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Abstract 
 

From the exponential function of Euler’s equation to the geometry of a fundamental form, a calculation of the fine-structure constant and 

its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: 

electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional 

physical measures. 
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1. Introduction 

Leonhard Euler was one of the greatest mathematicians of the 

eighteenth century. As a mathematician Lokenath Debnath states 

in The Legacy of Leonhard Euler, “It is remarkable that Euler 

discovered two elegant and most beautiful formulas in mathemat-

ics.” [1]. 

 

eiπ + 1 = 0    and   e2πi − 1 = 0.                                                       (1) 

 

William Eisen’s description and interpretation of Euler’s equation 

eiπ + 1 = 0 in relation to the Great Pyramid design shows four 

curves of ex from x = 0 to x = π, one curve on each side. Dividing 

the sides by π lengths results in a small square in the center called 

the Golden Apex A, the geometry and symmetry thought to gener-

ate the four fundamental forces of nature [2]. Eisen then asks the 

obvious question about the exponential function and Golden Apex 

interpretation, “Just how could the builders of the Great Pyramid 

have been so knowledgeable of the mathematics of the uni-

verse ...?”  

 

A = eπ − 7π − 1 ≃ √ (2) ⁄ 3π ≃ 0.1495.                                           (2) 

 

A is the side of the Golden Apex square. √ (A) ≃ e ⁄ 7 and 

A + 1 = eπ − 7π ≃ R ≃ 1.152, radius of the regular heptagon with 

side one. The sin (2πA) ≃ φ ⁄ 2, where φ is the golden ratio, 1 ⁄ 2φ 

≃ φ√(A). The tan (2πA) ≃ 1 + √(A) ≃ K ⁄ 2π, see Eq. (7) [3]. The 

polygon circumscribing constant is K ≃ 2tan(3π ⁄ 7) ≃ φ2 ⁄ 2A,  see 

Eq. (7) and discussion [3]. A is also the reciprocal harmonic of the 

gravitational constant. Also, A ≃ tan2e − 1 and A − 1 ≃ cosh2(√(7 ⁄ e)) 

≃ φ√(2πe). ln (A − 1) ≃ π ⁄ √(e) ≃ 6 ⁄ π, with the cube-sphere pro-

portion. The regular heptagon radius, R = csc(π ⁄ 7) ⁄ 2 ≃ φ ⁄ √(2) ≃ 

cot2α − 1 and 2πR ≃ 1 ⁄ φ√(α). Also, RA ≃ 2√(α), where alpha α is 

the fine-structure constant, see the Eq. (7) discussion.  

 

RA ≃ √(φ) ⁄ e2 ≃ ln(π ⁄ √(7)) ≃ √(7 ⁄ π) ⁄ K.                                   (3) 

 

R − 1 ≃ √(φ)sinα − 1 with eπ − πe ≃ sinα − 1 [3]. The cosh2(√(A)) ≃ 

eA − Ae ≃ π ⁄ e. The silver constant from the heptagon is S ≃ √ 

(π ⁄ 2A) ≃ 2√(2)R ≃ 3.247. √(S) = 2cos(π ⁄ 7) ≃ 7φ ⁄ 2π, 2πA ≃ 

S ⁄ 2√(3) and S ⁄ √(π) ≃ √(11 ⁄ S) ≃ √(1 ⁄ 2A) ≃ ln(2π). Again, 

Golden Apex A:  

 

A ≃ √(11) ⁄ 7π ≃ √(e) ⁄ 11 ≃ √(πα) ≃ 2παS.                                  (4) 

 

With the fine-structure constant, 2πα is equal to the electron 

Compton wavelength divided by the Bohr radius and πα is the 

percentage of light absorbed by graphene [4]. 4 ⁄ π ≃ √(A) ⁄ 2A ≃ 

√(S ⁄ 2), with Eq. (8) discussion. K + 2R ≃ 11 and √(e) ⁄ φ ≃ 

1 + αφ2 [3].  

2. The nature of the fine-structure constant 

Introduced by Arnold Sommerfeld, the fine-structure constant 

determines the strength of the electromagnetic interaction. Alpha, 

the fine-structure constant is α = e2 ⁄ ℏc in cgs units [3]. The fine-

structure constant related to the Golden Apex of the Great Pyra-

mid:  

 

2A ≃ 2√(πα) ≃ 4me ⁄ mpα ≃ φ2 ⁄ K.                                               (5) 

 

Also, 2A ≃ tanhS − 1 ≃ tan2(1 ⁄ 2) ≃ √(K) ⁄ π2 and √(2A) ≃ √(π) ⁄ S. 

When substituting the fine-structure constant value and approxi-

mate value for the proton-electron mass ratio αmp ⁄ 4me ≃ φ + √(3) 

and ln(mp ⁄ me) ⁄ ln(α − 1) ≃ 2πφA,  see the discussion of Eq. (14) 

[3].  

The Wilbraham-Gibbs constant is Gw and the sinc function is the 

sincx = sinx ⁄ x [5]:  

 

Gw = ∫ sinc xdx
π

0
 ≃ e sinα − 1 ≃ K ⁄ √(7π).                                       (6) 

 

The Wilbraham-Gibbs constant Gw ≃ φlnπ ≃ φ2 ⁄ √(2) ≃ 1.852. 

The Wilbraham-Gibbs constant is related to the overshoot of Fou-

rier sums in the Gibbs phenomena [5] and other approximations: 

Gw ≃ sec (1) ≃ exp(φ − 1) ≃ 5 ⁄ 7√(A),  see the discussion of Eq. 

(17).  

The inverse Kepler-Bouwkamp constant is the polygon circum-

scribing constant K [3]:  
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K = (π/2) ∏ sinc((2π)/(2n + 1))∞

n=1  = ∏ sec((π)/(n)).∞
n=3        (7) 

 

Also, the polygon circumscribing constant K ≃ 2π(1 + √(A)) ≃ 

√(7 ⁄ 4πα) ≃ √(11)φ2 and K ≃ φ2 ⁄ 2A ≃ 5A ⁄ √(α) ≃ 4π√(SA) ≃ 

3 ⁄ 2RA ≃ 2tan(3π ⁄ 7) ≃ 8.7. KA ≃ √(e ⁄ φ) ≃ R + A.  

Half the face apex angle of the Great Pyramid plus half the apex 

angle is approximately 70○ and sinα − 1 ≃ 2cos70○ [3]. The cscα − 1 

≃ R√(φ) ≃ √(7 ⁄ S) ≃ √(85) ⁄ 2π ≃ ln(372 ⁄ 85),  see below. 

528 ⁄ 504 ≃ 7A, see discussion of Eq. (17) [3]. First level sum of 

Teleois proportions is 85, foundational in Great Pyramid design 

[3]. 85 ⁄ 11 ≃ R ⁄ A and 528 ⁄ 85 ≃ 2π, see Eq. (17). The latest val-

ue for the inverse fine-structure constant by Aoyama et al, α − 1 ≃ 

137.035 999 157 (41), from the most recent experimental results 

and quantum electrodynamics [6]. Eq. (8) derives the approximate 

value for α − 1 ≃ 137.035 999 168 [7]:  

 

sinα − 1 ≃ 504 ⁄ 85K = 7! ⁄ (713 + 137)K.                                       (8) 

 

The sum of the eight main resonant nodes on the Turenne Rule is 

372 ≃ e ⁄ α, part of a spectrum analysis that is also related to crys-

tallographic groups [8]. K ≃ φln(372 − 137), ln372 ≃ 1 + ln137 ≃ 

√(π) ⁄ 2A and ln(137 × 372) ≃ φ ⁄ A. 1372 + 3722 ≃ 3962 and from 

the harmonic radii of the Cosmological Circle, 108 + 396 = 504 

[3]. 504 ⁄ 396 = 14 ⁄ 11 ≃ 4 ⁄ π. Pyramid base angle θB≃ tan − 1(4 ⁄ π). 

The ln(4 ⁄ π) ≃ Aφ and π ⁄ 4 ≃ cscα − 1 − sinα − 1 ≃ sinθB. The pyr-

amid apex angle θA, sinα − 1 ≃ θB ⁄ θA≃ √(2)tan(π ⁄ 7) ≃ 

√(S ⁄ 7)≃2π ⁄ √(85) [3]. 528 ⁄ 396 = 4 ⁄ 3 and 396 ⁄ 85 ≃ √(S ⁄ A). 

The quartz crystal harmonic is Qc = 786432 and 1 ⁄ √(α) ≃ ln(AQc). 

Base octave harmonic of Qc, 192 ≃ 7πK and φ ⁄ π ≃ 192 ⁄ 372 [7].  

3. The four fundamental forces of nature 

The heptagon is a feature of the Cosmological Circle, geometric 

template for many ancient architectural designs; related to the 

cycloid curve and history of the least action principle [7]. Golden 

Apex A, silver constant S and fine-structure constant, see Eq. (4). 

 

αE ≃ exp(− 2 ⁄ Ae) ≃ A ⁄ 2πS ≃ 7.29 × 10 − 3.                                (9) 

 

The electromagnetic coupling constant is αE = α = e2 ⁄ ℏc in cgs 

units [7]. Together with Eq. (12) the ratio αW ⁄ αE ≃ Aπ3 ≃ √(π)φ2. 

√(α) ≃ Ae ⁄ φ√(K) ≃ √(R) ⁄ 4π and 2πφR ≃ 1 ⁄ √(α).  G = ℏc ⁄ mP
2 

≃ 6.67191(99) ×10 − 11m3kg − 1s − 2 is the gravitational constant 

with Planck mass mP [9, 10]. Gravitational coupling is 

αG = Gme
2 ⁄ ℏc = (me ⁄ mP)2, with Golden Apex A: 

 

αG ≃ exp(− K√(π) ⁄ A) ≃ 1.752 × 10 − 45.                                     (10) 

 

Also, − ln(αG) ≃ 2R ⁄ A2 ≃ exp(Aπ3) ≃ 2πRd ⁄ √(α), where dodeca-

hedron circumradius Rd = φ√(3) ⁄ 2. Aπ3 ≃ KsinθC, where θC ≃ 

32○, half the Great Pyramid face apex angle.  

An approximation with the Golden Apex A for the strong force 

coupling constant [11]: 

 

αS ≃ exp (A − √(2)φ) ≃ A ⁄ √(φ) ≃ 1.177 × 10 − 1.                       (11) 

 

The tetrahedral angle θt ≃ 109.5○, csc2(θt) = 9 ⁄ 8, the whole tone. 

αS ≃ ln(9 ⁄ 8) ≃ √(α)tan(2πA) ≃ √(2 ⁄ A) ⁄ π3 ≃ K√(α) ⁄ 2π,  
√(2)φ − A ≃ e ⁄ √(φ) and αS − 1 ≃ 7π√(A) ≃ π2 ⁄ R [7].  

Approximation with the Golden Apex for the coupling constant of 

the weak force [12]: 

 

αW ≃ exp(− 1 ⁄ 2A) ≃ 2A ⁄ K ≃ 3.4 × 10 − 2.                                (12) 

 

Also, αW ⁄ αE ≃ Aπ3 ≃ √(π)φ2. Coupling constant αW = gw
2 ⁄ 4π ≃ 

A ⁄ √(2)π, where gw is the coupling constant mediating the weak 

interaction. The Fermi coupling constant GF determines the 

strength of Fermi’s interaction that explains the beta decay caused 

by the weak nuclear force. GF = gw
2 ⁄ 4√(2)mW

2 = αWπ ⁄ √(2)mW
2 

[13], mW is the mass of the W boson. The weak interaction is me-

diated by the exchange of W and Z gauge bosons. Weinberg angle 

θW, sin2θW ≃ √(α)φ2 ≃ 3A ⁄ 2 [12], [14], Eq. (17); cosθW = mW ⁄ mZ 

≃ √(2) ⁄ φ. K2 ≃ cos(2θW) ⁄ α ≃ A√(6 ⁄ π). The pyramid base angle 

θB,  θW ⁄ θB ≃ √(2A) ≃ √(π) ⁄ S. 

4. Symmetry principles and physical measures 

Steven Weinberg is often quoted, “... there are symmetry princi-

ples that dictate the very existence of all the known forces of na-

ture.” [15]. Saul-Paul Sirag says, “By far the deepest theoretical 

advance afforded by the group-theory approach is the set of ADE 

Coxeter graphs. It is plausible to think of the ADE graphs as the 

ultimate Platonic archetypes.” [16]. the discovery of symmetry 

principles and their application [17], [18] has advanced to the 

monster group and the modular j-function (referred to as “mon-

strous moonshine”) [19], the umbral moonshines and string theory; 

along with vertex operator algebras in related physical approaches 

with conformal field theory [20]. For a half-period ratio of τ, the 

modular function j(τ) with q = exp(2πiτ) has the Fourier expansion 

[21]: 

 

J (τ) = q − 1 + 744 + 196884q + 21493760q2  +  ....                      (13) 

 

The ln(21493760 ⁄ 196884) ≃ √(7π) ≃ √(2) ⁄ 2A. The ln196884 ≃ 

√(2 ⁄ A) ⁄ 2A ≃ KRd and Rd = φ√(3) ⁄ 2 is the circumradius of the 

regular dodecahedron with the side equal to one. From Grumiller 

et al, the chiral half of the monster group conformal field theory 

originally proposed by Ed Witten has a partition function given by 

the j-function. “The number 196884 is interpreted as one Virasoro 

descendant of the vacuum plus 196883 primary fields correspond-

ing to flat space cosmology horizon microstates.” The quantum 

correction in the respective low-energy entropy is then proportion-

al to the ln196883 [22].  

G.f. is a Fourier series which is the convolution square root of j (τ), 

see Eq. (13) [23]. 

 

G.f. = q − 1 + 372q + 29250q3 − 134120q5 + ....                            (14) 

 

The ln (29250 ⁄ 372) ≃ φ2 ⁄ 4A ≃ K ⁄ 2 and the ln(2 × 372) ≃ A − 1. 

The ln372 ≃ φ√ (2 ⁄ A) ≃ √(π) ⁄ 2A ≃ 2Kcos70○ and sin70○ ≃ 

372 ⁄ 396 ≃ 2πA, with the hieroglyphic geometry for gold. An 

application in a special case of umbral moonshine is the Mathieu 

moonshine work of Eguchi, Ooguri and Tachikawa [24] and fol-

lowed by others, includes the q-series e(q) whose coefficients are 

then “ ... twice the dimension of some irreducible representation of 

the Mathieu group M24.” Pierre-Philippe Dechant continues, 

“Modularity is therefore very topical, also in other areas and a 

Clifford perspective on holomorphic and modular functions could 

have profound consequences.” [25]. A normalized q-series e (q): 

 

e (q) = 90q + 462q2 + 1540q3 + 4554q4 + 11592q5 + ....              (15) 

 

The ln(462 ⁄ 90) ≃ √(7) ⁄ φ ≃ √(A)φ3 with the ln90 ≃ √(3)φ2 ≃ 

2 ⁄ 3A ≃ U√(K),  see Eq. (16). Also correlated, 90 ⁄ 372 ≃ φA and 

462 ⁄ 372 ≃ φA + 1 ≃ 2 ⁄ φ, recall discussion of Eq. (8).  

A gold pyramid at the tip of the Great Pyramid, with octahedral 

and icosahedral symmetry [26], was the “Golden Tip” described 

by John Michell with the support of Algernon Berriman’s metrol-

ogy [27]. This was represented by the height of a pyramid with 5 

cubic inches, 0.152 ≃ 11.7 ⁄ (7 × 11), √(137) ≃ 11.7 and 0.152 is 

the tenth part of the Greek cubit of 1.52’. This pyramidion might 

have been similar to the legendary Golden Sun Disc of Mu. Apex 

angle of the regular heptagon triangle is 3π ⁄ 7 and an approxima-

tion to the apex angle of the Great Pyramid [7]. The “Golden Tip” 

harmonic of U ≃ φsin70○ ≃ 2πφA ≃ ln(mp ⁄ me) ⁄ ln(α − 1) ≃ 1.52 

[3]. From the heptagon geometry found in the Cosmological Cir-

cle, AU ≃ R ⁄ πφ ≃ 5 ⁄ 7π ≃ cot(3π ⁄ 7) ≃ 0.227 and the tan(3π ⁄ 7) 

≃ eφ ≃ 4.4. The ratio 7 ⁄ 5 ≃ φ ⁄ R ≃ Rd, the circumradius of the 

regular dodecahedron having the side equal to one, see the discus-

sion following Eq. (13) and [7]. 
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AU ≃ 85 ⁄ 372 ≃ φ√(eα) ≃ exp(−ARK) ≃ 2 ⁄ 3√(K).                  (16) 

 

The sum A + U ≃ 1 ⁄ 4A, A ⁄ U ≃ R√(α) and the ARK ≃ √(7 ⁄ π) ≃ 

coth2R ≃ 3 ⁄ 2 ≃ 10A.  

Interesting parallels can be found between William Eisen’s Gold-

en Apex of the Great Pyramid design, the torus topology of Ein-

stein’s relativity and Wolfgang Pauli’s World Clock Vision; with 

his i ring imaginal geometry of the unit circle on the complex 

plane and also symbolic of the unus mundus as the natural ontolo-

gy of quantum theory [28].  

Pauli’s World Clock also has the golden ratio geometry related to 

the fine-structure constant together with four men swinging pen-

dulums [28]. Ancient Egyptian architects converted celestial time 

periods into lengths that are equivalent to those of the pendulum 

measures as rediscovered by Galileo and explained by Sir Isaac 

Newton. Roger Newton states that “speculations concerning a 

long-awaited reconciliation between Einstein’s general theory of 

relativity and the quantum, known in their various guises as super-

string theory, employ as their basic element the properties of Gali-

leo’s simple pendulum.” [29]. Flinders Petrie found the harmonic 

of the standard day when converted by the pendulum formula 

results in the length of the Royal Cubit, “... basis of the Egyptian 

land measures .... This value for the cubit is 20.617’’ while the best 

examples in stone are 20.620’’±0.005’’.” The Egyptian Royal Cu-

bit is the traditionally known measure basis of the Great Pyramid 

“... and its base measures 440 Royal Cubits in length.” [30]. 

 

R.C. ≃ 144 ⁄ 7 ≃ A ⁄ α ≃ φ + φ ⁄ √ (α) ≃ √(7π) ⁄ AU ≃ 7√(K).    (17) 

 

The canonical Royal Cubit of 20.736’’ is the harmonic of 1442 and 

the standard harmonic Royal Cubit R.C. ≃ 20.618 [27]. Also, R.C. 

≃ √(7π)tan(3π ⁄ 7). Basic square perimeter of the Cosmological 

Circle is 44 and 442 + 1372 ≃ 1442 [28]. 22 = √ (44 + 440) ≃ 7π 

and A ≃ π ⁄ √(440) [3]. 372 ⁄ 440 ≃ 4√(2)A,  144 ⁄ 372 ≃ √(A) and 

504 ⁄ 144 = 7 ⁄ 2. Also, 144 ⁄ 85 ≃ e ⁄ φ ≃ A + U [3]. Plato’s “fusion 

number” 1746, described by John Michell, represented the apex of 

the Great Pyramid [27]. Fusion number 1746 ≃ 144√(7π ⁄ A),  
372 ⁄ 1746 ≃ √(2)A and AU ≃ 396 ⁄ 1746. 528 ⁄ 372 ≃ √(2),  
528 ⁄ 1746 ≃ 2A,  528 ⁄ 504 ≃ 7A,  1746 ⁄ 504 ≃ 2√(3) and R.C. ≃ 

1746 ⁄ 85. The Great Pyramid Key is 528 ≃ ln(7 ⁄ A) ⁄ α [3].  

5. Conclusion 

From the exponential function of Euler’s equation to the geometry 

of a fundamental form, the Golden Apex of the Great Pyramid was 

described, leading to a calculation of the fine-structure constant 

and its close relationship with the proton-electron mass ratio. 

Golden Apex related equations were then found for four funda-

mental forces of nature.  

Juan Maldacena restates it, “The forces of nature are based on 

symmetry principles.” [31]. these symmetry principles were then 

associated with traditional physical measures. And finally, here is 

William Eisen’s quotation again, “Just how could the builders of 

the Great Pyramid have been so knowledgeable of the mathemat-

ics of the universe ...?” [2].  
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