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HOW TO APPLY MATHEMATICS

ABSTRACT. This paper presents a novel account of applied mathematics. It shows
how we can distinguish the physical content from the mathematical form of a scientific

theory even in cases where the mathematics applied is indispensable and cannot be
eliminated by paraphrase.

1. INTRODUCTION

The philosophical literature offers two competing views about the
role of mathematical objects in physical theories. On the one hand,
there are the nominalists, who deny that there are any mathematical
objects, and who argue that the scientific use of mathematics is
merely an abbreviative manner of speaking. Physical theories could
be formulated without referring to mathematical objects, they claim,
but it is usually more convenient not to do so, and to pretend that
they exist. The second view is advocated by W.V. Quine and Hilary
Putnam (1971), who reject the nominalist’s position as untenable, and
argue that there is no principled difference between the theoretical
roles of mathematical and physical objects. On their view, scientific
theories are about numbers and functions as much as they are about
electrons and quarks. Mathematics and physics have a joint subject
matter.

My complaint is that neither of these two views provides an ac-
count on which physics genuinely applies mathematics. According to
the nominalist, there is nothing to be applied, and the only sense that
Quine and Putnam can make of application is one in which mathe-
matics applies physics as much as physics applies mathematics. The
aim of this paper is to show that we can do better. There is room for a
third kind of view, which provides a more plausible account of what
mathematics is contributing to physical theory.
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2. THE INDISPENSABILITY ARGUMENT

Let me begin by taking a closer look at Putnam’s Indispensability
Argument.1 The official aim of this argument is to refute the nomi-
nalist by showing that most physical theories cannot even be for-
mulated without mathematics. But the argument would also show
that there is no logically significant difference between the theoretical
contributions of mathematical and physical objects. And that would
rule out any view that tries to assign different roles to them, not only
mathematical nominalism.

Putnam’s argument begins by considering Newton’s theory of
gravitation. This theory claims that if two objects a and b have
masses ma and mb kilogram, respectively, and if the distance between
them is d meters, then they attract each other with a force of

G
mamb

d 2
newton:

Here G is the gravitational constant. Putnam then asks us to give an
account of the logical structure of this theory, subject to the following
two assumptions:

A1: Only accounts in extensional first-order languages are
acceptable.

A2: There are only finitely many physical objects.

If we accept A1 then there is only one way to render the quantifi-
cation over masses and distances used in Newton’s theory. With
second-order quantification over properties unavailable, we would
have to treat masses and distances as relations between physical ob-
jects and numbers. For example,

Object a has mass n kilogram

would have to be analysed in terms of a ‘‘mass in kilogram’’-relation
M as

ð1Þ Man:

We could then mimic second-order quantification over mass prop-
erties by using first-order quantification over the corresponding
numbers.2

In (1), the number n is being used as a mere ‘‘index’’ for a mass
ascription, and there seems to be no principled reason why some
other object could not perform the same role. The mathematical
nominalist might therefore try to use suitably chosen physical objects
for the same purpose.3 But if we grant Putnam’s second assumption
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A2 then there are not enough of them to do the job. There are
uncountably many possible masses that need to be taken care of, and
too few physical objects to label all of them.

Hence if Newton’s theory is a representative case of a physical
theory – and there seems to be no reason to deny this – then the only
way we can regiment such theories in an extensional first-order lan-
guage is by treating mathematical objects as relata of physical ob-
jects. Any acceptable formalisation of such theories would thus have
to contain atomic formulae of the form

Rp1 . . . pkm1 . . .ml:

Here R is a ðkþ lÞ-ary relation, the ps are terms for physical objects
(variables or individual constants) and the ms are terms for mathe-
matical objects.4

Let us call an atomic formula mixed if both k and l are greater
than zero. The Indispensability Argument then shows that physical
theories essentially contain mixed atomic formulae: they have no
alternative formulation that lacks them. This serves to refute the
mathematical nominalist by showing that mathematics is ineliminable
from physical theories, but it would also prevent us from making any
significant distinction between the theoretical contributions of
mathematical and physical objects. For in mixed atomic formulae,
mathematical and physical objects are logically on a par.

Putnam might insist that there is still an important difference:
mathematical theories can be stated independently of any physical
claims, but physical theories cannot be stated independently of any
mathematical claims. But this would presuppose that logical con-
structs of mixed atomic formulae count as physical rather than
mathematical, and there is nothing in the logical structure of math-
ematics and physics that licenses this claim. The situation is perfectly
symmetrical, and we could equally well count such claims as part of
mathematics. We could of course still make sense of application in
terms of the possession of a joint subject matter, but that would mean
that physics applies mathematics as much as mathematics applies
physics, and that doesn’t seem right.

Mathematical nominalists usually respond to Putnam’s argument
by denying either one of his two premises. For example, Field (1980)
denies the assumption A2 that there are only finitely many physical
objects. He regards spacetime regions – of which there are infinitely
many – as physical objects, and argues that we can use them to give a
nominalist reconstruction of physical theories. Hellman (1989)
and Chihara (1990) make use of the second strategy, and develop
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nominalist accounts of science that rely on rejecting Putnam’s first-
orderisability requirement A1.5

Like Hellman and Chihara, I want to reject A1, but I will do so for
different reasons. In this paper, I will present three arguments against
the first-orderisability of scientific theories that are independent of the
aversion to abstracta that motivates the nominalist. The view of
applied mathematics that I will end up defending is explicitly com-
mitted to the existence of mathematical objects. So while the nomi-
nalist introduces richer logical resources with the aim of eliminating
mathematical objects, my project is to employ them to give a better
account of the contribution mathematics makes to physical theory.

3. MATHEMATICS AND INFINITY

Suppose physics were finite. That is, suppose there were only finitely
many physical objects, finitely many spacetime points, and finitely
many physical properties. In this case, the physical history of the
world could be completely described by a state description: a long, but
finite, conjunction that lists what location and properties every object
possesses at any given time. We could then easily give a mathematics-
free first-order characterisation of any physical theory by forming the
finite disjunction of all the state descriptions that it counts as nomi-
cally possible. In this way, mathematics could be eliminated from any
finite physical theory.6

This does not refute Putnam’s argument, because our current
physics tells us that we are not in the finite case. There are infinitely
many properties of spatial location, infinitely many properties of
mass, infinitely many properties of charge, and so on. And in the case
of Newton’s theory of gravitation, it is precisely the mathematics
needed to deal with the infinitely many possible masses and distances
of the two particles that resists first-order elimination. Since physics is
infinite, a state description would have to be an infinitely long con-
junction, and first-order languages do not allow this.

However, this indispensability is clearly a fact about the concep-
tual resources of first-order languages, not about physics. If we were
gods and spoke infinite languages then we could do without mathe-
matics even in the infinite case, by forming the infinite disjunction of
the appropriate infinite state descriptions. This would permit us to get
by without ever mentioning mathematical objects, but our physical
theories would still have to talk about electrons and quarks, for
otherwise they would not be physical theories.

ULRICH MEYER20



Mathematics plays such a crucial role in physics because there is a
mismatch between the complexity of physical phenomena and our
expressive resources (as tentatively characterised by formal first-order
languages). Without the expressive power of mathematics, we cannot
deal with the infinite systems that physics is concerned with. This
might establish that mathematics is indispensable in our scientific
theories, but it surely does not show that the theoretical contributions
of mathematical and physical objects are the same. On the contrary:
if the main purpose of applied mathematics is to boost our expressive
capacities, then that is an important respect in which the theoretical
role of mathematical objects differs from that of physical ones.

Of course, there are also some similarities between mathematical
and physical objects. Both serve to simplify our theories. Theories
that postulate physical objects are simpler than purely phenomeno-
logical ones, and finite physical theories that apply mathematics are
often simpler than those that do not. But we do not want to have an
account of applied mathematics that only focuses on these similari-
ties. We also want to account for the differences, and Putnam denies
us the logical space to do so.

That no first-order formulation of a scientific theory is able to
adequately represent their different theoretical contributions does not
change the fact that mathematical and physical objects enter scientific
theory for different reasons. All it shows is that the Indispensability
Argument cuts the other way. Rather than establishing that there is
no difference between the theoretical roles of mathematical and
physical objects, it merely demonstrates that Putnam’s first-order
framework lacks the expressive resources to account for the ideology-
boosting role that mathematical objects play in physical theory.7

4. MASS PROPERTIES

Let us take another look at the mass attributions discussed earlier. In
(1), we spelled out a’s having mass n kilogram in terms of its bearing
the relation M to the number n. Independently of the considerations
presented in the previous section, this seems implausible: its mass is
surely an intrinsic property of a physical object, not a relation it bears
to a number.

To see how richer logical resources permit a better account, let us
start by adding property quantifiers to our language. We could then
say that an object a has mass n kilogram just in case it has a property
X such that anything with X bears M to n:
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9X½8zðXz � MznÞ ^ Xa�
This correctly attributes a non-relational property to a, but still has
the disadvantage that many properties that are not masses satisfy the
open sentence in the scope of the existential quantifier. For example,
if only objects with electron charge had electron mass then any object
with electron charge would bear M to whatever the number of elec-
tron mass is. So there is no guarantee that the property attributed to a
is a mass (rather than a charge).

Some of these problems can be overcome by using a counterfac-
tual conditional ‘(!’ instead of a material one:

9X½8zðXz(! MznÞ ^ Xa�
Even if all objects with electron charge had electron mass, it would
not be true of all objects that they would have electron mass if they
had electron charge. This is an improvement, but this proposal still
does not do well with properties that logically entail the possession of
a given mass. The property of being red and having electron mass is
not a mass property even though any object that has it is guaranteed
to have electron mass.

To exclude such ‘‘conjunctive’’ properties, we need to work a little
harder. First, let us define a partial ordering on properties via

X � Y �def (8zðXz � YzÞ:

Then the maximal property X that satisfies an open sentence U½X� is
lXU½X� ¼def Y 8ZðU½Z� � Z � YÞ;

where ‘ ’ is a definite property description operator. Given these
definitions, we could then identify mass n kilogram with the maximal
property X such that, if anything were X, it would bear M to n:

ð2Þ ½lX 8zðXz(! MznÞ�a:
The property attributed to a is now guaranteed to be a mass property,
and (2) has the added advantage of being of predicate-object form.
The expression within the square brackets picks out a non-relational
physical property of mass that then gets attributed to the physical
object a.

Apart from accounting for mass properties, the regimentation (2)
also tells us something about the mass-in-kilogram relation. It grants
that there is a relation such as M, but insists that it is internal. If we
hold all mathematical properties fixed then whether or not an object a
bears M to n only depends on what non-relational mass property a
possesses.
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Giving a precise account of what it is for a relation to be internal
(or a property to be intrinsic) is a notoriously difficult question, and
nothing said here amounts to a solution to this problem.8 But we do
not actually need a general account of intrinsicness. In the special
case of M, we can offer

ð3Þ Mxy � ½lX 8zðXz(! MzyÞ�x

as a formalisation of the claim that Mxy holds in virtue of x’s mass,
and this turns out to capture enough of what it is for M to be internal
to serve our current purposes.

The claim (3) permits us to convert a mixed atomic formula (the
‘Mxy’ on the left-hand side) into an expression that merely attributes
a physical property to a physical object. This feature will become
important in the next section, when we have to face the task of
distinguishing the physical content of a theory from its mathematical
form. Anticipating the role they will play in that context, let me call
statements of this type separation postulates.

My proposal is that what we have just said about mass ascriptions
is true about applied mathematics in general. The relations that
physical objects bear to mathematical objects are always internal.
Whether or not such relations obtain only depends on the purely
physical properties and relations of the physical relata, and on the
purely mathematical properties and relations of the mathematical
relata. To implement this proposal in the current framework, we just
need to take whatever first-order characterisation of a theory Putnam
would choose and supplement it with suitable separation postulates.
For any mixed relation R we would add:

ð4Þ Rp1 . . . pkm1 . . .ml �½lY 8z1 . . . zkðYz1 . . . zk(!
Rz1 . . . zkm1 . . .mlÞ�p1 . . . pk

As before, the ps are terms for physical objects, and the ms and zs are
terms for mathematical ones.

The separation postulate (4) claims that, if we hold the mathe-
matical properties of the ms fixed, the truth of ‘Rp1 . . . pkm1 . . .ml’
only depends on whether the relation Y holds of the ps. It thus en-
sures that R is an internal relation between the aggregate of the ps
and the aggregate of the ms. But R need not be internal as a relation
between the ps taken separately, nor would we want it to be. For
example, we might formalise ‘‘The distance between a and b is n
metres’’ as ‘Dabn’. The corresponding separation postulate

Dabn � ½lY 8xyðYxy(! DxynÞ�ab
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would then claim that whether or notDabn holds only depends on the
mathematical properties of n (its position in the series of real num-
bers) and the physical properties of a and b taken together. But the
relation thus attributed to a and b is their spatial distance, and that is
a paradigm example of an external relation.

By using a logically more complex expression on the right-hand
side of our separation postulates, we could analyse Y into more basic
physical relations and properties, and thus specify what particular
contribution each of the ps would need to make. These issues would
have to be attended to in any comprehensive account of scientific
theories, but the details of this would depend on the specific R under
consideration. Let me therefore simplify matters by sticking to sep-
aration postulates of the simple form (4).

5. PHYSICAL CONTENT

So far, I have given two arguments against Putnam’s first-orderis-
ability thesis: the cardinality argument in Section 2 and the consid-
erations concerning mass properties in Section 3. My third, and final,
objection is that Putnam’s view conflicts with scientific practice.9

The way physicists individuate their theories, two formulations of
the same theory can apply different mathematics. For example,
Newton’s Principia employs geometric reasoning while Lagrange’s
Mécanique analytique uses the calculus of variations. But, in spite of
their mathematical differences, physicists take them to express the
same theory of classical mechanics. By contrast, scientists never
identify theories that mention different physical objects but apply the
same mathematics. Both the theory of radioactive decay and the
theory of population growth use exponential functions, but nobody
regards them as alternative formulations of the same theory.

This asymmetric way of treating mathematical and physical ob-
jects in theory individuation presupposes that they contribute to
physical theory in significantly different ways (which Putnam denies).
To vindicate scientific practice in this respect, we would need a way of
distinguishing the physical content of a theory (what it says about
physical objects) from the mathematical form in which it is conveyed.
In that case, we could say that scientists identify theories with the
same physical content. But it is far from obvious whether this form/
content distinction can be drawn. It is natural to suppose that the
distinction can only be made for theories that make dispensable use of
mathematics. Two theories could then be said to have the same
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physical content if and only if they have the same mathematics-free
paraphrase. But to extend this to the general case would require that
applied mathematics is always eliminable, and that is precisely what
the Indispensability Argument denies.

However, there is a different way of making the distinction that
does not rely on paraphrastic eliminability. We can use the con-
structions we developed in the previous section to isolate the physical
content of a theory even in cases where the mathematics applied is
ineliminable. Call a sentence purely physical if it is a logical construct
of atomic formulae that have no mathematical relata other than
within the scope of property descriptions. Now say that two theories
have the same physical content just in case they entail the same purely
physical claims.10

The way Putnam regiments them, most scientific theories entail no
purely physical claims and thus have zero physical content according
to this definition. But our separation postulates (4) permit us to ex-
tract the contribution mixed atomic formulae make to a theory’s
physical content, and thus effect the desired separation from its
mathematical form. Hence what makes the mathematical and the
physical so inextricably intertwined in Putnam’s case is merely his
refusal to admit the logical resources needed to pry them apart.

Following Quine (1953a), say that a theory T is ontologically
committed to an object x if and only if the theory logically entails x’s
existence. Say that a theory T is physical just in case it has non-trivial
physical content. In these terms, we can then offer the following
notion of application:11

Definition. A physical theory T applies an object x if and only if (i) T
is ontologically committed to x, and (ii) there is a theory T 0 that is
not committed to x’s existence, but which has the same physical
content as T.

It may well happen that a theory T applies mathematical objects
without there being a theory T 0 with the same physical content that is
not committed to any mathematical objects. All that is required by
our definition of application is that T 0 be committed to mathematical
objects other than the ones that T is committed to. To say that a
scientific theory applies mathematics in the above sense does not
entail that the theory could be formulated without reference to
mathematical objects. We can have application without eliminability.

If a theory T applies x in this sense then the only function of T ’s
reference to x is to help express its physical content. Our definition
thus correctly assigns to mathematical objects the ideology-boosting
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role that we identified in Section 2. But all of this only works if there
are indeed mathematical objects. The numbers and functions referred
to by the separation postulates (4) need to exist for the expressions
within the square brackets to pick out the relations that we want them
to pick out. We identified a theory’s physical content with only a
proper part of its deductive closure. The rest of the theory, which
makes ample reference to mathematical objects, is not superfluous. It
plays an essential role in expressing its physical content. Hence this
account of applied mathematics does nothing to advance the case of
the mathematical nominalist.

6. CONCLUSION

The primary aim of the mathematical nominalist was to support his
ontological views by showing that we could in principle eliminate all
reference to mathematical objects from our physics. I not sure this
part of his project can succeed, but I think the nominalist was right
about one thing: that the primary role of applied mathematics is that
of an ideology-boosting representational aid. But I think he under-
estimated the extent to which mathematics expands our expressive
resources. In some cases, applying mathematics permits us to for-
mulate propositions that we could not express otherwise, and is for
that reason ineliminable.

In my view, Quine and Putnam get the ontology right – there
really are mathematical objects – but they fail to give an acceptable
account of what they are doing in physical theories. The account
presented here tries to do better, by showing that we can separate a
theory’s physical content from its mathematical form without having
to assume the feasibility of a nominalist elimination project. To spell
out this view, we had to admit property quantifiers and modal
operators, and we also had to accept the separation postulates. But
that’s fine: the richer logical resources are needed elsewhere in phi-
losophy, anyway, and the separation postulates not only do the job,
they are also true.
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NOTES

1 Putnam (1971, Chapter 5). A similar point is made in Quine (1953b, 1981a), but
Putnam gives what I regard as the more compelling version of the argument.
2 We could also reveal the role of the unit kilogram by treating it as a further

relatum, as I did in Meyer (2002). To do so might be helpful in explaining how our
measurement practices succeed in determining the relation M. But since that is not a
question I am interested in here, let me simplify matters by suppressing the contri-
bution of the unit mass.
3 This is the project in Goodman and Quine (1947).
4 Resnik (1990) and others have claimed that in modern physics, and especially in
quantum mechanics, no clear distinction between physical and mathematical objects

can be made. I disagree, for reasons similar to those advanced in Peressini (1998).
5 For a survey of mathematical nominalism, see Burgess and Rosen (1997).
6 I do not mean to suggest that a mathematics-free formulation of finite physics

would be better than one that uses mathematics. The latter kind of formulation is
likely to be simpler and more elegant. The point of the present considerations is to
get clearer about what makes mathematics indispensable in science, not what makes
it merely convenient.
7 Here I am using ‘‘ideology’’ in the sense of Quine (1951).
8 For further details and references, see the symposium on defining ‘‘intrinsic’’ in
Philosophy and Phenomenological Research 63.2 (2001).
9 Maddy (1992) and Azzouni (1997) present related criticisms of the Indispensability
Argument.
10 Theories with the same physical content are, roughly, what Rosen (2001) calls

‘‘nominalistically equivalent’’. Rosen defines the notion, but does not offer an ac-
count of applied mathematics.
11 For a rival ‘‘Fregean’’ account of application, see Steiner (1998).
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