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Abstract. Causal analysis in the social sciences takes advantage of a variety of methods and 

of a multi-fold source of information and evidence. This pluralistic methodology and source 

of information raises the question of whether we should accordingly have a pluralistic 

metaphysics and epistemology. This paper focuses on epistemology and argues that a 

pluralistic methodology and evidence don’t entail a pluralistic epistemology. It will be shown 

that causal models employ a single rationale of testing, based on the notion of variation. 

Further, I shall argue that this monistic epistemology is also involved in alternative 

philosophical theories of causation. 

1. Introduction  

Different social sciences study society from different angles and perspectives. Sociology 

studies the structure and development of human society, demography studies variations in 

populations due to mortality, fertility and migration behaviours, economics studies the 

management of goods and services, epidemiology studies the distribution of disease in human 

populations and the factors determining that distribution, etc. In spite of these differences, the 

social sciences share a common objective: to understand, predict and intervene on society. In 

these three moments of the scientific demarche, knowledge of causes is in many cases a 

necessary ingredient in order to provide an explanation of social phenomena as well as of 

individual behaviours. 

This causalist perspective, however, is not always explicit. Causal vocabulary is sometimes 

replaced with more vague terms such as factor, determinant, risk, but not cause and effect. 

Also, it is said that in spite of the heavy formalism of modern models, the social sciences 

cannot establish causal relations but only make associational claims. However, if the social 

sciences merely described phenomena, it would be useless to design policies or prescribe 

treatments that rely on the results of research. Adopting an explicit causalist stance is 

motivated by two distinct but related objectives: cognitive and action-oriented. We pursue a 

cognitive goal in detecting causes and thus in gaining general causal knowledge of the causal 

mechanisms that govern the development of society, and such general causal knowledge is 

meant to inform and guide social policy, that is we also pursue an action-oriented goal. 

In the social sciences, causal analysis takes advantage of a variety of methods and of a 

multi-fold source of information and evidence. In this paper I raise the question of whether 

such methodological and evidential pluralism also entails epistemological pluralism. In a 
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nutshell, I shall give a negative answer and argue in favour of a monistic rationale of causality 

based on the notion of variation. 

The paper is organised as follows. I first give an overview of methodological and 

evidential pluralism by presenting different causal models and the variety of types of evidence 

and of information used in causal analysis, and then spell out the question of whether this 

form of pluralism entails epistemological pluralism. Afterwards, I present the rationale of 

variation and support it with methodological arguments; I also offer a taxonomy of variations 

and discuss some possible objections. Finally, I show that this rationale is consistent with or 

even adopted in alternative philosophical accounts of causation. 

2. Methodological and evidential pluralism 

The first developments of quantitative causal analysis in the social sciences are due to the 

pioneering works of A. Quetelet (1869) and E. Durkheim (1895 and 1897) in demography and 

sociology respectively. Significant improvements are due to H. Blalock (1964) and Duncan 

(1975), and since then causal analysis has shown noteworthy progress in the formal methods 

of analysis. In the following, I shall just give some examples of different methods through 

which contemporary causal analysis is carried out. 

Structural equation models 

Arguably, structural equation models (SEM) are the most widespread methodology. 

Originators of SEM were mainly geneticists, such as S. Wright (1921, 1934), and economists, 

such as T. Haavelmo (1943, 1944) and T.C. Koopmans (1950). SEM consist of a set of 

equations, which can be used to determine a causal graph. SEM are designed in order to 

combine qualitative causal information with statistical data to provide quantitative assessment 

of cause-effect relationships among variables of interest. Other classes of models, e.g. 

covariance structure or hierarchical models, rely on SEM, so it is worth spending some time 

on their structure, assumptions and hypothetico-deductive methodology.
1
 

To illustrate, Figure 1 represents a canonical econometric model relating price and demand 

through two equations
2
: 

 

FIG. 1 Econometric model relating price and demand 

                                                 
1
 Nowadays, in the SEM-literature there isn’t an unanimous consensus as to whether structural equations can be 

given a causal interpretation. However, as Judea Pearl argues at length (Pearl 2000, ch.5), the original 

interpretation of SEM was eminently causal and it is a trend of contemporary researchers to require extra 

ingredients for the causal interpretation. 
2
 I borrow this example from Pearl (2000 : 27-28). 
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Q is the quantity of household demand for a certain product, P is the unit price of the same 

product, I is the household income, W is the wage rate for producing the product, ε1 and ε2 are 

the error terms, β and δ are the parameters. The first equation states that demand depends on – 

or is causally determined by – the unit price of the product and the household income, while 

the second states that the unit price of the product depends on – or is causally determined by – 

the demand and the wage rate. In the graph, each variable is represented by a node and 

relationships between variables are represented by arrows. 

The basic idea underlying SEM is that in a system of equations we can test whether 

variables are interrelated through a set of relationships, by examining the variances and 

covariances of variables. Sewall Wright, as early as 1934, has taught us to write the 

covariance of any pair of variables in terms of path coefficients. The path coefficient 

quantifies the (direct) causal effect of a putative cause X on the putative effect Y; given the 

numerical value of the path coefficient β, the structural equation Y Xβ ε= + claims that a unit 

increase in X would result in β units increase in Y.  
SEM rely upon a number of assumptions, some of which have mere statistical importance 

(for instance, normality) whereas others have a fundamental bearing on causality (for 

instance, the non-correlation of errors terms, covariate sufficiency or no confounding). 

Among causal assumptions the crucial one is the so-called invariance condition or structural 

stability. This condition states that parameters have to be stable across a large number of 

interventions or environmental changes. Stability of parameters is usually taken as the 

condition ensuring the causal interpretation of structural equations. 

In SEM, the process of model building involves a continuous interaction between 

background knowledge and a sequence of statistical procedures for elaborating and testing 

hypotheses. This is the bulk of the hypothetico-deductive methodology (H-D). H-D 

methodology is a procedure that accounts for data obtained through observations and/or 

experimentation and that confirms or disconfirms a given causal structure by confrontation 

with empirical evidence. Empirical testing is performed through two stages: 

(i) prior theorizing of out-of-sample information, including in particular the selection of 

variables deemed to be of interest, the formulation of a causal hypothesis, etc.; 

(ii) iteratively:  

a. building the statistical model; 

β1 

β2 

I 

ε1 

W 

ε2 

Q P 

δ1 δ2 
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b. testing the adequacy between the model and the data to accept the empirical validity or 

non-validity of the causal hypothesis. 

Causal modelling requires accurate knowledge of the causal context: previous studies, well 

confirmed scientific theories or background knowledge are essential. The causal hypothesis 

states a hypothesized causal structure to be put forward for empirical testing. Thus, causality 

is a matter of confirmation, or borrowing the statistical vocabulary, a matter of accepting or 

rejecting a given hypothetical causal structure. This strategy is hypothetico-deductive because 

the causal claim is not inferred from the data, as in inductive methods
3
, but confirmed or 

disconfirmed in the given causal context and relative to the structural model. Elsewhere 

(Russo 2005, Russo et al. 2006) I argued in more detail that several elements participate in 

justifying the causal interpretation of these models, for instance the causal context in which 

they are built, the specific set of assumptions having causal compass and their peculiar H-D 

methodology. 

Covariance structure models 

Covariance structure models (CSM) attempt to explain the relationships among a set of 

observed variables in terms of a generally smaller number of unobserved or latent variables.
4
 

Formally, CSM consist of an analysis of the covariances of the observed variables in two 

conceptually distinct steps. A measurement model links observed variables to unobserved 

variables and a structural model links unobserved variables. In turn, the measurement 

component of CSM consists of a confirmatory factor model (CFM) explaining the 

covariations in a set of observed variables in terms of a smaller number of common factors. 

The idea behind CFM is that, although some variables of theoretical interest cannot be 

observed directly, information about them can be obtained indirectly from their effects on 

observed variables.  

Thus, CSM consist in the simultaneous specification of the factor model and of the 

structural model. The task is to explain the interrelationships among the observed variables as 

indicated by the covariances among them, in terms of the relationships among the unobserved 

variables used in the structural equations. It is worth noting that what specifies causal 

relations in CSM is the structural equation model. On the other hand, the measurement model 

allows us to estimate latent variables from observed variables. 

Multilevel models 

Recently, multilevel or hierarchical models
5
 are used in a variety of disciplines, ranging 

from education to demography. Multilevel analysis is a methodology for the analysis of data 

with complex patterns of variability, the underlying assumption being that data shows a 

hierarchy that cannot be neglected in the analysis.  

The object of a discipline does not straight specify the level of aggregation at which 

analyses have to be carried out. For instance, economics is interested in the production, 

distribution and consumption of wealth, however, there is no a priori specification of whether 

analyses have to concern individuals, markets, firms, or nations. Thus, multilevel analysis 

recognises the existence of a multiplicity of levels and tries – within the framework of a single 

                                                 
3
 An example of an inductive method, that tries to infer causal structures from data, is TETRAD, the algorithm 

developed by Spirtes, Glymour and Scheines (1993). 
4
 For a very clear introduction see Long (1983). 

5
 Very good introductions to multilevel modelling are those of Goldstein (2003), Snijders and Bosker (2004), 

and Courgeau (2003) in which epistemological and methodological problems are also discussed in detail. 



 5 

model – to specify the relations holding among individuals and/or among different levels of 

aggregation. In other words, this approach recognises that the grouping of individuals 

introduces an influence of the group on its members, and, conversely, that members have an 

influence on the group’s behaviour. Failure to recognise this twofold source of influence and 

variability may lead to two types of fallacy: the atomistic fallacy and the ecological fallacy.
6
  

Contingency tables 

Causal analysis is also performed by means of contingency tables or cross tabs. When 

variables involved are non-metric, categorical data analysis (CDA) is more often employed 

instead. CDA has a very long history. It began in the early 1900s, when K. Pearson and U. 

Yule were debating on measures of associations, and two decades later CDA took advantage 

of significant contributions by R. Fisher. The first lucid exposition of the use of contingency 

tables in sociology is due to Boudon and Lazarfeld (1966) and in recent years, clear 

presentations and further improvements of CDA are available in the works of Hellevik (1984) 

or Agresti (1996).  

A categorical variable is one for which the measurement scale consists of a set of 

categories. Categorical scales are very often used in the social sciences to measure attitudes 

and opinions on several issues. Categorical data consist of frequency counts of observations 

occurring in the response categories. Consider the simplest case, where only two variables X 

and Y are involved. X has i levels, and Y has j levels, according to the number of categories 

that X and Y involve. The ij possible combinations of outcomes are then displayed in a 

rectangular table having i rows and j columns. The cells of the table in fact represent the ij 

possible outcomes and contain frequency counts of outcomes. Tables thus construed are 

called contingency tables or crosstabulations. Such ordinary percentage tables can be analysed 

by adopting an explicit causal framework. 

Such a causal framework is offered, for instance, by Hellevik (1984), where an explicit 

causal terminology is adopted. In the bivariate case, the independent variable Y represents the 

cause and the dependent variable X represents the effect. Different levels of X are then 

compared with regard to the proportion having a specific value on Y. The difference in 

proportion will then measure the degree of association of the two variables and, in this 

framework, it will be interpreted as the causal effect of Y on X. In contingency tables 

differences in proportions play the analogue of regression coefficients in SEM, giving highly 

similar results. Thus, to some extent, the causal framework for contingency tables rests on the 

same features as SEM, namely on background knowledge, choice of variables, issues of 

confounding and control, etc. 

Data and evidence 

By means of these different methodologies, social scientists try to make sense of 

observations and to infer causal relations between variables of interest with reasonable 

confidence. Observations, however, first have to be collected. Data comes from a variety of 

                                                 
6
 The motivation for developing hierarchical models lies in the so-called ecological fallacy, firstly recognised by 

Robinson (1950). The ecological fallacy consists of inferring individual behaviours from aggregate measures. 

Robinson pointed out, for instance, that correlations between two characteristics measured on a binary basis 

among individuals (e.g. being black and illiterate in the US), or by proportions in regions (e.g. proportions of 

black and illiterate people in the population) were generally not identical and could even carry opposite signs. 

Conversely, the atomistic fallacy arises when, analysing individual behaviours, the context in which such 

behaviours occur is neglected. 
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different sources: surveys, census, experiments, interviews, etc. Analogously, evidence of 

causal relations can come from different sources: previous studies, background knowledge, 

knowledge of mechanisms or of probabilistic relations, etc.  

Previous studies often make it plausible to investigate a given causal relation in a different 

population or at a different time. Background knowledge gives a (causal) context to causal 

models, for instance by providing the socio-political context of a population or socio-

demographic differences across different populations, etc. A different type of background 

knowledge is constituted by the iterated application of some methods for the analysis of a 

given relationship. 

Evidence for causal relations can be of two different sorts. We infer causal relationships 

from probabilistic evidence: causes have to be statistically relevant for their effects, but we 

also require repetition of similar studies and coherence in their results, namely covariations 

among variables of interest have to show some stability. Yet, probabilistic evidence is not 

sufficient as correlations may be spurious, as is well known. To infer causal relationships we 

also have to exhibit a plausible mechanism. 

 

It seems then clear that scientific practice in the social sciences takes advantage of a 

pluralistic methodology, evidence and source of information. Consequently, the following 

question arises: does this methodological and evidential pluralism entail ontological and 

epistemological pluralism? In other words, does the fact that in practice social scientists use 

different models, different sources of evidence and of information entail that there are 

different concepts or different rationales of causality? In the remainder of the paper I shall 

focus on epistemological pluralism and argue that a single rationale of causality, based on the 

notion of variation, is used in the social sciences. 

3. Epistemological monism: the rationale of variation 

The rationale of variation 

Epistemology studies the origin, nature and limits of human knowledge. Epistemology of 

causality then wonders how we know about causal relations, what epistemic access we have to 

causal relations, under what conditions we can interpret correlations causally, whether 

specific conditions such as invariance under intervention, structural stability or the Markov 

condition in Bayes nets guarantee causality. More specifically, I address the question: what 

rationale of causality governs causal models in the social sciences? Is there a unique rationale 

or different ones depending on the model at hand?  

A rationale is the principle or notion underlying some opinion, action, phenomenon, 

reasoning, model, or the like. A rationale of causality in causal modelling is then the principle 

or the notion that guides causal reasoning (in causal modelling). It is worth emphasising that a 

rationale is not a definition of what causality is. A definition is a description of a thing by its 

properties; thus, a definition of causality states what causality in fact is. Whilst providing a 

definition of causality is a job for metaphysics, the development of a rationale is a matter of 

epistemology. In this paper, I am concerned with the latter problem but not with the former. 

The received view, an heritage of Hume, sees this rationale in the notion of regularity and 

this standpoint still pervades contemporary philosophy of science. As is well known, Hume 

believed that causality lies in the constant conjunction of causes and effects. In the Treatise 

Hume says that, in spite of the impossibility of providing rational foundations for the 

existence of objects, space, or causal relations, to believe in their existence is a “built in” habit 

of human nature. In particular, belief in causal relations is granted by experience. For Hume, 
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simple impressions always precede simple ideas in our mind, and by introspective experience 

we also know that simple impressions are always associated with simple ideas. Simple ideas 

are then combined in order to form complex ideas. This is possible thanks to imagination, 

which is a normative principle that allows us to order complex ideas according to (i) 

resemblance, (ii) contiguity in space and time, and (iii) causality. Of the three, causation is the 

only principle that takes us beyond the evidence of our memory and senses. It establishes a 

link or connection between past and present experiences with events that we predict or 

explain, so that all reasoning concerning matters of fact seems to be founded on the relation of 

cause and effect. 

The causal connection is thus part of a principle of association that operates in our mind. 

Regular successions of impressions are followed by regular successions of simple ideas, and 

then imagination orders and conceptualizes successions of simple ideas into complex ideas, 

thus giving birth to causal relations. The famed problem is that regular successions so 

established by experience clearly lack the necessity we would require for causal successions 

(otherwise successions would me merely casual). Hume’s solution is that if causal relations 

cannot be established a priori, then they must be grounded in our experience, in particular, in 

our psychological habit of witnessing effects that regularly follow causes in time and space. 

My suggestion is, instead, to depict the rationale of causality as the measure of variation or 

change. The study of change is the study of factors which produce change. Thus, measuring 

variations conveys the following idea: to test causal models means to measure suitable 

changes or variations. Causal models apply a H-D methodology: causal hypotheses are first 

formulated, and then put forward for empirical testing. In turn, empirical tests are designed to 

assess the presence of a variation, and to assess whether this variation satisfies certain 

conditions. Therefore, the point I want to make is twofold: (i) causal modelling is not 

governed by a rationale of regularity but by a rationale of variation, and (ii) there is only one 

rationale. In other words, methodological and evidential pluralism do not imply 

epistemological pluralism.
7
 The monistic epistemology I offer turns around a rationale of 

causality which is based on the notion of variation. 

Methodological arguments 

Let us consider structural equation models (SEM) first. Recall that the basic idea of SEM is 

that in a system of equations we can test whether variables are interrelated through a set of 

linear relationships, by examining the variances and covariances of variables, and that, given 

the numerical value of the path coefficient β, the structural equation claims that a unit 

increase in X would result in β units increase of Y. This means that β quantifies the variation 
on Y accompanied by the variation on X. The equality sign in structural equations does not 

state an algebraic equivalence; jointly with the associated graph, the structural equation is 

meant to describe the causal relationship implied by the data generating process. The path 

coefficient β, in turn, is meant to quantify the (direct) causal effect of X on Y. β quantifies the 
variation on Y produced by the variation of X, hence the structural equation does not merely 

                                                 
7
 This paper is mainly concerned with the scientific literature on causal modelling. In Russo (2005) I also show 

that a number of authors in the philosophical literature employ or presuppose the notion of variation in their 

accounts. For instance, in Woodward’s account (Woodward 2003) causal generalisations are “change-relating” 

or “variation-relating” and variation is a necessary condition for interventions. In Hausman’s account (Hausman 

1998), modal invariance presupposes that intervening on the putative cause will produce a variation on the 

putative effect, this variation being possible to compute, or at least possible to estimate. 
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describe a regular concomitant occurrence of Y and X, but how the dependent variable varies 

depending on the variation of the independent one.  

It is commonly agreed that, in structural equations, variations in the independent variables, 

i.e. the Xs, explain the variation in the dependent variable, i.e. Y. Witness, for instance, 

Haavelmo (1944 : 23): 

In other words, we hope that, for each variable, y, to be “explained,” there is a relatively 

small number of explaining factors the variations of which are practically decisive in 

determining the variations of y. (My emphasis) 

So, one might suggest that the explanatory power of a causal model is given by the inverse 

of the unexplained variance in the dependent variable. Namely, because the dependent 

variable is determined to a certain extent by variations in the independent variables, the more 

we can account for those variations, the higher the explanatory power of the model. What is 

not determined by variations in independent variables, depends on the errors. In fact, the 

squared path coefficient r
2
 measures the portion of the variance in the dependent variable the 

independent variable is responsible for, or, differently put, the squared path coefficient 

represents the proportion of common variation in both the dependent and in the independent 

variable. Again, reasoning about the squared path coefficient involves the notion of variation 

rather than regularity. 

CSM are governed by a rationale of variation too. By way of reminder, CSM have two 

models: a measurement model and a structural model: the covariance matrix in the 

measurement model is explained by the (causal) relations as indicated in the structural model. 

On the one hand, to analyse covariances means exactly to measure (joint) variations. The 

covariance matrix is the matrix of the covariances between elements of a vector and 

represents the natural generalization to higher dimensions of the concept variance of a scalar-

valued random variable. The variance measures how much a single variable varies around the 

mean, and the covariance measures how much two variables vary together. On the other, the 

structural component of CSM is not meant to explain regularities, but joint variations and, as 

we just saw, is regimented by the variation rationale. 

Analogously, as they are based on structural equations, multilevel models too rely on the 

rationale of variation. Furthermore, variations are measured not only at one level of 

aggregation, but also across different levels. For instance, a multilevel model can assess how 

educational achievement varies among students in the same class and across classes in a 

school. 

Contingency tables also rely on the rationale of variation. The question is, in fact, the 

extent to which each of the independent variables contributes to the variation between the 

categories in the dependent variable. In the scheme of reasoning behind contingency tables it 

is not hard to recognize the statistical-relevance model (S-R) of explanation advanced by W. 

Salmon (1971, 1984). And in fact, not surprisingly, the rationale of variation is clearly 

involved in the S-R model.  

According to Salmon, to explain a fact, i.e. to identify its causes, one has to identify the 

correct cell in the reference class the fact to be explained belongs to. Consider Salmon’s 

example (1984 : 37). To understand why a particular individual – say, Albert – committed a 

delinquency– say, stealing a car, we first consider the broadest reference class Albert belongs 

to (American teenager); then, this class is partioned into subclasses based on the number of 

(all and only) relevant factors. Sociological theories suggest taking gender, religious 

background, marital status of parents, type of residential community, socioeconomic status 

and education, etc. into account. We will thus obtain a large number of cells, each of which 

will be assigned a probability of the degree of delinquent behaviour. This fact, i.e. why Albert 
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committed a delinquency, will be explained once the narrowest class Albert belongs to is 

identified, e.g. male and parents divorced and living in a suburban area and low education … 

As the name suggests, statistical relevance relations are used in the S-R model in order to 

isolate relevant causal factors. Let me explain how it works – the rationale of variation will 

then become apparent. Let A denote American teenagers, and Bi various degrees of juvenile 

delinquency. What we are interested in is not just P(Bi|A), that is, the probability of 

committing a delinquency in the population of American teenagers, but in a more specific 

probability, say ( | )i j k nP B A C D E∩ ∩ ∩ , where Cj, Dk and En are all relevant factors, for 

instance gender, religious background, marital status of parents, etc. The crucial point is that 

if conditioning on a further factor, say Fm, does not change the previous conditional 

probability, then Fm is not a relevant factor and hence should not be considered in the 

explanation. So all factors entering the S-R model are statistically relevant, i.e. responsible for 

variations, in the probability of the fact to be explained. 

Varieties of variations 

So far I argued that a monistic epistemology, based on the notion of variation, regiments 

different types of causal models. However, the rationale of variation as just described is still 

very general. In practice, social scientists may look for different types of variations depending 

on the case at hand. A taxonomy of variations can be sketched according to the following 

criteria:
8
 

1. variation across time; 

2. variation across individuals; 

3. variation across characteristics; 

4. counterfactual and control group variations; 

5. observational vs. interventional variations. 

We might be interested in whether the same characteristic, say unemployment rate, varies 

across time (taxon 1) – e.g. in two successive surveys, or across individuals (taxon 2) – e.g. 

individuals in the survey may show radically different employment histories, or across 

characteristics (taxon 3) – e.g. unemployment rate may be different according to different 

levels of education. In observational studies we can model counterfactual variations (taxon 4), 

for instance the individual probability of finding a job given certain characteristics, or, in 

experimental studies, we can check whether variations hold between the test and control 

group. Finally (taxon5), variations can be merely observed – when we deal with observational 

data, or can be the result of interventions – if we can manipulate and operate directly on data. 

Objections, or further evidence 

The rationale of variation is not exempt from possible objections. The first doubt might be 

that variation means something stronger, namely dependence. If so, Pearl has argued instead 

that independence is more basic:  

“[…] conditional independence is not a ‘restrictive assumption’ made for mathematical 

convenience; nor it is an occasional grace of nature for which we must passively wait. Rather, 

it is a mental construct that we actively create, a psychological necessity that our culture 

labours to satisfy.” (1988 : 385). 

In other words, independence is an essential feature for causality. Nonetheless, a few pages 

later, Pearl seems to hold quite a different view, when he draws some conclusions about 

                                                 
8
 These taxa are detailed and fully exemplified in Russo (2005). 
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causal poly trees. He addresses the old question: causation or covariation? According to him, 

the threshold is in the notion of control: causal directionality between X and Y can only be 

tested through the introduction of a third variable Z. This is because by introducing Z we test 

whether:  

“by activating Z we can create variations in Y and none in X, or alternatively, if variations 

in Z are accompanied by variations in X while Y remains unaltered. […] the construct of 

causality is merely a tentative, expedient device for encoding complex structures of 

dependencies in the closed world of a predefined set of variables. It serves to highlight useful 

independencies at a given level of abstraction, but causal relationships undergo change upon 

the introduction of new variable.” (1988 : 397, my emphasis)  

In the ultimate analysis, Pearl did use the rationale of variation, and this rationale seemed 

to precede the notion of independence, contrary to what he himself stated, i.e. that 

independence is the basic notion for causal learning.
9
  

Another obvious objection to the rationale of variation is that this rationale is nothing but a 

reformulation of Humean regularist accounts. This is only partly true. Let me deal with the 

non-true part first. The crucial step in Hume’s argument is significantly different from the 

rationale I propose. My claim is that we look for variations, not for regularities. Once 

variations are detected, a condition of invariance or structural stability (among others) is 

imposed on them. What does structural stability give us? Not logical or nomic necessity, nor 

mere constant conjunction. Structural stability is a condition imposed on joint variations, in 

order to ensure that the model correctly specifies the data generating process and to ensure 

that the model does not confuse accidental variations with causal ones. Although the 

invariance condition is the most important one, other conditions – e.g. no confounding – grant 

the causal interpretation of statistical models. The true side of the objection is that in 

observational studies attention is mainly directed to variations that happen to be regular, at 

least regular enough not to be accidental. 

Let me underline why so much importance is bestowed on the notion of variation. 

Variation is conceptually a precondition. If causality is not set in the notion of variation, then 

it will be lodged in the invariance condition, which is conceptually misleading. The same 

holds for regularity. In both cases there is a further question to ask: invariance of what?, 

regularity of what? The answer is, in both cases, of a variation. In particular, invariance – the 

queen of the causal conditions – only makes sense within a causal model, whereas variation is 

exactly what motivates testing invariance. In other words, without variation, invariance is 

devoid of meaning. This is why variation conceptually precedes invariance.
10
  

To provide a rationale of causality means, to put it otherwise, to give the bottom-line 

concept – namely, variation – and the constraints to put on this variation – namely, invariance 

and regularity. Neither invariance nor regularity are apt to accomplish that task. But variation 

is. Hume inferred causation from regularity, whereas my claim is that we infer causation from 

variation because variation conceptually and empirically comes before regularity. Of course, 

both notions – regularity and variation – don’t guarantee a straight causal interpretation, but 

                                                 
9
 It is worth noting that Pearl changed his mind about causality between 1988 and 2000 : “Ten years ago, when I 

began writing Probabilistic Reasoning in Intelligent Systems (1988), I was working within the empiricist 

tradition. In this tradition, probabilistic relations constitute the foundations of human knowledge, whereas 

causality simply provides useful ways of abbreviating and organizing intricate patterns of probabilistic 

relationships. Today, my view is quite different. I now take causal relationships to be the fundamental building 

blocks both of physical reality and of human understanding of that reality, and I regard probabilistic relationships 

as but the surface phenomena of the causal machinery that underlies and propels our understanding of the 

world.” (2000 : xiii-xiv).  
10
 For a thorough discussion of variation as a precondition, see Russo (2005). 
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the rationale of variation puts us on the right track because it makes causality an empirical 

issue rather than a psychological fact or a mere reduction to statistical conditions to be 

satisfied. 

The Humean paradigm of regularity still dominates contemporary philosophy of science. 

Regularity views of causation are clearly an heritage of the Humean account. Defenders of 

regularist accounts claim, roughly, that to assert a causal relation between two events x and y 

means to assert the existence of a regular succession such that every time an event of type X 

occurs, then an event of type Y will invariably follow. Humeans like J.S. Mill or J. Mackie 

have advanced more sophisticated versions of the regularist view (e.g. the I.N.U.S. condition) 

and tried to characterise the kind of regularity that can underpin causal relations by tying 

causation to laws of nature. Even Lewis’ counterfactual approach uses regularities as means 

to capture the conditions under which counterfactual assertions are true. Also, the probability 

raising requirement often advocated in probabilistic accounts, has been backed by a ceteris 

paribus condition – i.e. a condition of homogeneity – that makes things regular enough to let 

the cause raise the probability of the effect. 

The variation rationale profoundly breaks down this received view. The variation rationale 

argues, in the first place, that this emphasis on regularity is not well-founded, for regularities 

themselves require a prior notion, which is variation. Secondly, the difficulty or impossibility 

of establishing causal laws in the social sciences is usually taken as a structural weakness or 

even as an intrinsic impossibility for social science to reach the kingdom of “hard sciences”. 

The variation rationale is the first step for a radical change in the dominant paradigm: if, in 

the ultimate analysis, causal modelling aims at measuring variations rather than establishing 

regularities, this might be due to the fact that the regularist rationale is not, after all, well 

founded as empiricists claim since Hume. This calls for a change of paradigm in causal 

modelling, rather than giving up our endeavour to establish causal claims or questioning the 

rigorous scientific character of the social sciences. 

4. The rationale of variation in philosophical accounts 

A number of accounts have been proposed in the last decades. The probabilistic, mechanist 

and counterfactual approach take causal relations to be objective, in the sense that causality is 

defined independently of the agent, the first relying on statistical relevance, the second on the 

notion of physical process and interaction, and the third on counterfactual logic. Agency 

theories, instead, define causality in terms of an agent’s ability to operate on causal relations; 

manipulability theories try to get rid of anthropomorphism and to regain objectivity by 

developing a notion of intervention that fits causal modelling. A different attempt to give 

causality an objective character is epistemic causality, where objectivity is understood as “non 

arbitrary” rather than “mind-independent”. The goal of this section is to disclose how the 

rationale of variation is consistent with or (more or less explicitly) adopted in those accounts.  

Variation in probabilistic theories 

Probabilistic theories (PT) of causality have been developed in slightly different manners 

by different philosophers in the last decades.
11
 In spite of the significant differences in these 

accounts, a core of agreement can be found in the pioneering works of Good and Suppes that, 

roughly speaking, turn around the probability raising requirement: ceteris paribus, causes 

                                                 
11
 See for instance Good (1961-62), Suppes (1970), Cartwright (1979) and (1989), Eells (1991). 
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make their effects more probable. Prima facie, C is a cause of E if, and only if, (i) C occurs 

before E and (ii) C is positively, statistically relevant to E, that is ' '( | ) ( )t t tP E C P E>  ( 't t< ).  

Thus PT focus on the difference between the conditional probability of the effect given the 

cause P(E|C) and the marginal probability of the effect P(E). To compare the conditional and 

marginal probability means to analyse a statistical relevance relation. The underlying idea is 

that if C is a cause of E, then C is also statistically relevant for E. To evaluate a statistical 

relevance relation exactly means to measure a variation, in particular, a variation in the 

conditional probability of E given C with respect to the marginal probability of E. That is to 

say, the change hereby produced by C in the effect E will be detected because the conditional 

and the marginal probability differ. 

Variation in mechanist accounts 

The mechanist approach
12
 takes physical processes and interactions between them to be the 

fundamental concepts for causation.  Simply put, the Salmon-Dowe theory is based on three 

definitions: (i) causal interaction, (ii) causal process, and (iii) causal transmission.  

First, a causal interaction is an intersection of world-lines which involve exchange of a 

conserved quantity. In this definition, the meaning of exchange is worth stressing: at least one 

outgoing process manifests a change in the value of the conserved quantity and the exchange 

is governed by the conservation law. Second, a causal process is a world-line of an object that 

transmits a nonzero amount of an invariant quantity at each moment of its history (each 

space-time point of its trajectory). Last, the principle of mark transmission is formulated as 

follows: a process transmits an invariant (or conserved) quantity from A to B (A≠B) if it 

possesses this quantity at A and at B and at every stage of the process between A and B 

without any interactions in the half-open interval (A,B] that involves an exchange of the 

particular invariant (or conserved) quantity. 

The notion of variation plays a fundamental role in the definition of causal interaction. In 

fact, an exchange of invariant or conserved quantities between processes actually produces a 

modification or variation in them and this is what makes the interaction causal. Of course, the 

way in which the rationale of variation is here employed differs from the quantitative one 

depicted in causal modelling, but the qualitative claim still holds: the bottom-line concept of 

causality is in the concept of variation, not in regularity, stability or invariance. 

Variation in counterfactuals 

D. Lewis (1973) is the main proponent of the counterfactual theory of causation. Causal 

relations are analysed in terms of subjunctive conditionals, also called counterfactuals: “A 

caused B” is interpreted as “B would not have occurred if it were not for A”. Counterfactuals 

are subjunctive conditionals where the antecedent is known or supposed to be false and are 

regimented by a possible-world semantics. 

Possible-world semantics rest on the assumption of the existence of a plurality of worlds, 

among which there is also our actual world.
13
 Worlds are compared with each other on the 

basis of their similarity or closeness. The relation of comparative over-all similarity among 

possible worlds is taken as primitive and we say that one world is closer to actuality than 

another if the first resembles our actual world more than the second does. The truth of a 

counterfactual is then ascertained by an “inspection” of  what happens in other possible 

                                                 
12
 Salmon (1984) and (1994), Dowe (1992). 

13
 This position is also know as modal realism. 
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worlds. Given any two propositions A and B, the counterfactual A→B reads: “if A were true, 

then B would also be true”. The counterfactual operator  → is defined by the following rule 

of truth: 

The counterfactual A→B is true (at a world w) if, and only if: 

(i) there no possible A-worlds
14
, or 

(ii) some A-world where B holds is closer to w than is any A-world where B does not hold. 

The second case is the interesting one, for in the former the counterfactual is just vacuously 

true. Causality comes in because by asking whether a counterfactual is true, we wonder 

whether the occurrence of A is the cause of the occurrence of B. So, the counterfactual, if true, 

states that if the cause had not occurred, the effect would not have occurred either. 

How the rationale of variation is involved in the counterfactual approach will become 

apparent once the motivation for its development is spelled out. Lewis wants to go beyond 

standard regularity theories as they failed to notice the second definition of cause Hume gave 

in the Enquiry (Section VII): 

“We may define a cause an object followed by another, and where all the objects, similar 

to the first, are followed by objects similar to the second. Or, in other words, where, if the first 

object had not been, the second had never existed.” 

If the cause had not been, the effect had never existed. For Lewis, this is not just a 

restatement of the regularist view, but a clear input and encouragement to take up the 

counterfactual path. In Lewis’ words (1986 : 160-161): 

“We think of a cause as something that makes a difference, and the difference it makes 

must be a difference from what would have happened without it. Had it been absent, its 

effects – some of them, at least, and usually all – would have been absent as well.” 

Causes are supposed to make a difference, i.e. are responsible for variations. The bottom-

line concept is, again, not in regularity, uniformity, or invariance, but is in difference, change, 

and variation. 

Agreed, it would be misleading to maintain the counterfactual approach relies on the 

rationale of variation; yet, the variation idea is definitively consistent with it, as Lewis’ words 

clearly show. The rationale of variation here involved is not quantitative, as is the case in 

causal modelling. Instead, a qualitative notion of variation is here at stake. Surely Lewis’ 

account is of little help in testing causality over large data sets, but counterfactuals do grasp, 

at least, our intuitions about how the causal relation works: ceteris paribus, if the cause had 

not occurred, the effect had never existed either. In other words, we expect the cause to be 

responsible for the change leading to the effect. 

Variation in agency-manipulability theories 

Agency theories
15
 analyse causal relations in terms of the ability of agents to achieve goals 

by manipulating causes. In a nutshell, C is said a cause of E if bringing about C would be an 

effective way to bring about E. To explain what counts as an effective strategy, Menzies and 

Price invoke the means-end relation, which is characterised in terms of agent probabilities. 

Agent probabilities are conditional probabilities assessed from an agent perspective as 

follows: the agent probability of E conditional on C is the probability that should enter in the 

calculations of a rational agent, whose abilities consist in the capacity to realise or prevent C, 

and whose goals entirely concern E. So a strategy to bring about E is effective if a rational 

decision theory prescribes it as a way of bringing about E. That is to say, agents probabilities 

                                                 
14
 In Lewis’ theory “A-world” means “the world in which A is true”. 

15
 Price (1991) and (1992), Menzies and Price (1992). 
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are defined in terms of their role in rational decision-making and this is why they embody a 

basis for a formal analysis of the means-end relation. 

This account is consistent with the central idea of the probabilistic theory of causality. In 

fact, C constitutes a means for achieving E only in the case that the agent probability ( )CP E is 

greater than ( )not CP E− , where CP denotes the agent probability that E would hold, were one to 

realise C. Because the agency theory turns out to be consistent with probabilistic theories of 

causality, a fortiori it is consistent with the variation rationale.  

D. Hausman and J. Woodward
16
 propose a manipulationist account of causation. Their 

purpose is to overcome the objection of anthropomorphism raised against the agency theory, 

by developing a notion of intervention which is not agency-dependent. In their 

manipulationist or interventionist account, causal relations have essentially two features: (i) 

they are potentially exploitable for purposes of manipulation and control, and (ii) they are 

invariant under intervention. Everything turns around the specification of the notions of 

intervention and invariance.  

Briefly put, an intervention on X with respect to Y changes the value of X in such a way 

that, if any change occurs in Y, it occurs only as a result of the change in the value of X and 

not from other sources. On the other hand, the notion of invariance is closely related to the 

notion of intervention and takes advantage of the notion of generalization. A generalization G 

is invariant if it would continue to hold under some intervention that changes the value of X in 

such a way that the value of Y would change. “Continue to hold” means that G correctly 

describes how the value of Y would change under this intervention. For Hausman and 

Woodward, equations in SEM are correct descriptions of the causal relationship between X 

and Y if, and only if, were one to intervene in the right way to change the value of X, then Y 

should change in the way indicated by the equation. 

Invariance, or structural stability, is then a necessary ingredient for avoiding equations 

describing contingent or spurious relations. Nonetheless, it is worth asking – and here is 

where the rationale of variation emerges, what exactly remains invariant. The answer is: 

invariance of a detected variation. As we have seen earlier, structural equations describe how 

variations in X accompany variations in Y and structural parameters quantify the causal effect 

of X on Y. Eventually, in characterising causality as invariance under intervention, 

manipulability theories rely on the variation rationale in an essential manner. 

Variation in epistemic causality 

According to Williamson’s epistemic theory of causality
17
, causality is an objective mental 

construct. Causality is mental because it is a feature of an agent’s mental state, as opposed to 

physical causality which is a feature of the world “out there”, and it is objective because if 

two agents differ as to causal structures, then at least one of them must be wrong. Causal 

relations belong to an agent’s representation of the world, more precisely, epistemic causality 

deals with causal beliefs. It is convenient to represent the world in terms of causes and effects 

because such causal representations, if correct, enable accurate predictions, diagnosis, 

decisions and interventions. 

This metaphysical stance about causality is also accompanied by an account of the 

epistemology of causality: causal relations are discovered by an hybrid of the inductive and 

hypothetico-deductive method. Because the variation rationale belongs to epistemology, the 

                                                 
16
 Hausman (1998), Woodward (2003), Hausman and Woodward (1999), (2004). 

17
 Williamson (2005). 
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question is whether or not the rationale is compatible with Williamson’s learning strategies 

for epistemic causality, which involves four stages: 

(i) hypothesise; 

(ii) predict; 

(iii) test; 

(iv) update. 

The first stage – the inductive one– requires a procedure for obtaining a causal graph from 

data and standard artificial intelligence techniques allow us to induce a minimal causal graph 

that satisfies the Causal Markov Condition. In the second stage, predictions are drawn from 

the induced graph and those predictions will be tested in the third stage. By renewed 

information or by performing experiments, predictions will be confirmed or disconfirmed. 

Finally, the fourth step represents a radical change in the hypothetico-deductive method: in 

case predictions fail, we do not start from the very beginning at step one, but we update the 

causal graph according to new evidence and information gathered. 

The variation rationale permeates Williamson’s learning strategy in the same sense as it 

permeates causal modelling. Causal models are tested by measuring suitable variations among 

variables, and this is exactly what happens in the test stage. Witness Williamson (2005 : 152): 

If, for instance, the hypothesised model predicts that C causes E, and an experiment is 

performed which shows that intervening to change the value of C does not change the 

distribution of E, controlling for E’s other direct causes, then this evidence alone may be 

enough to warrant removing the arrow from C to E in the causal model.” (p. 149) 

Again, the rationale for testing causal relations is based on variation and not on regularity 

or invariance.  

6. Conclusion 

The social sciences perform causal analyses by means of a variety of methods and rely on 

several sources of information and of evidence. This methodological and evidential pluralism 

raises the question of whether ontological and epistemological pluralism ought to be 

accordingly adopted. 

This paper focused on the epistemological side and argued in favour of a monistic 

epistemology based on a rationale of variation. The rationale of variation is shown to be the 

basic notion employed in causal reasoning in different causal models, e.g. structural equation 

models, covariance structure models, multilevel analysis and contingency tables. I have 

argued that the variation rationale goes against the regularity view and constitutes the bottom-

line concept of causality because it is a precondition both for regularity and invariance. 

Finally, I also showed how this rationale is consistent with or even adopted in various 

philosophical accounts, from probabilistic theories to mechanist approaches, from agency-

manipulability theories to epistemic causality. 

We have seen that the inheritance of the received view is a rationale of regularity. The 

rationale of variation profoundly breaks down with this conception. The philosophical gain in 

adopting the rationale of variation is fourfold. First, causality is not merely lodged in a 

psychological habit of observing regular successions of events. Agreed, we do experience 

such regular sequences but, I argue, it is not because of regularity that we interpret them 

causally. Instead, this is because certain variational relations hold. Second, causality is not 

reduced to statistics either. Correlation, as is well known, does not prove causation. Further, 

to claim that variation is a precondition for regularity and invariance has the undoubted 

advantage of not confusing the rationale of causality with the conditions that allow to interpret 
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variations causally. Third, along the same line, the adoption of the rationale of variation 

avoids confusing (i) what causality is (metaphysics) with the notion employed in testing 

(epistemology) and (ii) with the conditions – e.g. invariance – to impose on the variation to 

interpret it causally (methodology). Last, the rationale of variation is a first step in redeeming 

the social sciences as sciences. In fact, as individuals and societies are too mutable, the social 

sciences cannot establish universal and necessary regularities as physics does. For this reason 

their scientific status has been often questioned. This indictment is ill-founded because the 

social sciences aim at establishing causal variations rather than regularities. 
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