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Abstract. In Entailment, Anderson and Belnap motivated their modification E of Ackermann's
strenge Implikation N’ as alogic of relevance and necessty. The kindred system R was en as
relevant but not as modal. Our systems of Peano arithmetic R# and omega arithmetic R## were
based onR to avoid fallacies of relevance. But problems arose as to which arithmetic sentences
were (relevantly) true. Here we base analogaus g/stems on E to solve those problems. Central to
motivating E isthe rgection d fallacies of modality. Our slogan herefor thisis, “No diamonds
entail any boxes.” Form the strenge Peano arithmetic E# like R#, addng appropriate forms of the
Peano axioms to Ackermann's E™. Extend E# to the strenge omega arithmetic E## by adding the
wrule A(0), A1), ... O OxA(x). E# and E## make explicit argection d “fallacies of modality”
implicit in R#, where already “ equations” work like boxes and “unequations” like diamonds. (And
no unequations relevantly imply any equations.) The R# theory of secondary formulas extends
straightforwardly to aur strenge arithmetics. Finally metavaluing E## yidds the strenge true
arithmetic TE#. TE# treats truth-functions and quantifiers truth-functionally, settling sentences
like0=2 - 0=1 by affirming their negations (as Belnap once suggested).

| I ntroduction

Restall objected to Meyer’s claimin [1] that the system R## of that paper is “true”’
relevant arithmetic. “How can that be,” he wanted to knaw, “when there are sentences A of R##
such that neither A nor ~A is atheorem?” (An exampleis 0=2 - 0=1; see[1].) “We can fix that
up,” retorted Meyer, “by applying metavaluations to R##.” But, noted Restall, that doesn’t work
ether. For R##requiresthat ~A be equivalent to A - 020, whereas this may na happen ona
metavaluation. O.K., let’s switch from R to E, suggested Meyer. Theresult is this paper.

We have discussd formulating arithmetic using arelevant logic in a number of places; see
[2] for an ABD survey and for references.” We have most often chasen R as that rdevant logic, as
Meyer did in [3].? But seeRestall’s [4, 14] for arithmetics developed ona wide chaice of
substructural logics.® True, Meyer did bid “farewel to entail ment” in [5]. (Should this paper be
called “Hello again™?) But Meyer was aware even whilewriting [3, 5] that thereis an odd
resonance in R# of the “fallacies of modality” story that Anderson and Belnap used to motivate E
in[6]. For just as, in E, no regated entail ment entail s an entail ment, just so in R# and R## no
negated equation entail s an equation.”

L*ABD’ stands, here and henceforth, for ‘Anderson, Belnap & Dunri.

2We did consider basing arithmetic on E in [5], for some of the reasons viewed here as conclusive.

34] was a Ph.D. thesis on logics without the @ntraction principle (A - (A - B)) - (A B), which R has.
* For prodf of the R facts, seeAppendix 1 of this paper.



It will be our purpose here to base relevant arithmetic on E and related systems. This will
produce systems E# and E## analogaus to R# and R##. More accuratdy, the systems proposed
here will be systems of strenge arithmetic, since we formulate E in the manner of Ackermann's
[7].° This means that we make explicit Ackermann's rules y and 8, which ABD chopped. We then
extend E## to a system TE# of strenge true arithmetic. Let there be definitions, axioms, and rules,
which follow a brief interlude on modal fallacies.

Il Ackermann, Anderson, Belnap and fallacies of modality

Prominent in early relevant polemics were the identification and condemnation d some
classes of fallacies. Of these, purported fallacies of relevance drew the most ink.® But so-called
fallacies of modality were also chastised in [7], [6] and elsewhere. Theroat of this chastisement
was the thought that, from necessary propositions, what follows is further necessary stuff. But the
roat went to the top and the treegrew upside down. And the purported thesis became something
like,

FoM1. Unnecessary stuff does not entail necessary stuff.

Alas, FoM1 is clearly false, as even [6] came to concede.” We now make contact with the jaw-
breakingtermindogy d [6] (for which it was suitably contrite), where what we shall call a box
was identified onpp. 36ff. as a necessitive. For the record,

DB. A isaboxif it is demonstrably equivalent to some oB.

DD. A isadiamond if it is demonstrably equivalent to some ¢B.

Having abandoned FoM1, [6] decided that what it had had in mind was that boxes were choosy
about the sorts of propositions that they followed from. In particular, [6] agreed with [7] that

FoM2.p - (A - B)isnever valid, for apropositional variable p and any formulas A, B.
Reason: A - B isitsdf a necessitive (as [6] seesit). And boxes do not follow from variables. FoM2
isinapplicablein this paper, since nothing in the formal theories of arithmetic that we shall be
examining works like a variable p. But not far off is the further E-metatheorem

FoM3. A - oB is never valid. |.e,, diamonds dorit entail boxes.

Note that FoM2 foll ows quickly from FoM3. Consider the foll owing argument:

Given: 1) No damonds entail any boxes. (FoM3)

Asaumption:  2) p - (A - B) isnorethdessE-valid, for somep, A, B. (For reductio)
Of coursethe rule of uniform substitution for propositional variables like p is admisgble for the
logic E. Letting A’ and B’ be the result of substituting Op for pin A and B we get

Conclusion: 3)0p » (A’ »B’) isatheorem of E.

But, accordingto E, the entailment A’ - B’ is already a box, whence 3) cortradicts 1). Moral: the
reductio assumption 2) is false, whence FoM2 is establi shed.

That fallacies of modality are bad is nat yet widely acoepted (even by us) as good
philosophy. Imagine our surprise, accordingy, when some formulas of relevant arithmetic (like
anything d the form u = v) started acting like boxes. To complete the shack, their negations
behaved like diamonds. Even (the advertised as nonmodal) R# and R## respect FOM3, it would
seam. We adapt all this to the E environment here, where FOM3 hadds ab initio.

What should we think, philosophically, of the FoM3 prohibition against A ever entailing
oB? An off-the-cuff thought is that it makes goodsense, since diamonds regularly come from
boxes. But who extracts boxes from diamonds? Nor is it unreasonable to let E speak for itsef on
the point. “1 am not the sort of logic,” E might say, “to permit oB to follow from any old thing. |
particularly object when the old thingis a diamond On the recently fashionable Kripke semantics

5 See[2], esp. pp. 129141, for more on the relation between E and Ackermann’s original systems.
5See[6] and the prior Anderson-Belnap papers cited there for more on fall acies of relevance
7 Seeit and [5] for discusson and references, mainly to Sylvan and Plumwood, formerly Routley & Routley.



for modal logics, A istrueat a “world” w just in case w sees some world a such that A istrue at
a. But oB is true at w iff B istrue at every world b that w sees. It sounds like a quantifier mix-up
to me. Why shauld w’'s looking in ore direction, say to the northeast, and seeng A true thataway,
ever lead us to suppose that B istruein evey diredion?Is this nat a fallacy based ona "Come
one, come all’” maxim?’

At this point many readers—maybe even Kripke himsdf—will want to quarrd with E.
“What,” they may interject, “of the case when B isitsdlf alogcal truth, andis accordingy true
eveywhere?” E hasaquick rejoinder, since on the semantics of relevant logics nat even the logical
truths are true everywhere.® Renewing the attack S5’ ers may point to their thesis 0nA — DA, a
diamond entaili ng a box if ever there was ore.’

“So much theworse,” E will respond “for S5. | always preferred S4 mysdf.”*°

11 Axioms for strenge arithmetics

Our systems are formulated in a traditional arithmetical vocabulary, with terms built up
from the constant 0 and individual variables x, y, z, etc., using the succesor operation’ andthe
dyadic function symbols x and +. Atomic formulas are of the form t=u, wheret and u are terms.
Formulas A, B, C, etc. are then built up as usual from the atomic ones under &, [J, ~, and -,
together with the universal quantifier [J. Sentences shall be formulas in which no \ariable occurs
free We aenter the following additional definitions:

(DO) AOB =df ~AB

(Do) A-B=df (A-B)&(B-A)

(DD XA =df ~Ox~A

(Dt) t =df 0=0

(Df) f =df ~t

(D#)  uzv =df ~(u=v)

(Do) opA=dft- A

(DO) OA =df ~o~A

(D) 1 =df O

(D2) 2 =df 1
etc. In particular, wetake 0,1,2,3... as the numerals, each o them to be thought of as the name of
the correspondng ratural number. These definitions give the items defined their usual propertiesin
systems of strenge implication. 020, whichisf, will have the propertiesof [7]'s das Absurde.
Welargdy follow [7] (rather than ABD) in aur chaices of axioms and rules.

We divide the axioms of E# and E## into threeparts (like Gaul).™*

8 The chief tod for refuting paradoxes of implication in relevant semantics lies predsely in admitting points in frames at which
even theorems of logic can befalsified. Cf. [16]. For how this works for the logic E, see[17]. Or [2], for an older Meyer plan.

9 This thesis has been invoked in a (purportedly valid) version of the Ontological Argument for the Existenceof God. Dunn hes
quipped that S5 must be false, sinceone @n prove therein that God exists. We remark in rebuttal that an invalid argument to a
true conclusion is best replaced by avalid one. Cf. [18], owed in part to Putnam, which proves the true @mnclusion.

10 Sharing this preferencewas A. R Anderson, who identified $4 as the tr ue one among many modal logics.

1«Gallia est omnis divisain partestres,” said Caesar.



(S  Propositional axioms (of E) *?

AxI ALA
AxB (B-C) -~ (A-B) - A-C
AXB’ (A-B) -~ (B-C) - A-C
AXW (A~ A-B) -~ A-B

AX&E A&B A and A&B-B
AX - &l (A-B)&(A-C) -~ A - B&C
AxOl A_ACB and B-ADB
Ax - OE (A-C)&B-C) - AB - C
AxDist A&(BLC) - BOA&C

AxTranspos (A-B) - ~B- ~A

AxCounterex A& ~B - ~(A - B)

Ax ~~E ~~A - A

Ax~H A-~-A
(Q) Quantifier axioms (of E™)."* Wefollow [2] in writing Ax for a formulain which x may (but
nead not) occur free and Au shall be the result of proper substitution d theterm u for the
individual variable x in AX.
The quantifier axioms, then, will be the following:

AxOE OxAX — Au, uany term

Ax - Ol OX(A - Bx) - A - OxBx, x na freein A
AxO0O Ox(AOBx) — A O0OxBx, x nat freein A
AxO - Ox(A-B) - [OxA - [OxB

AxO& OXA & OxB - Ox(A&B)

These are most of the quantifier axioms for E™in [2], with a few natational and aher inessential
changes. One changeis reflected in UE axioms, which take Au as the result of properly
substituting u for x in Ax, when u is freefor x.** Anather nominal change is that we now permit
terms to be complex, in view of the addtional term-forming gerators’, x , and +; while ABD
state their axioms (on p. 72 of [2]) only for the case where u is anather individual variable.*

Thearithmetical particles and proper axioms of E# are stolen from those of [ 1] for R#. The same
goes for the reation between E## and R##. Here they are.

(N) Arithmetical axioms of E# and E##

E#1 x=y-X =V

E#2 x=y - X=z-Yy=z
E#3 x+0=x

E#4 x+y =(x+y)

E#5 xx0=0

E#6 XXy =Xy+X

E#7 X =y - Xx=y

12 For the time being, we allow freevariables in theorems here. We rank hinary connedives thus in order of increasing scope:
&,0,0, 0, -, «.Webreak with standard relevant practiceby (i) eschewing dots as parentheses & (ii) associating — to the
right. As usual, x precales + among term-forming operators, and we may drop x for simple juxtaposition. Unary operators and
quantifiers have minimal scope. Our only (binary) predicateis = .

B wefollow [2] in replacing the old neme EQ by E™ for first-order E. Sincewe have defined Oas the (DeMorgan) dual of O
by (D) above, we do not follow [2] in having explicit axioms governing [ (sincethese are proved using dual [ theorems).

% Thedual 01 axiom, explicit in [2], isAu — [XAx. Thisis by definitions a theorem scheme. Seethe preceling foatnote.

5 But ABD clearly intend the more general forms of the axioms.



E#8 x #£0
We now require some rules. For the strenge P-arithmetic E# we chocse the foll owing:*®

o A-BO (AO B) ~E
B AandB O A&B &l
y AOBandA O B OE

0 A -(B-C)andB O A-C

ml A0 OxA

RMI  [Ox(Ax — Ax’) andAO O OxAx
In E#, asin R#, we may replace RM1 (the Rule of Mathematical | nduction) by its deductive
equivalent

E#9 [Ox(Ax - AX) & A0 - [IxAX
But RM| makes nse for awider classof formal arithmetics than daes the axiom scheme E#9."
We etend E# to the strenge w-arithmetic E## by adding the well-known w-rule

w AO0andAland...andAnand... 0 [OxAX
|.e., the premisses of warethe Anfor every numeral n, andits conclusion is [IxAx. Note also
that, given w, we can drop RMI as primitive; for RMI is easily shown admissble anyway by
induction in the metatheory of E##. Other rules, including 6, remain primitive for E##.

IV Elementary consequences of the axioms

In cur previous work in relevant arithmetic, we have recall ed that the natural numbers are
built up from the fundamental number 0 by adding 1's. Just so, we have claimed, propositions
about these numbers ought reasonably to be taken as foll owing from some fundamental true
propositiont, to be interpreted (following ABD) as the conjunction of all such fundamental truths.
Thet that we have previously chosen for this role is 0=0; we choaseit again, motivating Dt. But it
isnat so clear in the E# casethat thist will play therole that we have assgned to it. Specifically,
we shall want as a theorem (from E#8)

E#8. t - Ox(X' #0)
But to get this theorem requires ome care. We follow Ackermann and restore the primitive rule &
of [7]. For it is easy to see(and to prove) that we have
as a theorem scheme of E#, by structural induction on A. Andwe then get E#8t from (1) by
applyingrule d to (1) and the E# theorem Ox(x’ # 0), detaching a second antecedent in (1). So,

Fact 1. A0 0A is an admissible rule of E# and o E## .
Proof. Use (1) and d asjust aboveto showt — A for all theorems A, ending the prodf.

Therewas, in R#, an interesting theory of what we called secondary formulasin [3]. A version d
this theory passs over to the strenge arithmetics E# and E##. We observe first

2 X=y - (X=y - y=y) E#2 (Symmetry and transitivity of =)
Q) x=y - y=y AXW, (2), -E

4 vy - =0 Subtraction (Hint: use E#7, RMI)*®
6 x=y - 0=0 (3), (4), AxB’, -E

®pisfor Peano. O isametalogical “if". Thus read o below asthe — E rule, B as &I, andy as OE.
17 See[3, 4, 14]. Dunnsuggested E#9 as an axiom scheme of mathematical induction. RM 1 is ours.
18 Alternatively, follow Dunn by multiplying both sides by 0, invoking E#5. Cf. [2], p. 437.



Thus by (5) and Dt , all equations entail t. Let us accordingly call any formula A of E# which
entails t a secondary equation. We call a negated equation an unequation. By transposition in (5)
it is evident that f entails every unequation. Generalizing again, any formula B of E# which is
provably entailed therein by f shall be a secondary unequation. Finally C is a secondary formula
iff Cisether a secondary equation or a secondary unequation. We have now

Fact 2. All - -freeformulas of E# are secondary formulas, and they are provable in E# iff
provablein classical Peano arithmetic P£.

Proof. We have noted that both equations and unequations are secondary formulas; to show that
this property is preserved under truth-functional combination and quantification is by a
straightforward induction. (Note that it is not in general preserved under combination by —.) As
for thefinal claim, on direct trandlation E# is evidently a subsystem of P#. A good exercise, which
we commend to readers, is to show that the axioms of P# (in the truth-functional vocabulary, with
O for ) aretheorems of E#. Whence because E# is closed under the rules of P# (in particular
under v, by fiat), any classical proof of a P# theorem is (near enough) an E# proof.”® Q.E.D.

V The modal structure of E#
We have decided to make something of the modal distinctions of E. So it is timeto draw some.
First, we wish to show that our identification back in R# of equations with boxes and unequations
with diamonds holds in a structured way in E# (and so in its super-systems E## and TE#). Hereis
our

Fact 3. Among the theorem schemes of E# are the following:

E#10. X=y o o(x=y)

E#11. xzy o O(X2Yy)

E#12. A-B o o(A-B)

E#13. t - (A-A)

E#14. oA - A

E#15. t - x=x
Proof. Recall that we have defined oA as 0=0 — A. E#14then follows immediately from oA - oA
and an application d 9, “detaching’ 0=0. Easy application d Fact 1 produces both E#13and
E#15 E#11follows from E#10 by transposition and D¢. We conclude the verification d Fact 3 by
showing E#10, E#12from |€ft to right. For theformer, natex=y - (x=x - Xx=Yy) by transitivity of
=, after which apply E#15and Do. Similarly, we get E#12from L to R by E#13 from the instance
(A-B) - (WA->A) - (A-B)) of AxB. Q. E. D.

Amongthe boxes of E# (and super-theories like E##) are al theu=v andall the A - B.
(Apply E#10 E#12) If A and B are both boxes then A&B and AUB are boxes. (Apply AX - &I,
Ax - [E.) If A isabox then OxA and [XA are boxes. (Apply Ax - [I.) Dually, negations of boxes
such as the uzv and ~(A - B) are diamonds. The classof diamonds is closed likewise under the
lattice conrectives & and [0 and quantifiers [J and [

19 Contrast the R# situation, which does not have Ackermann's y as aprimitive or even as an admissble rule. For (thanks to
Friedman) we refuted y by producing in [8] a theorem QRF of P# which was not (even truth-functionally) a theorem of R#.
However we think it no great virtue of E# that it delivers P# so simply. In relevant theories we prefer to prove y, not to impose it
by fiat. The mntrasting and more interesting result for R# is that seandary unequations are provable in R# iff provablein P#.
Thisleadsin [3] to adired homomorphic exact translation from P# to R#, preserving both theorems and ron-theorems.



To show that E# (andits super-systems) reject modal fall acies, we recall Ackermann's 6 ([2], p.
136). ItsHass diagram and - table are as foll ows:

-
[\
4. f
[\
t. L1
\
F
The Ackermann matrix 6 for E?
S F | 1] f ]t 4T -
F t t t t t t F T
1 F t t F t t 1 4
f F F t F F t f t
* 1 F F F t t t * 1 f
4| F | F | F | F [t ]t *4 1
*T| F | F|F | F | F |t *T| F

Inspection d 6 shows that the box values aret (for true — statements) and F (for False ones).
Corsulting the ~ table the correspondng diamond values are f and T. Thus we can turn 6 into a
matrix for all of strenge arithmetic ontheinterpretation| that assgnst to correct”* equational
sentences” u=v and F to incorrect ones. We have set out the Ackermann — and ~ tables for 6;
otherwise, as 6 (bengfinite) is a complete distributive lattice, the values to be assgned to
arbitrary sentences are determined hanomorphically. Welay it down that the homomorphic
determination d the value of a sentence [IXAx oninterpretation| in 6 isjust the meet of {I(An):n
isanumeral}; otherwise I(ACB) = I(A)T1(B), etc. It is evident that all closed theorems A of E#
(andindeal of E##) aretrue on aur suggested interpretation |, in the sensethat I(A) takes one of
the (starred) designated valuest, 4, T. But then

Ackermann theorem for E# and E##. No fallacies of modality hdd in strenge arithmetic;
specifically, no damonds entail boxes.

Proof. It is clear that diamonds take one of the values f, T on aur suggested interpretation o
sentences of arithmetic in 6. By cortrast boxes are restricted to the values t, F. Inspection d the <
relation d our Hasse diagram mekes it clear that if a (0 {f, T} andb [0 {t,F} thenit is not the case
that a < b; or, what comes to the samething, a— b isin all such cases the undesignated value F. So
6 rgects all candidate theorems of E## of theform 0A — oB.

VI Metavaluing E## to get TE#

Ddentify F, 1, f, t, 4, T respedively with the 0, 1, 2, 3, 4, 5 of p. 136of [2]. Set ~b = 5-b. Designate 3, 4, 5.

21 Being number terms, each of u,v denotes a unique natural number in virtue of the algorithms that you learned by 3rd grade.
And u=v is correct if both of u,v denote the same number, elseit isincorrect.

2 Reall that aformulais a sentence if it contains no freevariables.



It is time to keep our promise to make w-arithmetic into a true arithmetic, by specifying that
exactly one out of each pair of sentences A, ~A shall be a theorem. We may take E## as
reformulated so that only sentences shall count as theorems (like our presentation in [1] of R##).
We may achieve this by substituting for each axiom all its universal closures (and counting, if the
reader wishes, open formulas as theorems iff their universal closures are). Therules remain the
same (except that they now apply only to sentences), while the w-rulein particular is available to
take up any slack. We now define a metavaluation V of E##, specifying a set TR of truths, as
follows on all sentences A, B, C of the arithmetical vocabulary:

VAt If A isanatomic sentence u=v, then A O TR iff A isarithmetically correct

V~ ~-BOTRIiffBOTR

V& B&COTRIiff, BOTRandCOTR

va BOCOTRIiff, BOTRorCOTR

A\l OxBx O TRiff, for all numeralsn, Bh O TR

V- B-COTRIiff both(i)E## | B -~ Cand (i)BOTR O COTR

We have, more or less reverted to aur original characterization d a metavaluationin [9], asa
valuation that is truth-functional onintended truth-functional particles, while satisfyinga more
intricate condtion (here, V —) onthe non-truth-functional - . Let now TE# be the system TR of
true sentences on V. The true sentences are evidently closed under Ackermann'srulesa, 3 andy.
But they are not closed under .

Soundnesstheorem for E##. E# [ E## [ TE#

Proof. We know already that E## is a super-system of E#. So it will suffice to complete this proof
to show that all (closures of) theorems of E## are true on aur metavaluationV above. This
invalves a straightforward deductive induction, verifying the axioms of E## onV, and showing
also that therules preservetruth onV for theorems of E##. We do some cases, and leave the rest
to the reader. We carry out the inductive argument only for sentences. It then sufficesin all cases
to examine an arbitrary numerical instance of an axiom or rule, leavingit to the w-rule andits
mate V[ to ddliver universal closures.

Ad AxB. You need to show (B-C) - (A-B) - A-C O TR, whereall of A, B, C are sentences.
It's a pleasant exercise, mixing appeals to (i) and (ii) of V —. Enough, ad AxB!

Ad Rule d. Suppose A - (B — C) and B are closed theorems of E##, which oninductive
hypothesis both belongto TR. By & we have A - C as a theorem of E## To show A - C [0 TR this
is(i) of V ; for (ii) asuume A [0 TR and show C [0 TR. But now we may use (ii) of V - ; since A
andA - (B - C) areboth true, we have by (ii) that B C [0 TR aswdl; but then, sinceB [0 TR
we have again that C [0 TR, which ends the verificationthat A~ C O TR.

Ad Rule o Suppose An is atrue theorem of E## for each numeral n. By w, we have E## | OXAX.
Then by VI we have [xAx 00 TR, which suffices.

Ad AxOL. We verify (i) and (i) under V — for any sentence Ox(A O0Bx) — A O DOxBx. (i) of V -
isimmediate; as an axiom, the sentence is an E## theorem. For (i), assume Cx(ADBx) O TR.
Then for each numeral n ether A istrueor Bnistrue by VO, V. If A O TR then A O OxBx U
TR, sufficing for (ii) by V. Otherwise Bn [0 TR for al n, whence OxBx 0 TR by VO and A [
OxBx O TR by VL.

Ad E#8. Notethat n’ = 0 is always incorrect; whence by VI we have Ox(x" # 0) O TR by V.
Werest our cases, leaving ahersto the reader, and declare the soundresstheorem proved.



Observe, if you will, the delicacy of our argument ad the rule & in the argument just concluded. We
donot say that & preserves truth onV when applied to arbitrary members A - (B - C) and B of
TR. It does not. Toshow A— C O TR, wemust by (i) of V - prove A - Cin E##. For thiswe
nead nd merdy that B istrueonV, but that it is a true theorem of E##. With that information o
can be applied in E##t—and the difficulty disappears.?®

Anyway, our goal of having specified the strenge truths is now accomplished. For in view
of V~ above and aur understandng d intuitive ‘nat’, TE# has lit arithmetic sentences
univocally into the truths and their negations, namely the falsehoods. But what, the reader may
wonder, has happened to aur old counterexample, 0=2 - 0=1? Easy—it’s false. For asanon
theorem of E##, it fails part (i) of our truth-condtion on - ; asthat sufficesfor 0=2-0=10 TR,
we neal look nofurther for its refutation. And so much, by V~, assures TE# | ~(0=2- 0=1).
By the same argument, whenever A and B are sentences such that A - B is unprovablein E##,
then TE# | ~(A - B).

All of this returns us to a point made by Belnap when we told him of our initial work onR#. “It
would seam,” he observed, “that propositions like 0=2 - 0=1 should fail.” We pass at least for
now, from relevant impli cation to entailment to make that observation stick. As, we suppose,
Anderson and Belnap might have advised from the outset!

Appendix 1. How fallacies of modality showed up regjected in R# and R##.

For prodf that diamonds (e.g., unequations) imply no boxes (e.g., equations) in arithmetics
based onR, consider thechain4 = <F, t, f, T > = <0,1,2,3>, totally ordered asusual. 4 isa
DeMorgan lattice, on Dunn's definitionin [6], if we set blc = min(b,c) and bllc = max(b,c);
moreover, define negatior?* by setting~b = b - f ontheimplicative extension to be introduced
immediately, with the following — table (due originally to Church):

- table for the DeM organ monoid 4

_ F t f T
F T T T T

* 1 F t f T
* f F F t T
* T F F F T

4 isnow na merdly a DeMorgan lattice but a DeMorgan monoid in the sense of [6], takingt as the
mondd identity and fusion o as defined by boc = ~(b - ~c). DeMorgan mondds verify all theorems
of R, sincefor each theorem B and algebraic interpretation |, t < 1(B). We may verify also al the
theorems of R##, on an extremely simple-minded plan. Just asggnt to each atomic formula v=w
and let [OxA havethe value of A. But as identities are assgned t their negations will be assgned f;
whence szu - v=w will getin4thevauef-t=F, for al teems s u, v, w. Soin this nseno
“fallacies of modality” aretheorems of R## (or of its subsystem R#). We expressagain aur shock.
R is not supposed to have any dactrine of modality. In spite of itsdf, it does. Andall thisis grist to
themill of E, which is formulated to avoid modal fall acies.

% Another way to make the same point is the foll owing: E#13says that E# }t-(A-A). Sothisistrue, by the soundness
theorem. What Restall saw was that, if we allowed ourselves unlimited appeal to 6 on members of TR, we should have A O TR
0 oA OTR. That is not the idea from our present perspective.

2 Numerically, this means that ~b = 3-b for all bin {0, 1, 2, 3}.
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Appendix 2. What are some other modal arithmetics to which these ideas apply?

We have set out arithmetics based onE in some detail. But save for the interplay between
relevance and modality at which E aims, thereis nathing that special about our choice. Still i n the
relevant ballpark, for example, we might have preferred the system NR of [11] as our vehicle to
axiomatize arithmetic.”> We might still avoid fallacies of modality asin section |V above. This
would produce a set of truths of TNR#, applying a metavaluation to an NR## as we did to E## in
section V. Going even further afield we might follow Shapiro [12] in metavaluing what we' d call
A to gt a T A

Appendix 3. What crazy modal nations does strenge arithmetic enjoin?

Thereis an old view of how modality enters our understanding d the world. This view (to
be traced to Plato, Lebniz, Hume, Kant, and the gang) says that necessary truth is the unique
province of mathematics and d logic; whatever istruein these areas is true of necessity; other
truths (e.g., about the world) just happen (more or lesg to betrue.

We mention all this just because our research into strenge arithmetic does not seem to
corfirmit. It is perfectly conceivable, we have said above, that there are truths of TE# which are
not necessary.? It is probably nat surprising that our paradigm instances of these truths are about
entail ments that fail. An idea that we could have, perhaps, is that 0=2 might have entailed 0=1;
but, in sober fact, it doesn’'t. Anyway, we enjoin our readers to develop a Complete System of the
World, starting from T E#.

Meanwhil g, there is anather set of modal nations—thase that accompany the so-called
“logcs of provability” in [10] and e sewhere—that it is interesting to attempt to wed to relevant
logcs. As aprominent placeis reserved in theselogics for “L6b's Rule” (which is theinference
fromoA - AtoA), readers may be pardored if they can contain their enthusiasm for theidea.
Still, as provabili ty logics derive much o their motivation from the arithmetization d
metamathematics, we would like to knov how these things work out in the context of (say) E#. We
know already that they work out classically; as E# contains P# as its truth-functional part, it also
contains clasgcal provability logc, classcally expressd. “But what,” we hear you say, “is
relevant about that?” We d like to knaw, too. Something more sui generis, appealing to properties
of ardevant -, would be more interesting still . Having looked with Mares into a relevant
provahility logic based onR in[15], we chall enge you to advance the subject.

Appendix 4. Why dowe insist on Ackermann's Ruley?

Following earlier work by Anderson and Belnap, [2] takes some pleasure in chapping
away at Ackermann'srules. [2] chops Pecifically the rule DE, which is Ackermann' s y. So when
R# was first formulated in [3] it also dd without y, in the hope that (asin aur work with Dunn on
R andE, etc., andin much that Meyer has pursued since) this rule would turn out admissible
anyway for R#. But that hope was too sanguine, in view of the Friedman counterexample QRF of
[8]. (Mints suggested in conversation that perhaps we should simply add y also to R#, as we added
it above in formulating E#. Well, maybe.) For as the " disunctive syllogsm” strikesus as a
generally OK inference (against views such as those expressed in [2] that it is reevantistically
awful), we have followed Ackermann herein restoringit to the primitive logical equipment. But we
do so with a definite lack of enthusiasm. For (like Gentzen's cut, as Dunn said for usin [13]) we
takeit asasign o the stability (and ricenesg of a system that y should be admissble therein

%5 On the mnventions of [2] NR is called R”.
%t is certainly the case that there are rules of E## that are inadmissible in TE#. Cf. our discussion of rule & above.
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without being primitive. As the argument of [1] can be adapted for E##, we dorit need a primitive
y for strenge w-arithmetic; for y is anyway admissible, whence E## will still be stable and rice.
But we canna so drop y from E#. ’ Tis a pity.?’
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