
“ STRENGE” ARITHMETICS 
Robert K. Meyer 

rkm@arp.anu.edu.au 
Automated Reasoning Group 

CSL, RSISE, Australian National University 
Canberra ACT 0200, Australia 

 
Greg Restall  

Greg.Restall@mq.edu.au 
Philosophy, Macquarie University 

Sydney NSW 2109, Australia 
 

8 June 2000 
 
Abstract. In Entailment, Anderson and Belnap motivated their modification E of Ackermann’s 
strenge Implikation ΠΠ’  as a logic of relevance and necessity. The kindred system R was seen as 
relevant but not as modal. Our systems of Peano arithmetic R# and omega arithmetic R## were 
based on R to avoid fallacies of relevance. But problems arose as to which arithmetic sentences 
were (relevantly) true. Here we base analogous systems on E to solve those problems. Central to 
motivating E is the rejection of fallacies of modality. Our slogan here for this is, “No diamonds 
entail any boxes.” Form the strenge Peano arithmetic E# like R#, adding appropriate forms of the 
Peano axioms to Ackermann’s E∀∀x. Extend E# to the strenge omega arithmetic E##  by adding the 
ω-rule A(0), A(1), … ⇒ ∀xA(x). E# and E## make explicit a rejection of “ fallacies of modali ty” 
implicit in R#, where already “equations” work like boxes and “unequations” like diamonds. (And 
no unequations relevantly imply any equations.) The R# theory of secondary formulas extends 
straightforwardly to our strenge arithmetics. Finally metavaluing E## yields the strenge true 
arithmetic TE#. TE# treats truth-functions and quantifiers truth-functionally, settling sentences 
like 0=2 → 0=1 by affirming their negations (as Belnap once suggested).  
 

I I ntroduction 
 Restall objected to Meyer’s claim in [1] that the system R## of that paper is “ true” 
relevant arithmetic. “How can that be,” he wanted to know, “when there are sentences A of R## 
such that neither A nor ~A is a theorem?” (An example is 0=2 → 0=1; see [1].) “We can fix that 
up,” retorted Meyer, “by applying metavaluations to R##.” But, noted Restall , that doesn’ t work 
either. For R## requires that ~A be equivalent to A → 0≠0, whereas this may not happen on a 
metavaluation. O.K., let’s switch from R to E, suggested Meyer. The result is this paper. 
 We have discussed formulating arithmetic using a relevant logic in a number of places; see 
[2] for an ABD survey and for references.1  We have most often chosen R as that relevant logic, as 
Meyer did in [3].2 But see Restall ’s [4, 14] for arithmetics developed on a wide choice of 
substructural logics.3 True, Meyer did bid “ farewell to entailment” in [5]. (Should this paper be 
called “Hello again”?) But Meyer was aware even while writing [3, 5] that there is an odd 
resonance in R# of the “ fallacies of modali ty” story that Anderson and Belnap used to motivate E 
in [6]. For just as, in E, no negated entailment entails an entailment, just so in R# and R## no 
negated equation entails an equation.4 

                                                   
1 ‘ABD’ stands, here and henceforth, for ‘Anderson, Belnap & Dunn’. 
2 We did consider basing arithmetic on E in [5], for some of the reasons viewed here as conclusive. 
3 [4] was a Ph.D. thesis on logics without the contraction principle (A→(A→B)) → (A→B), which R has. 
4 For proof of the R facts, see Appendix 1 of this paper.  
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 It will be our purpose here to base relevant arithmetic on E and related systems. This will 
produce systems E# and E## analogous to R# and R##. More accurately, the systems proposed 
here will be systems of strenge arithmetic, since we formulate E in the manner of Ackermann’s 
[7].5 This means that we make explicit Ackermann’s rules γ and δ, which ABD chopped. We then 
extend E## to a system TE# of strenge true arithmetic. Let there be definitions, axioms, and rules, 
which follow a brief interlude on modal fallacies. 
 

II Ackermann, Anderson, Belnap and fallacies of modality 
 Prominent in early relevant polemics were the identification and condemnation of some 
classes of fallacies. Of these, purported fallacies of relevance drew the most ink.6 But so-called 
fallacies of modality were also chastised in [7], [6] and elsewhere. The root of this chastisement 
was the thought that, from necessary propositions, what follows is further necessary stuff . But the 
root went to the top and the tree grew upside down. And the purported thesis became something 
like, 

FoM1.  Unnecessary stuff does not entail necessary stuff . 
Alas, FoM1 is clearly false, as even [6] came to concede.7 We now make contact with the jaw-
breaking terminology of [6] (for which it was suitably contrite), where what we shall call a box 
was identified on pp. 36ff . as a necessitive. For the record, 
 DB. A is a box if it is demonstrably equivalent to some � ���  
 DD. A is a diamond if it is demonstrably equivalent to some ◊B. 
Having abandoned FoM1, [6] decided that what it had had in mind was that boxes were choosy 
about the sorts of propositions that they followed from. In particular, [6] agreed with [7] that 
 FoM2. p → (A → B) is never valid, for a propositional variable p and any formulas A, B. 
Reason: A→B is itself a necessitive (as [6] sees it). And boxes do not follow from variables. FoM2 
is inapplicable in this paper, since nothing in the formal theories of arithmetic that we shall be 
examining works like a variable p. But not far off is the further E-metatheorem 
 FoM3. ◊A → � � ��� never valid. I.e., diamonds don’ t entail boxes. 
Note that FoM2 follows quickly from FoM3. Consider the following argument: 

Given:   1) No diamonds entail any boxes. (FoM3) 
Assumption: 2) p → (A→B) is nonetheless E-valid, for some p, A, B.   (For reductio) 

Of course the rule of uniform substitution for propositional variables like p is admissible for the 
logic E. Letting A’ and B’ be the result of substituting ◊p for p in A and B we get 
 Conclusion: 3) ◊p → (A’→B’) is a theorem of E. 
But, according to E, the entailment A’→B’ is already a box, whence 3) contradicts 1). Moral: the 
reductio assumption 2) is false, whence FoM2 is established. 
 That fallacies of modali ty are bad is not yet widely accepted (even by us) as good 
philosophy. Imagine our surprise, accordingly, when some formulas of relevant arithmetic (like 
anything of the form u = v) started acting like boxes. To complete the shock, their negations 
behaved like diamonds. Even (the advertised as non-modal) R# and R## respect FoM3, it would 
seem. We adapt all this to the E environment here, where FoM3 holds ab initio. 
 What should we think, philosophically, of the FoM3 prohibition against ◊A ever entaili ng 	 
���
�������� -the-cuff thought is that it makes good sense, since diamonds regularly come from 
boxes. But who extracts boxes from diamonds? Nor is it unreasonable to let E speak for itself on 
the point. “ I am not the sort of logic,” E might say, “ to permit � B to follow from any old thing. I 
particularly object when the old thing is a diamond. On the recently fashionable Kripke semantics 
                                                   
5 See [2], esp. pp. 129-141, for more on the relation between E and Ackermann’s original systems. 
6 See [6] and the prior Anderson-Belnap papers cited there for more on fallacies of relevance. 
7 See it and [5] for discussion and references, mainly to Sylvan and Plumwood, formerly Routley & Routley. 
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for modal logics, ◊A is true at a “world” w just in case w sees some world a such that A is true at 
a. But � � �������
	���
���� � ff B is true at every world b that w sees. It sounds like a quantifier mix-up 
to me. Why should w’s looking in one direction, say to the northeast, and seeing A true thataway, 
ever lead us to suppose that B is true in every direction? Is this not a fallacy based on a ̀ Come 
one, come all ’ maxim?”  
 At this point many readers–maybe even Kripke himself–will want to quarrel with E. 
“What,” they may interject, “of the case when B is itself a logical truth, and is accordingly true 
everywhere?”  E has a quick rejoinder, since on the semantics of relevant logics not even the logical 
truths are true everywhere.8 Renewing the attack S5’ers may point to their thesis ◊ ��� → � �����
diamond entaili ng a box if ever there was one.9 

“So much the worse,” E will respond, “ for S5. I always preferred S4 myself.”10 
 

III Axioms for strenge arithmetics 
 Our systems are formulated in a traditional arithmetical vocabulary, with terms buil t up 
from the constant 0 and individual variables x, y, z, etc., using the successor operation ’ and the 
dyadic function symbols × and +. Atomic formulas are of the form t=u, where t and u are terms. 
Formulas A, B, C, etc. are then buil t up as usual from the atomic ones under &, ∨, ~, and →, 
together with the universal quantifier ∀. Sentences shall be formulas in which no variable occurs 
free. We enter the following additional definitions: 
 (D⊃) A⊃B  =df ~A∨B 
 (D↔) A↔B =df (A→B)&(B→A) 
 (D∃) ∃xA    =df ~∀x~A  
 (Dt ) t   =df  0=0 
 (Df ) f   =df  ~t 
 (D≠) u≠v  =df  ~(u=v) 
 (D � �  � � ��� � t → A 
 (D◊) ◊A =df  ~ ! "�#  
 (D1) 1   =df  0’  
 (D2) 2   =df  1’  
etc. In particular, we take 0,1,2,3... as the numerals, each of them to be thought of as the name of 
the corresponding natural number. These definitions give the items defined their usual properties in 
systems of strenge implication.  0≠0, which is f, will have the properties of  [7]’ s  das Absurde. 
We largely follow [7] (rather than ABD) in our choices of axioms and rules. 
 
We divide the axioms of E# and E## into three parts (like Gaul).11 

                                                   
8 The chief tool for refuting paradoxes of implication in relevant semantics lies precisely in admitting points in frames at which 
even theorems of logic can be falsified. Cf. [16]. For how this works for the logic E, see [17]. Or [2], for an older Meyer plan. 
9 This thesis has been invoked in a (purportedly valid) version of the Ontological Argument for the Existence of God. Dunn has 
quipped that S5 must be false, since one can prove therein that God exists. We remark in rebuttal that an invalid argument to a 
true conclusion is best replaced by a valid one. Cf. [18], owed in part to Putnam, which proves the true conclusion. 
10 Sharing this preference was A. R Anderson, who identified S4 as the true one among many modal logics. 
11 “Gallia est omnis divisa in partes tres,” said Caesar. 
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(S) Propositional axioms (of E) 12 
 AxI  A→A 
 AxB  (B→C) → (A→B) →  A→C 
 AxB’   (A→B) → (B→C) →  A→C 
 AxW  (A→ A→B) →  A→B 
 Ax&E  A&B→A and A&B→B 
 Ax→&I (A→B)&(A→C) →  A → B&C 
 Ax∨I  A→A∨B and B→A∨B 
 Ax→∨E (A→C)&(B→C) →  A∨B → C 
 AxDist  A&(B∨C) → B ∨ A&C 
 AxTranspos (A→B) →  ~B→ ~A 
 AxCounterex A& ~B → ~(A → B) 
 Ax ~ ~E ~ ~A → A 
 Ax ~ ~I  A → ~ ~A 
(Q) Quantifier axioms (of E∀∀x ).13  We follow [2] in writing Ax for a formula in which x may (but 
need not) occur free; and Au shall be the result of proper substitution of the term u for the 
individual variable x in Ax. 
The quantifier axioms, then, will be the following: 
 Ax∀E  ∀xAx → Au, u any term 
 Ax→∀I  ∀x(A → Bx) →  A → ∀xBx , x not free in A 
 Ax∀∨  ∀x(A∨Bx) → A ∨ ∀xBx, x not free in A 
 Ax∀→  ∀x(A→B) →  ∀xA → ∀xB 
 Ax∀&  ∀xA & ∀xB → ∀x(A&B) 
These are most of the quantifier axioms for E∀∀x in [2], with a few notational and other inessential 
changes. One change is reflected in ∀E axioms, which take Au as the result of properly 
substituting u for x in Ax, when u is free for x.14 Another nominal change is that we now permit 
terms to be complex, in view of the additional term-forming operators ’ , × , and +; while ABD 
state their axioms (on p. 72 of [2]) only for the case where u is another individual variable.15 
 
The arithmetical particles and proper axioms of E# are stolen from those of [1] for R#. The same 
goes for the relation between E## and R##. Here they are. 
 
(N) Arithmetical axioms of E# and E## 
 E#1 x = y → x’ = y’  
 E#2 x=y →  x=z→y=z 
 E#3 x + 0 = x 
 E#4 x + y’ = (x + y)’  
 E#5 x × 0 = 0 
 E#6 x × y’ = xy + x 
 E#7 x’ = y’ → x = y 

                                                   
12 For the time being, we allow free variables in theorems here. We rank binary connectives thus in order of increasing scope: 
&, o, ∨, ⊃, →, ↔. We break with standard relevant practice by  (i) eschewing dots as parentheses & (ii ) associating → to the 
right. As usual, × precedes + among term-forming operators, and we may drop × for simple juxtaposition. Unary operators and 
quantifiers have minimal scope. Our only (binary) predicate is = . 
13 We follow [2] in replacing the old name EQ by E∀∀x for first-order E. Since we have defined ∃ as the (DeMorgan) dual of ∀ 
by (D∃) above, we do not follow [2] in having explicit axioms governing ∃ (since these are proved using dual ∀ theorems).  
14 The dual ∃I axiom, explicit in [2], is Au → ∃xAx. This is by definitions a theorem scheme. See the preceding footnote. 
15 But ABD clearly intend the more general forms of the axioms. 
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 E#8 x’ ≠ 0 
We now require some rules. For the strenge P-arithmetic E# we choose the following:16 
 α A→B ⇒ (A ⇒ B)  →E 
 β A and B ⇒ A&B  &I 
 γ A ⊃ B and A  ⇒  B  ⊃E 
 δ A →(B→C) and B  ⇒ A→C 
 ∀I A ⇒ ∀xA 
 RMI ∀x(Ax → Ax’) and A0  ⇒ ∀xAx 
In E#, as in R#, we may replace RMI (the Rule of Mathematical Induction) by its deductive 
equivalent 
 E#9 ∀x(Ax → Ax’) & A0 →  ∀xAx 
But RMI makes sense for a wider class of formal arithmetics than does the axiom scheme E#9.17 
We extend E# to the strenge ω-arithmetic E## by adding the well-known ωω-rule 
 ω A0 and A1 and ... and An and ... ⇒ ∀xAx 
I.e., the premisses of ω are the An for every numeral n, and its conclusion is ∀xAx. Note also 
that, given ω, we can drop RMI as primitive; for RMI is easily shown admissible anyway by 
induction in the metatheory of E##. Other rules, including δ, remain primitive for E##. 
 

IV Elementary consequences of the axioms 
In our previous work in relevant arithmetic, we have recalled that the natural numbers are 

buil t up from the fundamental number 0 by adding 1’s. Just so, we have claimed, propositions 
about these numbers ought reasonably to be taken as following from some fundamental true 
proposition t, to be interpreted (following ABD) as the conjunction of all such fundamental truths. 
The t that we have previously chosen for this role is 0=0; we choose it again, motivating Dt. But it 
is not so clear in the E# case that this t will play the role that we have assigned to it. Specifically, 
we shall want as a theorem (from E#8) 
 E#8t.  t → ∀x(x’ ≠ 0) 
But to get this theorem requires some care. We follow Ackermann and restore the primitive rule δ 
of [7]. For it is easy to see (and to prove) that we have 
 (1) 0=0 → (A → A) 
as a theorem scheme of E#, by structural induction on A. And we then get E#8t from (1) by 
applying rule δ to (1) and the E# theorem ∀x(x’ ≠ 0), detaching a second antecedent in (1). So, 
 
Fact 1. A ⇒  � � �������	��
��	���
��������������������� E# and of E## . 
Proof. Use (1) and δ as just above to show t → A for all theorems A, ending the proof. 
 
There was, in R#, an interesting theory of what we called secondary formulas in [3]. A version of 
this theory passes over to the strenge arithmetics E# and E##. We observe first 
 
 (2) x=y → (x=y → y=y)  E#2 (Symmetry and transitivity of =) 
 (3) x=y  →  y=y   AxW, (2), →E 
 (4) y=y  →  0=0   Subtraction (Hint: use E#7, RMI)18 
 (5) x=y  →  0=0   (3), (4), AxB’ , →E 
 

                                                   
16 P is for Peano. ⇒ is a metalogical “ if” . Thus read α below as the →E rule, β as &I, and γ as ⊃E. 
17 See [3, 4, 14]. Dunn suggested E#9 as an axiom scheme of mathematical induction. RMI is ours. 
18 Alternatively, follow Dunn by multiplying both sides by 0, invoking E#5. Cf. [2], p. 437.  
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Thus by (5) and Dt , all equations entail t. Let us accordingly call any formula A of E# which 
entails t a secondary equation. We call a negated equation an unequation. By transposition in (5) 
it is evident that f entails every unequation. Generalizing again, any formula B of E# which is 
provably entailed therein by f shall be a secondary unequation. Finally C is a secondary formula 
iff C is either a secondary equation or a secondary unequation. We have now 
 
Fact 2. All →-free formulas of E# are secondary formulas, and they are provable in E# iff 
provable in classical Peano arithmetic P#. 
Proof. We have noted that both equations and unequations are secondary formulas; to show that 
this property is preserved under truth-functional combination and quantification is by a 
straightforward induction. (Note that it is not in general preserved under combination by →.) As 
for the final claim, on direct translation E# is evidently a subsystem of P#. A good exercise, which 
we commend to readers, is to show that the axioms of P# (in the truth-functional vocabulary, with 
⊃ for →) are theorems of E#. Whence because E# is closed under the rules of P# (in particular 
under γ, by fiat), any classical proof of a P# theorem is (near enough) an E# proof.19  Q.E.D. 
 

V The modal structure of E# 
We have decided to make something of the modal distinctions of E. So it is time to draw some. 
First, we wish to show that our identification back in R# of equations with boxes and unequations 
with diamonds holds in a structured way in E# (and so in its super-systems E## and TE#). Here is 
our 
 
Fact 3. Among the theorem schemes of E# are the following: 
 E#10. x=y ↔ � �������	�  
 E#11. x≠y ↔ ◊(x≠y) 
 E#12. A→B ↔ 
 ��� →B) 
 E#13. t → (A→A) 
 E#14. 
 � → A 
 E#15. t → x=x 
Proof. Recall that we have defined 
 � 
�������� → A. E#14 then follows immediately from � � → � �
and an application of δ, “detaching” 0=0. Easy application of Fact 1 produces both E#13 and 
E#15. E#11 follows from E#10 by transposition and D◊. We conclude the verification of Fact 3 by 
showing E#10, E#12 from left to right. For the former, note x=y → (x=x → x=y) by transitivity of 
=, after which apply E#15 and D � �	����������� �!� y, we get E#12 from L to R by E#13, from the instance 
(A→B) → ((A→A) → (A→B)) of AxB. Q. E. D. 

Among the boxes of E# (and super-theories like E##) are all the u=v and all the A→B. 
(Apply E#10, E#12.) If A and B are both boxes then A&B and A∨B are boxes. (Apply Ax→&I, 
Ax→∨E.) If A is a box then ∀xA and ∃xA are boxes. (Apply Ax→∀I.) Dually, negations of boxes 
such as the u≠v and ~(A→B) are diamonds. The class of diamonds is closed likewise under the 
lattice connectives & and ∨ and quantifiers ∀ and ∃. 
 

                                                   
19 Contrast the R# situation, which does not have Ackermann’s γ as a primitive or even as an admissible rule. For (thanks to 
Friedman) we refuted γ by producing in [8] a theorem QRF of P# which was not (even truth-functionally) a theorem of R#. 
However we think it no great virtue of E# that it delivers P# so simply. In relevant theories we prefer to prove γ, not to impose it 
by fiat. The contrasting and more interesting result for R# is that secondary unequations are provable in R# iff provable in P#. 
This leads in [3] to a direct homomorphic exact translation from P# to R#, preserving both theorems and non-theorems. 
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To show that E# (and its super-systems) reject modal fallacies, we recall Ackermann’s 6 ([2], p. 
136). Its Hasse diagram and → table are as follows: 
 

T 
. 

/     \ 
4 .          . f 

|   \      | 
t .         . 1 

\     / 
. 
F 
 

The Ackermann matrix 6 for E20 
 

→ F 1 f t 4 T   ~ 
F t t t t t t  F T 
1 F t t F t t  1 4 
f F F t F F t  f t 

* t F F F t t t  * t f 
* 4 F F F F t t  * 4 1 
* T F F F F F t  * T F 

 
Inspection of 6 shows that the box values are t (for true → statements) and F (for False ones). 
Consulting the ~ table the corresponding diamond values are f and T. Thus we can turn 6 into a 
matrix for all of strenge arithmetic on the interpretation I that assigns t to correct21 equational 
sentences22 u=v and F to incorrect ones. We have set out the Ackermann → and ~ tables for 6; 
otherwise, as 6 (being finite) is a complete distributive lattice, the values to be assigned to 
arbitrary sentences are determined homomorphically. We lay it down that the homomorphic 
determination of the value of a sentence ∀xAx on interpretation I in 6 is just the meet of { I(An):n 
is a numeral} ; otherwise I(A∨B) = I(A)∨ I(B), etc. It is evident that all closed theorems A of E# 
(and indeed of E##) are true on our suggested interpretation I, in the sense that I(A) takes one of 
the (starred) designated values t, 4, T. But then 
 
Ackermann theorem for E# and E##. No fallacies of modali ty hold in strenge arithmetic; 
specifically, no diamonds entail boxes. 
Proof. It is clear that diamonds take one of the values f, T on our suggested interpretation of 
sentences of arithmetic in 6. By contrast boxes are restricted to the values t, F. Inspection of the ≤ 
relation of our Hasse diagram makes it clear that if a ∈ { f,T} and b ∈ { t,F} then it is not the case 
that a ≤ b; or, what comes to the same thing, a→b is in all such cases the undesignated value F. So 
6 rejects all candidate theorems of E## of the form ◊A → �����  

 
VI Metavaluing E## to get TE# 

                                                   
20 Identify F, 1, f, t, 4, T respectively with the 0, 1, 2, 3, 4, 5 of p. 136 of [2]. Set ~b = 5-b. Designate 3, 4, 5. 
21 Being number terms, each of u,v denotes a unique natural number in virtue of the algorithms that you learned by 3rd grade. 
And u=v is correct if both of u,v denote the same number, else it is incorrect. 
22 Recall that a formula is a sentence if it contains no free variables. 
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It is time to keep our promise to make ω-arithmetic into a true arithmetic, by specifying that 
exactly one out of each pair of sentences A, ~A shall be a theorem. We may take E## as 
reformulated so that only sentences shall count as theorems (like our presentation in [1] of R##). 
We may achieve this by substituting for each axiom all its universal closures (and counting, if the 
reader wishes, open formulas as theorems iff their universal closures are). The rules remain the 
same (except that they now apply only to sentences), while the ω-rule in particular is available to 
take up any slack. We now define a metavaluation V of E##, specifying a set TR of truths, as 
follows on all sentences A, B, C of the arithmetical vocabulary: 
 VAt If A is an atomic sentence u=v, then A ∈ TR iff A is arithmetically correct 
 V~ ~B ∈ TR iff B ∉ TR 
 V& B&C ∈ TR iff, B ∈ TR and C ∈ TR 
 V∨ B∨C ∈ TR iff, B ∈ TR or C ∈ TR 
 V∀ ∀xBx ∈ TR iff, for all numerals n, Bn ∈ TR 
 V→ B→C ∈ TR iff both (i) E## 

�
 B → C and  (ii ) B ∈ TR  ⇒  C ∈ TR 

 
We have, more or less, reverted to our original characterization of a metavaluation in [9], as a 
valuation that is truth-functional on intended truth-functional particles, while satisfying a more 
intricate condition (here, V→) on the non-truth-functional →. Let now TE# be the system TR of 
true sentences on V. The true sentences are evidently closed under Ackermann’s rules α, β and γ. 
But they are not closed under δ. 
 
Soundness theorem for E##. E# ⊆ E## ⊆ TE# 
Proof. We know already that E## is a super-system of E#. So it will suff ice to complete this proof 
to show that all (closures of) theorems of E## are true on our metavaluation V above. This 
involves a straightforward deductive induction, verifying the axioms of E## on V, and showing 
also that the rules preserve truth on V for theorems of E##. We do some cases, and leave the rest 
to the reader. We carry out the inductive argument only for sentences. It then suff ices in all cases 
to examine an arbitrary numerical instance of an axiom or rule, leaving it to the ω-rule and its 
mate V∀ to deliver universal closures. 
Ad AxB. You need to show (B→C) → (A→B) → A→C ∈ TR, where all of A, B, C are sentences. 
It’s a pleasant exercise, mixing appeals to (i) and (ii ) of V→. Enough, ad AxB! 
Ad Rule δ. Suppose A → (B → C) and B are closed theorems of E##, which on inductive 
hypothesis both belong to TR. By δ we have A→C as a theorem of E##. To show A→C ∈ TR this 
is (i) of V→; for (ii ) assume A ∈ TR and show C ∈ TR. But now we may use (ii ) of V→; since A 
and A → (B → C) are both true, we have by (ii ) that B→C ∈ TR as well ; but then, since B ∈ TR 
we have again that C ∈ TR, which ends the verification that A→C ∈ TR. 
Ad Rule ω. Suppose An is a true theorem of E## for each numeral n. By ω, we have E## 

�
 ∀xAx. 

Then by V∀ we have ∀xAx ∈ TR, which suff ices. 
Ad Ax∀∨. We verify (i) and (ii ) under V→ for any sentence ∀x(A ∨ Bx) → A ∨ ∀xBx. (i) of V→ 
is immediate; as an axiom, the sentence is an E## theorem. For (ii ), assume ∀x(A∨Bx) ∈ TR. 
Then for each numeral n either A is true or Bn is true, by V∀, V∨. If A ∈ TR then A ∨ ∀xBx ∈ 
TR, suff icing for (ii ) by V∨. Otherwise Bn ∈ TR for all n, whence ∀xBx ∈ TR by V∀ and A ∨ 
∀xBx ∈ TR by V∨. 
Ad E#8. Note that n’ = 0 is always incorrect; whence by V∀ we have ∀x(x’  ≠ 0) ∈ TR by V∀. 
We rest our cases, leaving others to the reader, and declare the soundness theorem proved. 
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Observe, if you will , the delicacy of our argument ad the rule δ in the argument just concluded. We 
do not say that δ preserves truth on V when applied to arbitrary members A→(B→C) and B of 
TR. It does not. To show A→C ∈ TR, we must by (i) of V→ prove A → C in E##. For this we 
need not merely that B is true on V, but that it is a true theorem of E##. With that information δ 
can be applied in E##—and the diff iculty disappears.23 

Anyway, our goal of having specified the strenge truths is now accomplished. For in view 
of V~ above and our understanding of intuitive ‘not’ , TE# has spli t arithmetic sentences 
univocally into the truths and their negations, namely the falsehoods. But what, the reader may 
wonder, has happened to our old counterexample, 0=2→0=1? Easy—it’s false. For as a non-
theorem of E##, it fails part (i) of our truth-condition on →; as that suff ices for 0=2→0=1 ∉ TR, 
we need look no further for its refutation. And so much, by V~, assures TE# 

�
  ~(0=2→0=1). 

By the same argument, whenever A and B are sentences such that A→B is unprovable in E##, 
then TE# 

�
  ~(A→B). 

 
All of this returns us to a point made by Belnap when we told him of our initial work on R#. “ It 
would seem,” he observed, “ that propositions like 0=2 → 0=1 should fail.” We pass, at least for 
now, from relevant implication to entailment to make that observation stick. As, we suppose, 
Anderson and Belnap might have advised from the outset! 
 
Appendix 1. How fallacies of modality showed up rejected in R# and R##. 
 For proof that diamonds (e.g., unequations) imply no boxes (e.g., equations) in arithmetics 
based on R, consider the chain 4 = <F, t, f, T > = <0,1,2,3>, totally ordered as usual. 4 is a 
DeMorgan lattice, on Dunn’s definition in [6], if we set b∧c = min(b,c) and b∨c = max(b,c); 
moreover, define negation24 by setting ~b = b→f on the implicative extension to be introduced 
immediately, with the following → table (due originally to Church): 
 
→→ table for the DeMorgan monoid 4 
 

→→ F t f T 
F T T T T 

* t F t f T 
 * f F F t T 
* T F F F T 

 
4 is now not merely a DeMorgan lattice but a DeMorgan monoid in the sense of [6], taking t as the 
monoid identity and fusion o as defined by boc = ~(b→~c). DeMorgan monoids verify all theorems 
of R, since for each theorem B and algebraic interpretation I, t ≤ I(B). We may verify also all the 
theorems of R##, on an extremely simple-minded plan. Just assign t to each atomic formula v=w 
and let ∀xA have the value of A. But as identities are assigned t their negations will be assigned f; 
whence s≠u → v=w will get in 4 the value f→t = F, for all terms s, u, v, w. So in this sense no 
“ fallacies of modali ty” are theorems of R## (or of its subsystem R#). We express again our shock. 
R is not supposed to have any doctrine of modali ty. In spite of itself, it does. And all this is grist to 
the mill of E, which is formulated to avoid modal fallacies. 

                                                   
23 Another way to make the same point is the following: E#13 says that E# �  t→(A→A). So this is true, by the soundness 
theorem. What Restall saw was that, if we allowed ourselves unlimited appeal to δ on members of TR, we should have A ∈ TR 
⇒  � � ∈ TR. That is not the idea from our present perspective. 
24 Numerically, this means that ~b = 3-b for all b in {0, 1, 2, 3}. 
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Appendix 2. What are some other modal arithmetics to which these ideas apply? 
 We have set out arithmetics based on E in some detail . But save for the interplay between 
relevance and modali ty at which E aims, there is nothing that special about our choice. Still i n the 
relevant ballpark, for example, we might have preferred the system NR of [11] as our vehicle to 
axiomatize arithmetic.25 We might still avoid fallacies of modali ty as in section IV above. This 
would produce a set of truths of TNR#, applying a metavaluation to an NR## as we did to E## in 
section V. Going even further afield we might follow Shapiro [12] in metavaluing what we’d call 
S4## to get a TS4#.  
 
Appendix 3. What crazy modal notions does strenge arithmetic enjoin? 
 There is an old view of how modali ty enters our understanding of the world. This view (to 
be traced to Plato, Leibniz, Hume, Kant, and the gang) says that necessary truth is the unique 
province of mathematics and of logic; whatever is true in these areas is true of necessity; other 
truths (e.g., about the world) just happen (more or less) to be true. 
 We mention all this just because our research into strenge arithmetic does not seem to 
confirm it. It is perfectly conceivable, we have said above, that there are truths of TE# which are 
not necessary.26 It is probably not surprising that our paradigm instances of these truths are about 
entailments that fail. An idea that we could have, perhaps, is that 0=2 might have entailed 0=1; 
but, in sober fact, it doesn’ t. Anyway, we enjoin our readers to develop a Complete System of the 
World, starting from TE#. 
 Meanwhile, there is another set of modal notions—those that accompany the so-called 
“ logics of provabili ty” in [10] and elsewhere—that it is interesting to attempt to wed to relevant 
logics. As a prominent place is reserved in these logics for “Löb’s Rule” (which is the inference 
from ��� → A to A), readers may be pardoned if they can contain their enthusiasm for the idea. 
Still , as provabili ty logics derive much of their motivation from the arithmetization of 
metamathematics, we would like to know how these things work out in the context of (say) E#. We 
know already that they work out classically; as E# contains P# as its truth-functional part, it also 
contains classical provabili ty logic, classically expressed. “But what,” we hear you say, “ is 
relevant about that?” We’d like to know, too. Something more sui generis, appealing to properties 
of a relevant →, would be more interesting still . Having looked with Mares into a relevant 
provabili ty logic based on R in [15], we challenge you to advance the subject. 
 
Appendix 4. Why do we insist on Ackermann’s Rule γ? 
 Following earlier work by Anderson and Belnap, [2] takes some pleasure in chopping 
away at Ackermann’s rules. [2] chops specifically the rule ⊃E, which is Ackermann’s γ. So when 
R# was first formulated in [3] it also did without γ, in the hope that (as in our work with Dunn on 
R and E, etc., and in much that Meyer has pursued since) this rule would turn out admissible 
anyway for R#. But that hope was too sanguine, in view of the Friedman counterexample QRF of 
[8]. (Mints suggested in conversation that perhaps we should simply add γ also to R#, as we added 
it above in formulating E#. Well , maybe.) For as the “disjunctive syllogism” strikes us as a 
generally OK inference (against views such as those expressed in [2] that it is relevantistically 
awful), we have followed Ackermann here in restoring it to the primitive logical equipment. But we 
do so with a definite lack of enthusiasm. For (like Gentzen’s cut, as Dunn said for us in [13]) we 
take it as a sign of the stabili ty (and niceness) of a system that γ should be admissible therein 

                                                   
25 On the conventions of [2] NR is called R � . 
26 It is certainly the case that there are rules of E## that are inadmissible in TE#. Cf. our discussion of rule δ above. 
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without being primitive. As the argument of [1] can be adapted for E##, we don’ t need a primitive 
γ for strenge ω-arithmetic; for γ is anyway admissible, whence E## will still be stable and nice. 
But we cannot so drop γ from E#. ’Tis a pity.27 
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