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Abstract  
Applied ontologies have been used more and more frequently to enhance systems engineering. 
In this paper, we argue that adopting principles of ontological realism can increase the benefits 
that ontologies have already been shown to provide to the systems engineering process. 
Moreover, adopting Basic Formal Ontology (BFO), an ISO standard for top-level ontologies 
from which more domain specific ontologies are constructed, can lead to benefits in four 
distinct areas of systems engineering: (1) interoperability, (2) standardization, (3) testing, and 
(4) data exploitation. Reaping these benefits in a model-based systems engineering (MBSE) 
context requires utilizing an ontology’s vocabulary when modeling systems and entities within 
those systems. If the chosen ontology abides by the principles of ontological realism, a 
semantic standard capable of uniting distinct domains, using BFO as a hub, can be leveraged 
to promote greater interoperability among systems. As interoperability and standardization 
increase, so does the ability to collect data during the testing and implementation of systems. 
These data can then be reasoned over by computational reasoners using the logical axioms 
within the ontology. This, in turn, generates new data that would have been impossible or too 
inefficient to generate without the aid of computational reasoners.  
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1. Introduction 

Ontologies are controlled vocabularies comprised of terms and relations with formal definitions, and 
they have become increasingly widespread in data organization and management. The precise and 
controlled nature of the content of the ontology enables different organizations, people, and data to 
become systematically ordered, understood, and utilized, respectively. Moreover, the logical definitions 
within the ontology allow inferences over the data to be made computationally. Basic Formal Ontology 
(BFO) is one of the most successful top-level ontologies. Its widespread success in the biomedical 
domain is well-known [12] and, through sponsorship from the U.S. military, BFO recently became an 
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ISO standard [13]. BFO’s rigorous development and testing have made it an industry standard upon 
which interoperable ontologies can be built to efficiently discover, organize, and utilize data. These 
benefits are becoming increasingly vital to the success of developing autonomous AI into systems. 

The U.S. Department of Defense (DoD) and Intelligence Community (IC), among many other 
organizations, are increasingly utilizing ontologies to organize, exploit, and enhance the sharing of their 
data[32]. At the same time, the DoD also heavily utilizes the systems modeling language (SysML) to 
construct systems models for a wide variety of military projects. Using ontologies alongside SysML 
models in such a way that the ontology enhances the SysML model is therefore crucial to the systems 
engineering process. Doing so would provide interoperability not only between the system models and 
the ontologies utilized, but also between systems in different domains linked through the ontology. In 
this paper, we hope to both gesture at the beginning of a process for how to use ontologies in model-
based systems engineering (MBSE), as well as elucidate the various benefits of doing so.  

In essence, we suggest beginning with an established upper- or mid-level realist ontology, such as 
BFO or one of the Common Core Ontologies (CCO), and then extending it in tandem with the 
construction of a SysML design. BFO and CCO are examples of realist ontologies, meaning that their 
asserted classes are intended to represent reality according to our best scientific understanding of it 
[15][16]. Abiding by realist principles is vital to maximizing interoperability. Following Delgatti’s 
distinctions between a modelling language, a modelling method, and a modeling tool [14], we argue 
that incorporating realist ontologies into the systems engineering process adds a modeling method that 
will increase interoperability, scalability, and clarity within that process. 

 
 

2. Background 

MBSE already benefits greatly from modeling languages such as SysML. SysML is a useful tool for 
constructing dynamic models of systems and breaking down the functionality of each part of the system, 
how they relate to other parts, and specific requirements of each part of the system [14]. Ontologies 
have also been shown to be useful in a variety of ways to the systems engineering process, such as in 
establishing standards and facilitating common understanding [29]. Ontologies, which are often 
expressed in the Web Ontology Language (OWL), are a useful tool for modeling data [26]. As the data 
required to develop complex systems become available in increasingly massive amounts and 
complexity, ontologies are indispensable tools for organizing and exploiting that data. We contend that 
abiding by the principles of ontological realism maximizes the benefits of ontology when applied to 
MBSE. In this section, we give a brief appraisal of the capabilities of each of these tools before moving 
on to how they complement each other in the process of designing systems. 
 

2.1. Model-Based Systems Engineering 

SysML is an extension of the Unified Modeling Language (UML) and was developed in order to 
help systems engineers to model complex systems more effectively [3][14][22][23][29]. The main 
benefit of using modeling languages like SysML in the systems engineering process is that it centralizes 
the information about a system. From this centralized store of information, relevant specification 
documents can be generated and different views of the system model can be adopted, which cuts out 
the need to manually check to make sure the various specifications and designs of the system are being 
developed or changed uniformly. SysML and UML contain multiple views and artifacts that capture 
information about a system in a hierarchical fashion. Moreover, they provide traceability between 
information in the different views to further increase understanding [7]. SysML provides ways to model 
entities that permits describing those entities using a variety of attributes, parts, or other data. This 
provides an excellent way for systems engineers to model systems and then test the models even before 
prototypes of the system are constructed, since changes made in one part of the model will be reflected 
everywhere.  



However, while tools like SysML and the MBSE approach in general have solved the problem of 
compiling system information together in a unified model, there is still the difficulty of unifying the 
models themselves. In the context of military operations, for example, a multitude of systems, designed 
and produced by different organizations, might need to work together. Consequently, as systems 
become more complex, and as the need for interoperability among these complex systems (sometimes 
developed by different organizations) arises, a pressing issue becomes how we can facilitate that 
interoperation. To facilitate this interoperation, we turn to ontology. 

 

2.2. Ontology 

Ontologies, recall, are controlled vocabularies, and their central usefulness is their ability to unify 
heterogenous data within and across domains. Data tagged with an ontology provides a common way 
to record and talk about the data, making it interoperable between different organizations and 
institutions that may have different (or incompatible) ways of managing, organizing, or referring to that 
data [8] [15]. Moreover, the ontology helps to codify a precise language, which increases clarity of 
communication between users of the ontology and thereby reduces miscommunication.  

One kind of ontology is a realist ontology, that is, one that has been built according to the 
methodology of ontological realism. According to ontological realism, the terms in an ontology ought 
to represent the entities that exist in reality according to our best scientific understanding of the world. 
This can be contrasted with conceptualist approaches to ontology building, according to which terms in 
an ontology represent our concepts of the world rather than the world itself [16][31].  

One of the major successes in the ontology world has been the top-level, realist ontology BFO [17]. 
The realist approach to BFO’s development has allowed it to endure where other ontologies have 
become obsolete. This is mainly because reality is the standard for the development of realist 
ontologies, and reality is the same for everyone and it is free of contradictions. Alternatively, for 
conceptualist ontologies the concepts and models that we use can and often do change – sometimes 
with significant speed. Moreover, because reality is the same for everyone, BFO is able to be utilized 
and extended into any domain of interest. Where there are disagreements about how reality is – and 
there are many such disagreements – contentious classes are asserted only when needed and are revised 
if scientific consensus emerges or changes.  

If principles of realism are not followed, reality is no longer the standard for asserting classes. As 
such, the common ground for constructing ontologies is lost, which leads to the “siloing” of the data 
organized by those ontologies. In turn, this prevents the easy sharing and understanding of those data 
and, somewhat ironically, undermines one of the main motivations for building and using ontologies at 
all. In the rest of this section, we give a brief overview of BFO and some of its important mid-level 
extensions before discussing the compatibility between ontology and the current military enterprise 
architectures in Section 3.   

 

2.2.1. Basic Formal Ontology (BFO)  

The backbone of BFO is a taxonomic hierarchy of terms organized into type-subtype (or ‘is_a’, read 
as ‘is a subtype of’) relations. The definitions that produce such a hierarchy are called ‘Aristotelian 
definitions’, and they take the form of A is_a B that Cs (where ‘A is_a B’ states the type-subtype 
relation and ‘that Cs’ captures the differentiating features that demarcate the subtype from both the 
parent class and any other of its subtypes). A toy example might be: Person is_a Animal that is 
rational. This tells us that Person is a subtype of Animal, and that being rational is what demarcates 
Person from other kinds (subtypes) of Animal. Because the definitions themselves logically imply a 
hierarchical structure, conflicts between the meaning and usage of the terms in the ontology can be 
avoided. Moreover, because the terms and definitions in BFO are determined by attempting to model 
reality on the basis of our best sciences [16], BFO can be extended to any domain that has an interest 
in collecting data about reality – virtually any domain. It was partly for this reason that BFO was 
sponsored to be an ISO standard for top-level ontologies [13].  



One intended aim of BFO is to provide a framework that can all any entity to be represented. That 
is, anything that exists can find a place somewhere within the framework of BFO and its extension 
ontologies. This approach has allowed BFO to be useful in a variety of domains, including the 
biomedical, intelligence, and industrial domains [12][18][19].  

To aide in this endeavor, mid-level ontologies extending BFO, such as those in CCO, have been 
developed in order to provide a more robust framework for developing domain-level ontologies 
[20][21]. BFO is high-level, and because of this it is very small. Yet, sometimes many more specific 
types of entities within a wide variety of domains need to be captured. Instead of reinventing the wheel 
every time an ontology is needed for a new domain, mid-level ontologies provide a more robust, in-
depth framework from which to draw. 

 

2.2.2. Ontological vs. Object-Oriented Class Hierarchies  

The backbone of an ontology is a taxonomic class hierarchy, which can resemble an object-oriented 
(OO) class hierarchy in many respects. However, the class hierarchies developed in OO should not be 
confused with class hierarchies in ontologies. The former act as a template from which any number of 
instances can be (though need not be) created [8], whereas a class hierarchy in an ontology ought to 
represent the kinds of entities that exist in the world (usually in some specified domain) and how they 
relate to one another [15]. An example OO class hierarchy might be two derived classes “Airplane” and 
“Automobile” that inherit from a base class “Vehicle.” Instances of these classes in the program can be 
created because the classes have been generated prior to their instantiation. This contrasts with realist 
ontologies, which assert ontological classes like Airplane or Automobile only if there are instances of 
those classes in reality. This difference is illustrated in Figure 1 below.  

 
 

2.2.3.  Ontological Axioms and Reasoning 

The classes in an ontology are arranged hierarchically using axioms, and the relations in an ontology 
can be asserted either as axioms between classes or as relations between multiple instances, or between 
instances and classes [8]. In order to be most useful, however, the ontology has to be machine readable. 
That is, computers must be able to understand and effectively reason over the data that is tagged with 
the ontology.  

Figure 1: Relationship between classes and instances in OO and ontological hierarchies 



In addition to the benefit of providing a common set of terminology for humans, the computational 
aspect of ontologies makes them vital in an age where the amount of data that is being generated is 
increasing exponentially, including in the intelligence and military domains: “The Department of 
Defense (DoD) and the intelligence community at large (IC) rely on large, and ever-growing amounts 
of distributed data to perform intelligence-related analysis” [5]. To help with this, the DoD works with 
several architecture frameworks, such as the DoD Architecture Framework (DoDAF), the Unified 
Architecture Framework (UAF), and the NATO Architecture Framework (NAF), to help organize the 
data generated to plan and conduct large scale operations[1][2][4][28]. By using realist ontologies like 
BFO and CCO, which are compatible with these frameworks, a standard for building and organizing 
data about models can be established. Going forward, this can help to solve the problem of making 
systems and system components developed by different organizations easily and effectively 
interoperable.  

 

3. Applying Ontology to Systems Engineering 

We propose a “meet-in-the-middle” approach to incorporate ontology into systems engineering. On 
the one hand, established upper-, mid-, and domain-level ontologies can be mined for their terms (and 
corresponding definitions), which can then be utilized in SysML models. Everything from what is being 
modeled in SysML to the parts of the system being designed, the relations to other entities outside the 
model, and even the kind of model itself can be represented using a consistent terminology provided 
and maintained by a BFO-conformant ontology. This approach consists of four steps. However, 
depending on the goals and desires of the project, not all steps need to be taken in order to reap the 
benefits of ontology. That said, the greater number of steps completed, the better the benefits. 

The first step in using an ontology to enhance systems engineering is to identify an ontology or suite 
of ontologies that capture the kinds of entities that need to be incorporated into the system. As noted, 
BFO and its mid-level extensions in CCO can be applied to any domain of interest. Accordingly, there 
are a variety of domain-level ontologies built for use in the military and industrial domains, among 
others, that can be utilized. If the specific entities that the system deals with are not captured in any 
ontology, existing ontologies can be extended by adding the needed classes that capture those entities.  

After the ontology has been constructed, the second step is to model the system in SysML using the 
vocabulary from the ontology to designate the entities in the model. This includes the physical 
components of the system as well as the attributes, capabilities, roles, and functions that those physical 
components have. Maintaining this semantic consistency from the ontology will ensure that other 
systems models will be using terms in a consistent way, which will make it easier for engineers to 
understand each other’s models and designs. 

The third step is to then use the ontology to tag data collected about the system. Because the same 
terms that are in the ontology are used to construct the system model, it becomes an easy task to use 
that ontology to collect and share data about the system. 

The third step enables the fourth, which is to use the axioms in the ontology to reason over the data. 
Tagging the data with the ontology involves structuring that data in some language that is machine 
readable. One popular means of doing so is to express the ontology and tagged data using the Web 
Ontology Language 2 (OWL 2), which is based on the Resource Description Framework (RDF). While 
other languages exist that can be used for such a purpose, the important requirement is that the language 
be capable of expressing decidable description logic [27]. OWL-RL and OWL-DL (profiles of OWL) 
enable this kind of reasoning [30]. Thus, modeling systems using the vocabulary from a widely used 
ontology will do two things. First, it increases the understanding of individuals working on the system. 
Second, it ensures that data about the systems that is tagged with that ontology will be interoperable 
with other data that has been tagged with the same or interoperable ontologies.    

4. Discussion 

So far, we have seen two sets of tools: SysML and systems models, on the one hand, and OWL and 
ontologies, on the other. The question we now turn to is: How can OWL and ontologies be utilized in 



the systems engineering process? Ontologies have already been used to great effect in systems 
engineering. Indeed, the term ‘ontology-based systems engineering’ (OBSE) has already been coined 
in the field [24], and further work to integrate SysML and OWL is underway [6][9][10]. However, 
while the benefits of OBSE have already been observed, we argue that there are four main areas where 
ontologies that conform to the principles of ontological realism (such as BFO and its extensions in 
CCO) can enhance the systems engineering process beyond what has already been accomplished. These 
four areas are:  

 
1. Interoperability: links developing systems models to existing knowledge frameworks; 
2. Standardization: standardizes vocabulary that enhances cross-domain understanding; 
3. Testing: enhances outcomes-based research and testing; and, 
4. Data Exploitation: unifies data that agents in a multi-agent system (MAS) can exploit. 

 
We discuss these four benefits in two sections. Interoperability and standardization, while distinct, 

are closely related and mutually reinforce each other. Similarly, while testing and data exploitation are 
each distinct benefits of ontologies, each enhances the other in an organic way. Thus, the two 
subsections below discuss these pairs in turn. We emphasize that throughout the discussion we talk 
exclusively of the benefits of realist ontologies (though for the sake of redundancy we often omit the 
qualifier ‘realist’) because realist ontologies are the ones that have been shown to unify data most 
effectively [12][13][18].  

 
 

4.1.  Standardization and Interoperability 

By ‘interoperability’, we refer to two different phenomena: (1) the ability of systems to work with 
each other, and (2) the ability to share data in an easily understandable and accurate way. We argue that 
the standardization provided by an ontology will facilitate both kinds of interoperability because 
increasing shared understanding (the data interoperability) will make it easier to design systems that 
can work with each other, even if those systems are designed by different organizations.  
 

 
Figure 2: Benefits of Realist Ontology to MBSE 



Closely related to interoperability is standardization. Standards provide a way for isolated groups 
and organizations to align their various work, products, goods, and services. In the context of systems 
building, effective standardization enables systems designed by one organization for a particular 
purpose to align with systems designed by other organizations for other purposes. Thus, standardization 
can be seen as a necessary component for large-scale interoperability and long-term scalability. We do 
not argue here that creating and using standards guarantees interoperability, only that standardization 
seems to be a necessary condition for achieving widespread system interoperability. However, other 
requirements beyond standardization will, of course, be necessary to foster this kind interoperability. 

Semantic standardization, in contrast to system interoperability, can be achieved by having a 
common, controlled vocabulary that prevents misunderstandings and miscommunications when data is 
exchanged and interpreted. For example, if there is ambiguity in what is meant by terms like ‘multi-
agent system’ (MAS) or ‘unmanned aerial systems’ (UAS), then data collected about these entities will 
not necessarily be uniform; nor, then, could it be easily integrated. If one organization uses ‘UAS’ to 
refer to one kind of system and a second organization uses ‘UAS’ to refer to a slightly different kind of 
system, and these organizations also share their data, then the shared data will give rise to bad inferences 
since there are really two (albeit very similar) systems that are falsely thought to be one kind of thing. 
Incorporating an ontology into this process eliminates this problem by carefully tracking what is meant 
by each term and organizing the data about the entities which correspond with those terms accurately. 
In other words, standardization is one of the necessary means by which interoperability is achieved. 
These standards ultimately foster greater interoperability between systems.  

Interoperability ought to be a paramount feature of systems because the more interoperable a system 
is, the more easily it can be adapted for use within other contexts or systems. Interoperable ontologies 
are ones that are compatible with other ontologies in terms of their definitions, relations, and class 
hierarchies. One benefit of incorporating BFO-conformant ontologies in the systems engineering 
process is a terminology that is consistent across domains. BFO-conformant ontologies already allow 
data to be collected and synthesized across military, manufacturing, and biomedical domains, as BFO 
acts as the hub for the extension ontologies in each of these domains [15]. Similarly, if the data about 
systems models are interoperable, it is easier to see whether two systems are interoperable or not. 
(indeed computers could use the ontological axioms to infer this) For example, UASs designed for a 
military application could potentially be utilized in other contexts and systems – such as biomedical 
ones – as long as the systems models were interoperable enough to allow such a transition.  

Suppose that a UAS is designed to be able to dynamically transport cargo to where they are most 
needed in a battlespace. This UAS would be equipped with various instruments and fixtures in order to 
allow it to efficiently carry, load, and unload the cargo. If, however, there was suddenly a new need for 
medical transport of injured troops, one might desire to modify or outfit these cargo-transport UASs to 
be able to transport injured warfighters. Doing so would require installing new equipment such as heart 
monitors, stretchers, and other medical equipment. This requires that fixtures, screws, the dimensions 
of these equipment, and so forth could all be suitably installed into the UAS.  

The extent to which the above modifications are possible is dependent upon the extent to which 
these various pieces of equipment have been designed for interoperability and modularity in mind. To 
design a piece of equipment with a high level of interoperability, one is required to consider a wide 
range of other devices and pieces of equipment with which the new piece of equipment can compatibly 
operate. Having an ontology can aid in this design process by standardizing the vocabulary that is used 
to talk about the models themselves. The semantic standard, then, makes it easier both to determine 
which existing equipment the model will be interoperable with. This is because the vocabulary used to 
talk about, say, the functions, capabilities, and information associated with that equipment would be 
standard across models and even across modeling frameworks.  

Additionally, the ontologies used to develop the model also serve to organize and axiomatize the 
data about the models that are produced. This is advantageous for systems designers since computers 
can use the ontology to reason over the data about large sets of models to determine which equipment 
is or is not interoperable with another piece of equipment. The ontology enables this by using the logical 
axioms associated with its classes. We emphasize that even with a semantic standard in place, not every 
piece of equipment will be (or even should be) interoperable with every other piece of equipment, 
machinery, or system. However, the semantic standard the ontology provides makes it easier to create 



interoperable systems, equipment, devices, or software, and allows computers to efficiently determine 
the extent to which various systems and system components are interoperable.  

 

4.2. Testing and Data Exploitation 

Once models have been created, the systems that have been designed need to be tested. This testing 
could take place using simulations, physical prototypes, or both. However, it is accomplished, testing 
requires data, and data must be organized and processed in order to be useful. Without an ontology, one 
must devise a way to collect and process the generated data after the model has been made. Without an 
ontology, the data that is generated will also only be usable by organizations that have sufficiently 
similar methods of collecting and organizing that data, which is unlikely without a strong standard. 
With an ontology, however, the way to organize data collected from the testing of the systems is 
inherent already within the ontology used to build the system. Moreover, even if an ontology was 
incorporated after the design of the system during data collection, the ontology would enable any 
organization with access to that ontology to use that data and generate insights and improvements.  

The most prominent example of this is seen in outcomes-based research. Outcomes-based research 
began in the healthcare domain, and it attempts to understand the outcomes and results of particular 
practices and interventions within that domain [11]. This is done by combining datasets that look for 
the relationships between variables and desired outcomes, and then performing metanalyses on the data 
to determine which parameters produce the desired outcomes most effectively. As Susan Michie and 
Marie Johnston put it: 

 
Implementing research findings into healthcare practice and policy is a complex process 
occurring in diverse contexts… Questions asked with the aim of improving implementation are 
multifarious variants of “What works, compared with what, how well, with what exposure, with 
what behaviors (for how long), for whom, in what setting and why?” [[25], p. 1] 

 
In the context of systems engineering, outcomes-based research opens the door to testing which 

kinds of systems and which models for systems are most effective at achieving particular outcomes. 
This could even go so far as to reveal which parts of systems are contributing the most to which 
outcomes, thereby allowing the best pieces taken from various systems to be combined into a more 
effective one.  

For example, suppose one is testing a prototype design for semi-autonomous rovers that can detect 
mines in a minefield and transmit their location back to a commander. Getting the rovers to sweep a 
minefield with maximal efficiency, determining which environments the rovers work best in, 
comparing different rover designs, and testing which kinds of sensors or sets of sensors are best for 
detecting the mines, and in which environments, requires an enormous amount of data collection over 
a huge number of tests. If the models for these rovers were built using an ontology, data generated by 
these tests can be seamlessly organized by the ontology since each system component being tested will 
already have a place in the ontology. Once the data is organized by the ontology, determining the 
answers to questions like, “which sensors work best in which environments”, become far easier. This 
stems from the ability of computer reasoners to infer a myriad of useful data using the axioms present 
in the ontology, which can then be queried as needed. 

Thus, ontology enhances the power of data by allowing it to be more seamlessly aggregated from 
different sources and using that aggregated data to computationally generate further data using the 
axioms built into the ontology. 

 

5. Conclusion 

In this paper, we proposed that incorporating BFO-conformant ontologies into the systems 
engineering process will facilitate the unification of the data that is collected by different groups and 
organizations, as well as facilitating the development of interoperable systems. BFO-conformant 



ontologies abide by principles of ontological realism, according to which ontological classes represent 
reality according to our best scientific understanding of the world. By using reality as a standard, BFO 
and its extension ontologies provide a way to unify heterogeneous domains under a single framework. 
The ontology provides a semantic standard that eliminates ambiguities in the data collected, and it also 
contributes axioms that allow for additional data to be generated. This is especially helpful in comparing 
and testing the effectiveness of systems using an outcomes-based research method.  
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