.

So we have shown that Lemma 0 and Lemma 1 hold. From the latter,
it follows that, for all w ∈ W, w |=I [λx ϕ]τ ↔ ϕxτ and so in particular,
w∗ |=I [λx ϕ]τ ↔ ϕxτ . Since our interpretation I was chosen arbitrarily,
we conclude that all instances of Λ1 are valid.

The Validity of the Identity Principles. The schema Ind has instances
of several forms depending on whether α and β are object variables or
predicate variables. In the former case, when we unpack the definition
Id, instances of Ind are of the form:

(17) (x =A! y ∨ x =O! y)→ (ϕ→ ϕ′).

We shall therefore prove the validity of (all instances of) (17) by proving
the validity of the schemas:

(18) x =O! y→ (ϕ→ ϕ′)

(19) x =A! y→ (ϕ→ ϕ′).

(ϕ′ in each case here is of course to be understood appropriately for the
given schema.) We shall then demonstrate the validity of Ind generally
by proving the validity of those instances where α and β are predicate
variables, i.e.,

(20) F = G→ (ϕ→ ϕ′)

(21) p = q→ (ϕ→ ϕ′).

All instances of (18) are in fact theorems of MOT, a proof of which
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is left for a footnote.31 Beyond axioms of classical quantification theory
and our underlying propositional modal logic, the proof appeals only to
the axiom AE, whose validity is established below. It follows that (18) is
valid.

The validity of (19) is trivial. Suppose ‘x =A! y’ is true in some in-
terpretation and the values of those variables are abstract objects a and
b, respectively. By IdA!, this means that a and b encode the same prop-
erties. But clause 5(i) of the definition of an interpretation in §4.1 for
L guarantees that abstract objects that encode the same properties are
genuinely identical. Hence, as the denotations of variables are fixed in
all contexts, by clause 6 of the definition of an interpretation, variables
denoting the same abstract object can be substituted one for the other
salva veritate. (19), therefore, is valid. Hence, so is (17).

The validity of (20) is also trivial. For suppose ‘F = G’ holds for arbi-
trary properties p1 and q1, respectively. By Id1 this means that p1 and
q1 are encoded by the same abstract objects. But clause 5(ii) guarantees
that properties that are encoded by the same abstract objects are gen-
uinely identical. So again variables denoting the same property can be
substituted one for the other salva veritate. (20), therefore, is valid.

Given the validity of (20), the validity of (21) follows directly. Sup-
pose ‘p = q’ holds in a given interpretation I , for arbitrary propositions
p0 and q0, respectively. By definition Id0, this means that ‘[λxp] = [λxq]’

31The proof is by induction on the complexity of ϕ. The atomic exemplification case
follows immediately from the definitions O! and IdO! and the atomic encoding case follows
from O! and AE which together yield ¬zF for all ordinary objects z. The boolean cases are
straightforward. So assume that Ind holds for formulas of complexity less than that of
ϕ = ∀αψ. Then in particular x =O! y→ (ψ→ ψ′). If α is x or y then, in either case, the only
instances of Ind for ∀αψ are those in which ∀αψ = (∀αψ)′ , rendering Ind trivial in those
cases. So assume α is neither. Then by the rule of Generalization we have ∀α(x =O! y →
(ψ→ ψ′)). Since α does not occur free in x =O! y (see its definition IdO!), we have x =O! y→
∀α(ψ→ ψ′)) by a simple theorem of classical quantification theory and so by ∀-distribution
we have x =O! y → (∀αψ → ∀αψ′). Since ∀αψ′ = (∀αψ)′ given that α is neither x nor y,
our result follows. For the modal case, assuming once again that Ind holds for formulas of
complexity less than that of ϕ = �ψ, we have in particular x =O! y→ (ψ→ ψ′). By RN and
two applications of �-distribution, we have �(x =O! y)→ (�ψ → �ψ′). By the definition
IdO! of =O!, the antecedent here, unpacked, is �(O!x ∧O!y ∧ �∀F(Fx ↔ Fy)), which by
basic modal logic is equivalent to �O!x∧�O!y∧��∀F(Fx↔ Fy). By O! and (2) we have as
a theorem O!x→ �O!x. From this and a bit of modal logic, in particular, instances of the
T and S4 schemas, the preceding conjunction is equivalent to O!x ∧O!y ∧�∀F(Fx↔ Fy),
i.e., x =O! y. Thus, substituting for �(x =O! y) above, we have x =O! y → (�ψ→ �ψ′) and
hence, as �ψ′ = (�ψ)′ , we have our result.
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holds. By clause V6 in the definition of the denotation function for I
and the fact shown in the preceding paragraph that ‘=’ indicates genuine
identity for properties, this means that vac(p0) and vac(q0) are identical.
By the condition in the definition of an interpretation that the vac op-
eration is one-to-one, it follows that p0 and q0 are themselves genuinely
identical. Hence, ‘p’ and ‘q’ will be substitutable salve veritate in I , i.e.,
(21) is valid. Since therefore, we have established the validity of (17),
(20), and (21), we have thereby established the validity of Ind.

Finally, the validity of the reducibility principle Red is immediate
from clause V1 in the definition of the denotation function.

The Validity of the Logical Principles for Abstract Objects. The va-
lidity of the principle RE follows in virtue of clause T1 in the definition
of truth in an interpretation in §4.1 and the fact that the encoding ex-
tension function en is not defined relative to worlds. The validity of �A!
is guaranteed by clause 4 in the definition of an interpretation, which
stipulates that the extension of the distinguished property p∗ at every
world is the set A of abstract objects, and clause 6, which stipulates that
p∗ is the denotation of A!. And, finally, the validity of AE is guaranteed
by the condition in clause 5 in the definition of an interpretation, which
stipulates that the encoding function maps each property to a subset of
the set A of abstract objects.

References

Adams, R. (1974). Theories of actuality. Noûs 8, 211–231.
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Sider, T. (2002). The ersatz pluriverse. Journal of Philosophy 99(6), 279–
315.

40 Christopher Menzel and Edward N. Zalta

Stalnaker, R. C. (1976). Possible worlds. Noûs 10, 65–75.
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