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Abstract: Scientific disagreements sometimes persist even if scientists fully share results of their research. In
this paper we develop an agent-based model to study the impact of diverging diagnostic values scientists may
assign to the evidence, given their different background assumptions, on the emergence of polarization in the
scientific community. Scientists are represented as Bayesian updaters for whom the diagnosticity of evidence
is given by the Bayes factor. Our results suggest that an initial disagreement on the diagnostic value of evidence
can, but does not necessarily, lead to polarization, depending on the sample size of the performed studies and
the confidence interval within which scientists share their opinions. In particular, the more data scientists share,
the more likely it is that the community will end up polarized.
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Introduction

1.1 Scientific disagreements and controversies are commonly considered crucial for the advancement of scientific
ideas (Longino 2002, 2022; Solomon 2007). Yet, they may also lead to fragmented or polarized scientific com-
munities, with scientists unable to reach consensus on issues that may be of social relevance and pertinent to
policy guidance. While the exchange of information across a scientific community can help to bring everyone
on the same page, disagreement may persist even if evidence is shared, as shown for instance by the limited
success of so-called consensus conferences (Stegenga 2016).

1.2 One possible explanation for such persistent disagreements is that scientists differ in how significant they con-
sider the same experimental result, i.e. they differ in how diagnostic they take the results to be relative to a
given research hypothesis. The reason is that scientists may interpret experiments on the basis of different
background assumptions, methodologies or theoretical commitments. In a well-known case in the history of
science, Ignaz Semmelweis observed that the incidence of puerperal fever could be drastically cut by washing
his hands. Semmelweis’ observations conflicted with the established scientific opinions of the time and his
ideas were rejected by the medical community. While Semmelweis assigned a high diagnostic value to his ob-
servations regarding the hypothesis that handwashing reduced the mortality ratio, the scientific community
assigned a comparatively low value.
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1.3 A related factor that might lead to persistent scientific disagreements is that scientists tend to learn and adjust
their background beliefs and methods primarily through communication with like-minded peers. As a result,
even if the community extensively shares available evidence, divergent ways of interpreting evidence may per-
sist and contribute to persisting disagreements. Moreover, it raises the question whether the amount of avail-
able evidence in such a community impacts the emergence of polarization.

1.4 In this paper we develop an agent-based model (ABM) to examine the above ideas, viz. to tackle the hypothesis
that a scientific community can become polarized if scientists disagree on the diagnosticity of their experimen-
tal results in spite of fully sharing the available evidence. For this purpose, we study opinion dynamics in a
community of Bayesian agents who are trying to determine whether to accept or reject a certain hypothesis.
Throughout their inquiry, scientists are exposed to the same evidence and treat evidence as certain, but they
assign different significance to the available evidence.

1.5 Our ABM is based on bandit models, commonly used in simulations of scientific communities (Zollman 2007,
2010; O’Connor & Weatherall 2018). In particular, agents (modeled as Bayesian updaters) face a one-armed
bandit, representing a certain scientific hypothesis, and they try to determine whether to accept it or to reject
it. Throughout their research, agents acquire evidence and exchange information about the diagnostic value
(modeled in terms of the Bayes factor) that they ascribe to evidence. While the exchange of gathered evidence
is modeled in terms of batches of data that may vary in size, the exchange concerning the diagnostic value of
evidence is modeled in terms of the bounded confidence model (Hegselmann & Krause 2002, 2006; Douven
& Hegselmann 2022). In this way we represent scientists who have a ‘bounded confidence’ in the opinions of
their peers, so that they exchange their views on the diagnostic force of evidence only with those who have
sufficiently similar beliefs about the world as they do.

1.6 Our results show that an initial disagreement on the diagnostic value of evidence can, but does not necessarily,
lead to polarization in a scientific community, depending on the sample size of the performed studies and the
confidence interval within which scientists share their opinions. These findings shed light on how different ways
of interpreting evidence affect polarization in scenarios in which no detrimental epistemic factors are present,
such as biases, deceptive information, uneven access to evidence, uncertainty about evidence etc.

1.7 The paper is structured as follows. We start with the Theoretical Background where we provide a brief overview
of related models, focusing on those that study scientific disagreements and polarization. Next, in the Model
Description we present our ABM in terms of the ODD protocol (Grimm et al. 2020). In the Results section we
present our main findings, and we perform an uncertainty and sensitivity analysis. The Discussion situates our
results into the broader literature on ABMs studying opinion dynamics in epistemic communities, while Con-
clusion addresses some open lines for further research. The two appendices present a mathematical analysis
of one aspect of our model and a more detailed description of the model in the ODD format.

Theoretical Background

2.1 Opinion dynamics in truth-seeking communities has long been studied by means of computer simulations.
From the early work of Hegselmann & Krause (2006), following their pioneering (2002) model as well as related
work by Deffuant et al. (2002), a range of ABMs have been used to examine conditions under which a commu-
nity of rational agents may polarize.1 While Hegselmann & Krause (2006) showed that polarization can emerge
if some agents form beliefs by disregarding evidence from the world and by instead considering only what they
learn from others with sufficiently similar views, others have looked into communities in which all agents form
their beliefs on the basis of evidence coming from the world. For example, Singer et al. (2017) show how po-
larization can emerge in a community of deliberating agents who share reasons for their beliefs, but who use
a coherence-based approach to manage their limited memory (by forgetting those reasons that conflict with
the view supported by most of their previous considerations). Olsson (2013) demonstrates how polarization
can emerge over the course of deliberation if agents assign different degrees of trust to the testimony of others,
depending on how similar views they hold. O’Connor & Weatherall (2018) show how a community of scien-
tists who share not only their testimony, but unbiased evidence, can become polarized if they treat evidence
obtained by other scientists, whose beliefs are too different from their own, as uncertain. Moreover, ABMs ex-
amining argumentative exchange such as those by Mäs & Flache (2013) and Kopecky (2022) demonstrate how
a community of deliberating agents can polarize due to specific argumentative dynamics.

2.2 In this paper, we explore similar scenarios to those outlined above with one substantial difference: agents can
assign different diagnostic values to the evidence in view of which they evaluate the hypotheses at stake. In sci-
entific inquiry, a collection of data is evidence for a given hypothesis insofar as there is an epistemic background
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that makes it possible to trace a connection between the data and the hypothesis (Longino 2002). For this rea-
son, “researchers must combine their theoretical viewpoint with the questions at hand to evaluate whether a
particular data set is, in fact, evidential” (Morey et al. 2016). In other words, the different ways in which evidence
is interpreted feed back into how strong a subject may believe in a given hypothesis. The fact that the diagnos-
ticity of evidence is relative to the epistemic background of a reasoner is familiar from non-scientific contexts:
while the observation of a wet street may convince one person that it rained, it will not convince another person
who assumes that streets tend to be regularly cleaned. In the context of scientific reasoning, background as-
sumptions and methodological standards may similarly affect the interpretation of evidence, and may in turn
lead scientists to different beliefs and different preferred theories. Therefore, the diagnostic value of a piece of
evidence is at the core of scientific disagreements and their structural dynamics.

2.3 As mentioned above, we model our agents as Bayesian reasoners. This means that their beliefs are represented
by probability functions. After receiving a piece of evidence e the belief of an agent in a hypothesisH is updated
according to Bayes’ theorem to obtain the posterior belief P (H|e) as a function of her prior beliefs. The diag-
nosticity of e plays a central role for this, as can be seen in the following reformulation of Bayes’ theorem in
terms of odds:

posterior
belief in H︷ ︸︸ ︷
P (H|e)
P (¬H|e)︸ ︷︷ ︸
posterior

odds

==

how predictive
is H of e?︷ ︸︸ ︷
P (e | H)

P (e | ¬H)︸ ︷︷ ︸
likelihood ratioresp.

diagnostic
value

×

prior
belief in H︷ ︸︸ ︷
P (H)

P (¬H)︸ ︷︷ ︸
prior
odds

(1)

2.4 Clearly, the posterior odds forH is, among others, a function of the prior odds forH . Additionally, it is a function
of the likelihood ratio, also known as the Bayes factor (Morey et al. (2016)). It determines the diagnosticity of
the given evidence e for H (Hahn & Hornikx 2016). Consider our example from above with an agent observing
the wet streets under the hypothesis that it rained. For her, P (e | ¬H) will be very low and P (e | H) very high,
leading to a high diagnosticity of the wet streets for rain. In contrast, our second agent, who assumes the streets
are regularly cleaned, may have a similar high P (e | H), but also a high P (e | ¬H) in view of his assumption
of an alternative explanation. The diagnosticity he assigns to e for H will be comparatively low. In general, a
diagnostic value above (resp. below) 1 indicates that e is positively (resp. negatively) diagnostic of H , while if it
is 1 e is statistically irrelevant for H .

2.5 Taking this point of departure, we now introduce our model.

Model Description

3.1 In this section we present our model in accordance with the ODD protocol (Grimm et al. 2020). We focus on
selected elements, to provide a clear overview of the model without getting lost in technicalities. The full
description of the model in the ODD format can be found in Appendix B. The code is available at: https:
//www.comses.net/codebase-release/3b729700-837d-4d62-a41c-366a37ced7e5/.

Purpose and main pattern of the model

3.2 The present model is an abstract ABM designed for theoretical exploration and hypotheses generation. As men-
tioned in the Introduction, our main aim is to explore the relationship between disagreement over the diagnos-
tic value of evidence and the formation of polarization in scientific communities.

3.3 The model represents a scientific community in which scientists aim to determine whether hypothesis H is
true, where we assume that agents are in a world in which H is indeed true. To this end, scientists perform
experiments, interpret data and exchange their views on how diagnostic of H the obtained evidence is. Our
model captures two notions of disagreement: on the one hand, a disagreement on the hypothesis H , and on
the other hand, a disagreement on the diagnostic value of value of evidence for H .
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Entities, state variables

3.4 The model features two different entities: the agents, who represent the scientists, and the environment (or
observer), which describes the scientific problem at stake and keeps track of time. In every turn of the model,
the scientific community gathers a new piece of evidence about the disputed hypothesis H . Each piece of evi-
dence is fully shared and registered in the state variable evidence of the environment. The variable collects all
the results up to that point and hence represents the state of the art concerning the evidence forH . In addition,
the environment keeps track of the time, i.e. of the number of steps that have been performed up to that point.
The scientists are characterized by the diagnostic value they assign to evidence and their degree of confidence
in hypothesis H , which are tracked by two state variables. 2 When agent-belief > 0.99 the agent fully supports
H , whereas if agent-belief < 0.01, the agent fully rejects H . The state-variables of scientists and environment
are respectively summarized in Tables 1 and 2.

Variable Variable-Type Meaning

ticks (built-in Netl-
ogo function)

integer, dynamic the number of steps performed, which rep-
resents the passing of time

evidence array of integers, dy-
namic

the number of successes obtained in the
previous experiments over a certain num-
ber of trials (until the one observed in the
present step. See the notation for ones in
Paragraph 3.14)

Table 1: State Variables for Environment.

Variable Variable-Type Meaning

agent-belief [0, 1], dynamic the probability an agent assigns to hypoth-
esis H

agent-diag-value [0, 1], dynamic the diagnostic value an agent assigns to the
output 1 of a data point of an experiment
(see Paragraph 3.15)

Table 2: State Variables for Each Scientist.

Process overview

3.5 Each step of the simulation has the following schedule.
1. A new piece of evidence becomes available in the scientific community, following the creation of an ex-

periment submodel. The value is added to the state variable evidence of the environment.

2. Each agent executes the belief-update process based on the evidence that has been produced so far. Con-
sequently, for each agent, the agent-belief variable is updated.

3. Agents go through the influence-each-other process. They update their agent-diag-value variable, based
on the state variables of the agents they are connected with.

4. Every agent who changed the value for agent-diag-value in the last step reevaluates all available evidence.
In particular, each agent executes the process of belief-update based on all the evidence that has been
produced so far.

5. Ticks and observations are updated. The environment also checks if the stop condition is fulfilled.

3.6 The simulation stops when either

• 5000 steps have been performed or

• every agent either fully supports H or fully rejects H .
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The second condition represents the effective termination of the debate, i.e. a situation in which every scientist
in the community has drawn a definitive conclusion on hypothesis H , and no further communication within
the community will lead to further change. See Section Stability Of The Results for a justification of the first
condition.

3.7 Our schedule is meant to represent the process of scientific inquiry, in which scientists continuously obtain po-
tentially relevant evidence through experimentation, evaluate this evidence, and discuss with other members
of the community on the basis of their background assumptions, i.e. their diagnostic values. Step 1 represents
the publication of new evidence, e.g., in a paper, which will be read and evaluated by all scientists in Step 2.
Subsequently, Step 3 may be taken to represent a discussion which scientists could have at a conference.3 Fi-
nally, in Step 4 a scientist who has changed her mind with respect to the interpretation of evidence, reevaluates
the evidence that the community has produced so far.

3.8 While the simulation runs, we collect the values for the state variables (Tables 1 and 2) of both environment and
scientists. Finally, once the simulation has ended, we observe if the community has reached a correct consensus,
a wrong consensus or polarization (intended as a state in which neither wrong consensus nor correct consensus
are the case). Since our model is stochastic, we report the frequency of each of these outcomes for a certain
parameter combination over 500 runs. In particular, we evaluate a certain parameter combination with respect
to the frequency with which a consensus is generated.

Initialization

3.9 Initialization of the model is divided in two phases, corresponding to the setup of the scientific community (i.e.
the agents and the features of their behaviour) and the setup of the scientific problem the agents face. We start
with the latter.

3.10 As mentioned in Section 3.1, the scientists face the problem of deciding whether or not hypothesis H is true
in the world in which they conduct their experiments (which we assume is the case). To inform their decision,
scientists perform experiments with a certain sample size. For each data point of the sample, they distinguish
between an output of type 1 and an output of type 0 (1 and 0 are mutually exclusive) as the outcome of the
experiment. Such experiments are used to determine whether H or ¬H is more likely. Consequently, in the
initialization, we set up P (1|H) and P (1|¬H).

3.11 We assume thatP (1|H) = 0.5, i.e. that ifH is the true state of the world (as it is), in the long run half of the data
points will be of type 1 and half of type 0. Then, we assume that P (1|¬H) ∈ [0.55, 1), and we take the distance
d = P (1|¬H)−P (1|H) to correspond to the difficulty of the problem at stake. The smaller d is, the more likely
H and ¬H are to yield a similar outcome, and the harder it is to decide which one of the two is responsible for
the data on the basis of an experiment.

3.12 To set up the scientific community, we create N agents, where N can take up any value in [5, 100]. The state
variable agent-belief for each agent is set to 0.5, representing that scientists enter the debate without prior
commitment to H over ¬H . We assume that each agent is aware of the correct value for the probability of
obtaining an output 1 from ¬H (that is Pi(1|¬H) = P (1|¬H) for each i). Yet, at the same time, we consider
the possibility for agents to assign to Pi(1|H) a value different from P (1|H). The value Pi(1|H) is captured
by the state variable agent-diag-value which is drawn for each agent from a uniform distribution U(P (1|H) −
λ, P (1|H) + λ), with λ ∈ [0, 0.5]. This implies that

• agents may have different diagnostic values, and that

• agents may interpret evidence in a ‘wrong‘ way.

Here, λ represents the initial dispersion of agents’ background assumptions: we do not assume that agents
assign the correct diagnostic value to evidence, but that it is very likely that the average computed over all the
assigned diagnostic values is close to P (1|H). In this, our model assumes a form of ‘wisdom of the crowd’
since the average value of the initial diagnostic values of all agents is closer to the real value than most of the
individual initial values themselves.
Three other parameters are necessary to define the way agents interact and perform experiments (see Table 3),
which will be explained in Section 3.13.

JASSS, 26(4) 5, 2023 http://jasss.soc.surrey.ac.uk/26/4/5.html Doi: 10.18564/jasss.5113



Submodels

3.13 Our model has three main submodels.

Creation of an experiment

3.14 At the beginning of each round, an experiment is performed and the result is made available to every agent.
An experiment e consists of a number k of outputs of type ‘1’ (which we will call "ones", from now on) over a
number of trials n: k is drawn from a binomial distribution with number of trials n = DP , and probability p =
P (1|H) of producing a success. This representation of scientific experimentation has been used extensively in
the philosophical approach to modelling scientific communities (Zollman 2007; O’Connor & Weatherall 2018).
The number of trials for experiment DP is a parameter in the interval [5, 100].

Belief update

3.15 An agent may be presented with the outcomes of one or more experiments. In both cases, they update their
belief through classical Bayesian updating. Let e1, . . . , em be the pieces of evidence the agent inspects and let
P l
i (H) represent the belief before inspecting piece el+1. The value P l

i (H) corresponds to the state variable
agent-belief before the update, and P l+1

i (H) to the state variable agent-belief after the update. The agent’s
degree of belief after having observed el+1 is computed as follows:

P l+1
i (H) = P l

i (H|el+1) =
P l
i (H) · P l

i (el+1|H)

P l
i (el+1)

=
P l
i (H) · P l

i (el+1|H)

P l
i (H) · P l

i (el+1|H) + P l
i (¬H) · P l

i (el+1|¬H)
. (2)

3.16 Consequently, if an agent inspects m pieces of evidence: Pm
i (H) = Pm−1

i (H|em) = Pm−2
i (H|em ∧ em−1) =

... = P 0
i (H|e1 ∧ ... ∧ em). As we are dealing always with the same binomial distribution, Pm

i (H) is equal to
P 0
i (H|E), where E is an experiment with k = k1 + .... + km ones in n = n1 + ... + nm trials. Importantly,

in performing the update, the agent also employs P l
i (el+1|H) and P l

i (el+1|¬H), which are respectively the
likelihood that agent i assigns to hypothesis H of producing evidence el+1, and the likelihood that agent i
assigns to hypothesis ¬H of producing evidence el+1. These two values can be computed as follows. If el+1

contains k ones over n trials, then:

P l
i (el+1|H) =

(
n

k

)(
Pi(1|H))k(1− Pi(1|H)

)n−k
, (3)

and
P l
i (el+1|¬H) =

(
n

k

)(
Pi(1|¬H))k(1− Pi(1|¬H)

)n−k
. (4)

3.17 Here, Pi(1|H) corresponds to the value of the state variable agent-diag-value at the moment in which the up-
date is performed. It represents the likelihood an agent assigns to obtaining a success in the experiment given
thatH is true. By contrast, we takePi(1|¬H) = P (1|¬H) to be equal for all agents and consider it a parameter
of the model: agents disagree over the relationship between 1 and H , but not over the relationship between 1
and ¬H .

Influence each other

3.18 After updating their beliefs on the basis of evidence, agents proceed to influence each other, by going through
two phases:

• choosing with whom to communicate (the ‘influencers’); and

• updating the variable agent-diag-value based on the influencers’ values for the variable agent-diag-value.

3.19 Agent i chooses the set Ii of influencers such that j ∈ Ii iff

(agent-diag-valuei − agent-diag-valuej) ≤ ϕ and (agent-beliefi − agent-beliefj) ≤ ϵ. (5)
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3.20 This means that an agent j influences i iff the opinions of the two agents are sufficiently similar in terms of 1)
diagnostic value of evidence, and 2) degree of belief in H . The values ϕ ∈ [0, 1] and ϵ ∈ [0, 1] are parameters
that are fixed when the model is initialized, and represent, respectively, the willingness to discuss with people
with different diagnostic values, and different beliefs. Notably i ∈ Ii. Once the set Ii has been defined, the
influence of the chosen agents is represented by assigning a new value for agent-diag-value of i, denoted as
agent-diag-valuet+1

i . This is computed as follows:

agent-diag-valuet+1
i =

∑
j∈Ii

agent-diag-valuetj
|Ii|

, (6)

where agent-diag-valuetj is the value for the state variable of agent j prior to being influenced. The new value
for the state variable of agent i is obtained by averaging all the values for the same state variable of all the
influencers.

3.21 This submodel employs the mechanism from the bounded confidence model, as first proposed by Hegselmann &
Krause (2002) and then extended in many other instances of the opinion dynamics literature (Douven & Hegsel-
mann 2022; Hegselmann & Krause 2006). As in these models, we also use a homophily-biased type of influence
(Flache et al. 2017) to represent scientists’ interactions, as it is reasonable to assume that scientific discussions
happen more often among like-minded scientists. In particular, we introduce two conditions that need to be
fulfilled for agent i to engage in discussion with agent j: agent i needs to be close enough to i both in terms of
background assumptions and of factual beliefs (expressed in parameters ϕ and ϵ respectively). Furthermore,
scientists are influenced by other scientists by being pulled closer to their diagnostic values: this represents the
way an agent modifies her background assumptions to get closer to those of whom she discussed with.

Factor Description Value Range

P (1|¬H) Probability of outcome 1 given ¬H 0.55 - 1
ϵ Agents’ threshold for belief 0 - 1
ϕ Agents’ threshold for diagnostic value 0 - 1
λ Initial dispersion of agents’ background assump-

tions
0 – 0.5

N Number of agents 50 - 100
DP Data points per experiment 5 - 100

Table 3: Model parameters and value range of our model.

A brief summary on agents’ behaviour

3.22 We summarize the core mechanisms of the model by discussing how scientists may end up fully supporting H
and what could prevent them from doing so. Given the design of the model, at every point in time, agents may
be well-prepared or ill-prepared, based on their diagnostic values. Well-prepared agents are those who, when
inspecting new evidence, are more likely to update their beliefs such that they become more confident in H ;
ill-prepared agents are those for whom this is not the case. More precisely, we say that i is well-prepared iff
l1 < Pi(1|H) < l2, where l1, l2 are thresholds that depend on P (1|H) and P (1|¬H). In particular, in our case
l2 = P (1|¬H) and l1 = 1− P (1|¬H) 4. Consider an example.
Example 1. Suppose P (1|H) = 0.5, P (1|¬H) = 0.7 and the community is formed of four agents with the
following diagnostic values: P1(1|H) = 0.1, P2(1|H) = 0.5, P3(1|H) = 0.6, P4(1|H) = 0.8. So it is clear that
2 and 3 are well prepared whereas 1 and 4 are not. On the other hand, the fact that 2 and 3 are well prepared
does not mean that they are always likely to land on a posterior extremely different from that of 1 and 4. Indeed,
depending on the number of ones and the number of data points, the difference may be bigger or smaller.5 This
is illustrated in Figure 1.
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Figure 1: Illustration of Example 1: on the x-axis the diagnostic value of the agents, on the y-axis the expected
posterior credence in H after performing one experiment of sample size 1. Agent a1 is low-ill-prepared, a4 is
high-ill-prepared, while agents a2 and a3 are well-prepared. In particular, all agents whose diagnostic values
are between l1 and l2 have an expected credence higher than .5 (above the dashed red line).

3.23 The group of ill-prepared agents can be further subdivided into two groups: those whose diagnostic value is
too low (we shall call them low-ill-prepared scientists), and those whose diagnostic value is too high (high-ill-
prepared scientist). Formally, i is low-ill-prepared iff l1 > Pi(1|H) and, i is high-ill-prepared iff l2 < Pi(1|H).
Indeed, the closer an agent’s diagnostic value is to P (1|H), which is the correct value, the more likely she is
to successfully evaluate the evidence. An agent only ends up fully supporting H if she updates her beliefs on a
substantial number of data points while being well-prepared. In our process of agents influencing each other,
agents affect each other’s diagnostic values and thus preparedness for the evidence; therefore, in our model,
this process is crucial for the community to reach true consensus.

Results

4.1 This section is divided in three parts. First, we elaborate on the way we collect our data. Then, we present an
overview of the impact of different parameters, and finally, in the last part we focus on the role of evidence with
respect to ϵ, ϕ and λ.

Stability of the results

4.2 As mentioned above, our simulation stops when either 5000 steps have been performed or everybody either
supports H or rejects H . We observe that the first condition obtains before the second one only in around six
runs out of a thousand of them. In those runs, it is always the case that an agent i assigns to Pi(1|H) a value
very close to Pi(1|¬H), and consequently, i would be able to make up her mind about H only if exposed to a
very large amount of data. The reason why we impose a 5000 steps limit is that waiting for this to happen would
drain computational resources while adding little to none to our results: removing the limit in terms of steps
would not change any of our main results.

4.3 We mainly look at the frequency of an outcome (i.e. correct consensus, wrong consensus, polarization), over
500 runs for a certain parameter combination. In fact, at around 500 runs the value for the frequency becomes
stable, as can be seen in Figure 2. In order to provide a reader with the statistical variations of this measure, we
include the standard error in the plots we present in the next sections.
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Figure 2: Frequency of Correct Consensus (y axis) obtained by considering an increasing number of runs (x
axis). The first plot considers ϵ = 0.3, DP = 50, the second ϵ = 0.5, DP = 10. In every plot, λ = 0.5, N =
50, P (1|¬H) = 0.6.

Reaching consensus

4.4 In this section we give an overview of how different factors impact the ability of the community of reaching a
correct consensus, i.e. how the frequency of correct consensus changes. Before starting, it is worth noting that
wrong consensus has a very low frequency (< 0.05) in the entire parameter space with the exception of a very
small segment that is analysed in the next section. Consequently, whenever the frequency of correct consensus
is low, the frequency of polarization is high and vice-versa.

4.5 First of all, we observe that the furtherP (1|¬H) goes from 0.5 the more likely the community is to reach correct
consensus. Indeed, the larger the distance between P (1|¬H) and P (1|H), the more likely agents are to start
well-prepared and influence other agents to end up fully supporting H. Similarly, we observe that increasing
the number of agents tends to slightly increase the frequency of a correct consensus: when more agents are
initialized the average diagnostic value is more likely to be found close to the real one. As these two patterns
are obtained in any other parameter combination, we only present results that are obtained with N = 50 and
P (1|¬H) = 0.6. We chooseN = 50 andP (1|¬H) = 0.6 as these two values present the community with a fair
epistemic challenge, such that reaching a consensus is not too easy, but also not too hard. Every pattern that
we highlight in the rest of the results can be observed for almost any other value of N and P (1|¬H), although
its impact may be more or less pronounced. We now turn to analyse the role of ϕ, ϵ,DP and λ. Figure 3 shows
how the frequency of correct consensus changes with respect to the four main parameters.
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Figure 3: The frequency of correct consensus, represented by different colours, with respect to different values
of ϕ, ϵ and λ.

4.6 Notably, the frequency of correct consensus increases as ϕ and ϵ increase, while it decreases as λ decreases,
which is in line with our expectations. When λ increases, agents are more likely to start with a diagnostic value
that is further away from the correct one, i.e. P (1|H). Thus, fewer agents will be well-prepared in inspecting
evidence, and more will be prone to reject H . By contrast, increasing ϵ or ϕ increases the frequency with which
agents influence each other and thereby increases the frequency of correct consensus. This is the result of the
following two features of our model.

1. More discussion leads to more situations in which agents’ diagnostic values are aligned.

2. Given the design of our model, the correct diagnostic value is never too far from the initial average of
diagnostic values of all agents.

4.7 As a consequence of these two features, the more agents are able to influence each other’s diagnostic values,
the more likely they are to get closer to the correct diagnostic value and become well-prepared. Again, this
reflects the idea, well-entrenched among social epistemologists, that discussion and participation are funda-
mental for scientific communities to be epistemically successful. This result is also in line with any homophily-
based bounded confidence model (Flache et al. 2017): the larger the confidence levels of the agents (ϕ and ϵ in
our case), the less frequently a community will be polarized.

The impact of evidence

4.8 Having established the importance of communication in the model in this way, we turn to another focus point:
the impact of evidence and the sample size of batches in which it is gathered. We first explore a section of
parameter space which we consider particularly interesting, viz. ϕ ∈ [0.2, 0.4], and then we discuss how the
results obtained there generalize for ϕ ∈ [0, 1]. In general, we present the plots for our results only when λ >
0.2, as we already indicated that when λ < 0.2 correct consensus is almost always reached (Figure 3).

More evidence, fewer friends

4.9 The interval ϕ ∈ [0.2, 0.4] is particularly interesting since it represents a case in which scientists may be willing
to talk with others who have different beliefs about H , though they are not able to fruitfully interact with those
who hold too different diagnostic values (given their background assumptions or methodological standards).
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Figure 4: The frequency of correct consensus for a community of agents is plotted against the number of data
points of every experiment. The colours represent the different values for ϵ, and the subplots the different
values for λ. Notably, ϕ = 0.3. The measures for the frequency are obtained over 1000 runs per parameter
combination. The small areas around the lines indicate the standard errors over the measures.

4.10 In Figure 4 it can be seen that, if the number of data points produced per round increases, the frequency of
correct consensus in the community decreases. This result obtains for most values of ϵ, λ, and P (1|H) if ϕ ∈
[0.2, 0.4]. The explanation of this phenomenon is worth considering in some detail. For this, compare two
simplified scenarios.
Example 2. Three scientists are ready to investigate a scientific problem: one starts her investigation well-
prepared (Section 3.21); let her name be Wilma. The other two have background assumptions that make them
ill-prepared for the problem at stake. One of them, Luke, assigns to P (1|H) a lower value than the correct one;
the other one, Heidi, assigns a higher value. Now, assume that these scientists individually inspect the out-
comes of a big experiment with many data points. Although they interpret the data differently, for each of them
this experiment gives ample reason to change their confidence in H : Heidi and Luke lower their confidence in
H substantially, while Wilma increases hers. The upshot is that later, when meeting at a conference, they do
not talk with each other: Wilma is too confident in H to discuss with people who take ¬H to be more likely,
and Heidi and Luke, although they think similarly of H , do not speak because of their difference in background
assumptions. Consequently, none of them changes their diagnostic values, leaving Luke and Heidi equally ill-
prepared for the next round of experimental data. After a number of such rounds, Wilma will fully support H
while Heidi and Luke will fully reject it. Hence, they will end up polarized.

Example 3. In the same setting, the three scientists are exposed to fewer data points. Now, Luke and Heidi
lower their confidence in H only slightly, whereas Wilma increases hers slightly. Then, when they meet at the
conference, the difference in background assumptions still prevents Luke and Heidi from interacting, but Wilma
interacts with both. As a result, Luke increases his diagnostic value, while Heidi decreases hers. This leaves Luke
and Heidi minimally less ill-prepared for the next round of experimental data, since their diagnostic values will
be closer to the correct one (Section 3.21); potentially, all three will be well-prepared. In the new round of data,
the process is repeated, increasing the chance that Luke and Heidi become well-prepared: once all three of
them agree on the (correct) diagnostic value, they are guaranteed to end up supporting H .

4.11 In short, exposure to fewer data points prevents scientists from radicalizing their positions in terms of H , and
consequently, increases the likelihood of a fruitful interaction that leads them to correcting their diagnostic
values. In fact, if a consensus will be reached, the agents’ diagnostic values start to get relevantly closer to the

JASSS, 26(4) 5, 2023 http://jasss.soc.surrey.ac.uk/26/4/5.html Doi: 10.18564/jasss.5113



correct one already in the third step (Figure 5, on the right). Conversely, in runs that do not result in the com-
munity reaching the correct consensus, the average distance from the correct diagnostic value remains large,
and stabilizes at some point: here, ill-prepared agents only interact with other ill-prepared agents, and thus
never correct their diagnostic values. Still, even in those cases, agents continue to influence and be influenced
by other agents: the number of unique diagnostic values decreases regardless of the final outcome (Figure 5,
on the left).

Figure 5: On the left the average number of unique diagnostic values is plotted against the passing of time
(ticks). On the right the average distance from the correct value P (1|H) of each agent’s diagnostic value is
plotted against the passing of time (ticks). In both cases, the mean is obtained by grouping the runs with respect
to their final outcome: polarization, correct consensus and wrong consensus. The measures are obtained with
by running our model 10000 times with λ = 0.5, ϕ = 0.3, ϵ randomly drawn from the uniform distribution
between 0 and 1, and DP randomly drawn between 5 and 100, and then dividing each run based on the final
outcome.

4.12 In addition, note that in Figure 4, the largest difference is between 5 and 25 data points. This is a consequence
of Bayesian updating: the difference between the prior and the posterior belief (that is, |P t

i (H) − P t+1
i (H)|)

increases drastically when going from 5 to 25 data points, and hardly at all when going from 75 to 100 data
points.

4.13 So far, we observed that access to less evidence tends to facilitate correct consensus, and we explained why:
with fewer data points, agents are less likely to radicalize their positions such that it disrupts their commu-
nication with scientists who are well-prepared for the evidence. Yet, reducing the number of data points has
negative side effects. These are represented in Figure 6 and Figure 7.
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Figure 6: The frequency of a wrong consensus for a community of agents is plotted against the number of data
points of every experiment. The colours represent the different values for ϵ, and the subplots the different
values for λ. Notably, ϕ = 0.3. The measures for the frequency are obtained over 1000 runs per parameter
combination. The small areas around the lines indicate the standard errors over the measures.

Figure 7: The average time for a run is plotted against the number of data points of every experiment. The
colours represent the different values for ϵ, the subplots the different values forλ. We letϕ = 0.3. The measures
for the frequency are obtained over 1000 runs per parameter combination. The small areas around the lines
indicate the standard errors over the measures.
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4.14 Having fewer data points may, in certain cases, increase the amount of time needed to reach consensus as well
as the frequency of wrong consensus. The first feature is easily explained: even well-prepared agents need a
certain number of data points to move their confidence in H towards full rejection or full support. With fewer
data points at each step, more steps are needed.

4.15 The emergence of wrong consensus is more interesting, as it is also specific of these parameter combinations.
In general, similarly to correct consensus, wrong consensus becomes more frequent, because with less data
points agents tend to discuss more and consequently they tend to converge more on the same diagnostic val-
ues. Yet, why does the community mostly converge on correct consensus and only sometimes on a wrong one?
In Section 3.21 we mentioned that agents can be divided into three groups, based on their diagnostic values: the
well-prepared, the low-ill-prepared and the high-ill-prepared. In correct-consensus runs, interactions between
scientists from different groups lead to the formation of a new larger group, which consists of only well-prepared
agents. This is because the scientists that were well-prepared already in the beginning interact equally with
both other groups, and possibly also the other groups interact with each other, converging on the average diag-
nostic value (which is also the correct one). Conversely, in wrong-consensus runs, it is most likely that the group
of well-prepared agents interacts with only one group of ill-prepared agents, e.g. because a piece of evidence
has pushed these two groups closer to one another in terms of beliefs. As a result, the group of well-prepared
agents is absorbed by one of the ill-prepared ones, fostering the division in two groups: both ill-prepared. In
fact, runs that end in a wrong consensus typically feature a division of agents into two groups with respect to
their diagnostic values (Figure 5). This is a marked difference from correct-consensus runs, which typically fea-
ture only one group. Such a mechanism explains why the frequency of wrong consensus increases only when
λ is quite high and ϵ is quite low. On the one hand, when ϵ is low, it is more likely for well-prepared scientists
to interact only with members of one group of ill-prepared ones, whereas the more ϵ increases, the more likely
agents are to include in their group of influencers scientists from both sides. On the other hand, the higher λ
the larger are the groups of ill-prepared agents, which makes it easier for them to move the well-prepared ones
away from their diagnostic values.

4.16 For a better understanding of the role evidence plays in the model, it is worth examining the frequency of wrong
consensus with respect to the data points that are available to the agents. Indeed, the results indicate that
decreasing the number of data points may also have a harmful effect by increasing the chances of getting a
wrong consensus. However, note that neither the spread nor the strength of this correlation (between number
of data points and the wrong consensus) is comparable to those of the correlation between number of data
points and correct consensus. The latter obtains for almost any parameter value (given that ϕ ∈ [0.2, 0.4]) and
may drastically diminish the chances of a correct consensus (e.g. in the case of ϵ = 0.3 and λ = 0.375 of Figure
4), whereas the former only obtains for low values of ϵ and high ones of λ, and often generates marginal effects
(increasing the number of data points never decreases the frequency of wrong consensus by more than 0.5).

More evidence, same friends: Broadening the parameter space

4.17 In the previous section, we highlighted the results obtained for λ = 0.3. Those results indicate that increasing
the number of data points decreases the frequency of a correct consensus, i.e. they are negatively correlated.
However, this negative correlation does not generalize. Consider Figure 8: given that λ is not too low, a strong
correlation between the two is present only when ϕ ∈ [0.2, 0.4].
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Figure 8: The correlation between the number of data points and the frequency of correct consensus is rep-
resented by the colors of the tiles. The plot covers any possible parameter combination such that i.e. λ ∈
[0.1, 0.5], ϕ ∈ [0, 1], ϵ ∈ [0, 1].

4.18 The reason is the following. If the number of data points is low enough (indicatively lower than 20), the mech-
anism described in paragraph 4.7 obtains: the agents remain close enough in terms of beliefs, and by doing
so they manage to discuss and converge on a value that is close enough to the correct diagnostic value. If the
number of data points is high, initially nothing changes with respect to the mechanism we already described:
both groups of ill-prepared agents substantially revise their beliefs in the direction of supporting ¬H , and the
group of well-prepared ones moves towards H . However, if ϕ is low, agents coming from the (low)ill-prepared
group and the (high)ill-prepared group do not talk, while if ϕ is high, they can influence each other. This leaves
them arriving at the average of their diagnostic values, which happens to be closer to the correct value. We
consider this result as an extreme consequence of our assumption of a ‘wisdom of the crowd’.6

4.19 In addition, other patterns can be noted in Figure 8. Whenϕor ϵ is very low, the number of data points has hardly
any effects, since agents fail to interact or only interact with scientists whose diagnostic values are already close
to theirs. Similarly, when ϵ is very high, it is highly likely that agents will influence each other early on in the
simulation regardless of the amount of evidence, and consequently, the number of gathered data points won’t
have a significant impact. For very similar reasons, a correlation between wrong consensus and number of data
points is never present for ϕ outside of the interval [0.2, 0.4].

Sensitivity analysis

4.20 We performed a variance-based global sensitivity analysis in order to reveal the complex ways in which input
factors influence the model outcome.7 Since we are exploring the relationship between disagreement over the
diagnostic value of evidence and the epistemic performance of a community of scientists, the main output of
interest is the frequency of correct consensus within the community. The results of the model are conditional
on several factors, out of which six are selected as input parameters with a discrete uniform distribution. Table 3
summarizes the selection of the model parameters and the value range for each of them. A single computational
experiment (4.860.000 simulations) with a full factorial design was carried out.
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Figure 9: Variance decomposition of effects on model result (frequency of correct consensus within the scientific
community). Two measures are depicted: first-order indices (S) and higher-order indices (ST).

4.21 It is worth mentioning that the average value for the frequency of correct consensus is 0.78 (SD = 0.4) over all
paramaters values. The results of the experiment are shown in Figure 9. The highest first-order index is λ (23%
of total variance), followed by P (1|¬H) (14%). Factors N and DP have the lowest value, meaning that their
contribution to the variability of the output is minimal when considered in isolation. Therefore, the genera-
tion of a correct consensus within a scientific community is predominantly driven by the initial dispersion of
agents’ background assumptions. In sum, all first-order indices amount to only 35% of the frequency of correct
consensus variability, which is the percentage of the output variance that can be explained by examining the
factors individually. The remaining 65% of variability is to be attributed to complex factor interrelation. Every
factor significantly contributes to the model’s complex behavior, as higher-order indices show. This suggests
that the frequency of correct consensus within a scientific community is a matter of a complex, interrelated set
of factors.

Discussion

5.1 In this section we compare our results with some related findings and discuss their more general implications.
5.2 As mentioned above, our approach to modeling epistemic communities is similar to network epistemology

bandit models, such as those by Zollman (2007), Zollman (2010). A well-known finding from these models is
the so-called Zollman effect, according to which a high degree of information flow in a scientific community
may impede the formation of a correct consensus. Since our results also highlight factors that may impede the
formation of a correct consensus in communities that fully share evidence, one may wonder how they relate to
Zollman’s findings.

5.3 On the one hand, in Zollman’s model, scientists do not disagree on the diagnostic value of evidence and in-
creasing the sample size of experiments is strictly beneficial (Rosenstock et al. 2017). Our model qualifies these
insights. We show that if scientists disagree on the diagnosticity of evidence, larger amounts of data points pro-
duced by experiments may lead to lower correct consensus rates. On the other hand, our results are consistent
with the Zollman effect in the sense that the underlying mechanism leading the community away from the cor-
rect consensus is an initial spread of misleading information. In Zollman’s model this is caused by dense social
networks, while in our model by agents misinterpreting large amounts of evidence.
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5.4 The fact that in our model larger sample sizes lead to less successful inquiry in case agents disagree on how
they interpret data, does not imply that scientists should conduct studies of a smaller sample size. Indeed,
there are very good reasons, independent of those discussed in this paper, why large-scale studies are bene-
ficial. Rather, our results suggest that, given that large-scale studies are typically beneficial, one might have
to take additional measures to preempt problematic scenarios illustrated above.8 For instance, such a pre-
cautionary measure could include taking into account the presence of a peer-disagreement as a ‘higher-order
evidence’ which lowers one’s confidence in one’s current belief on the matter (Henderson 2022; Friedman &
Šešelja 2022). Moreover, the scientific community could introduce measures encouraging discussion among
disagreeing scientists on the diagnosticity of the evidence (for example, by organizing conferences targeting
such issues).

5.5 Indeed, our results also highlight that reducing the sample size may not always have positive effects. As a lower
number of data points increases the cohesiveness of the community, it may also increase the chances of a wrong
consensus. Although the conditions for this to happen are very specific, such a finding exemplifies the duality
of a cohesive community. In most of the cases, a cohesive community is effective: scientists together increase
their confidence in the correct answer. Yet, if such cohesion is obtained around the wrong way of interpreting
evidence, all scientists may end up supporting the worse hypothesis.

5.6 It is worth noting that this model carries some limitations. First, it is reasonable to assume that in scientific prac-
tice, at least some disagreements arise from the fact that scientists don’t use the same methods. For instance,
in the model developed by Douven (2019), some agents use Bayes’ rule to update while others use probabilistic
versions of inference to the best explanation that change their degrees of belief. In our model, we take all agents
to be Bayesian updaters. While it is true that other methods of belief updating would be worth exploring, for
our initial model we decided to use the standardized Bayesian updating approach. Second, an ideal scenario
would involve the simulation and the analysis of random choices for P (1|H) and P (1|¬H) (in the model we
assume that P (1|¬H) ∈ [0.55, 1), see Section Initialization). This is not addressed in the present paper be-
cause of computational tractability reasons. If the value of P (1|¬H) is too close to P (1|H), agents need very
large amounts of evidence to either support or reject H , which requires simulations to run for a very long time.
The implementation in NetLogo and consequent slow execution makes our model unsuitable for studying this
ideal scenario.

Conclusion

6.1 In this paper we introduced an ABM for studying scientific polarization in a community whose members may
diverge in the way they interpret the available evidence. Agents in the model represent scientists who are try-
ing to decide whether a certain hypothesis H is true. To this end, they perform Bayesian belief updates after
receiving experimental results. Since they consider evidence to different degrees diagnostic of H , their belief
updates may also diverge, even if based on the same experiments. Moreover, through discussions on their back-
ground assumptions, they can influence each other and either converge on a common diagnostic value for the
evidence, or remain divided on this issue. Our results indicate that, in general, the more willing the agents are
to discuss their background assumptions, the more likely the community is to reach a correct consensus. This is
in line with the results that have usually been obtained in opinion dynamics models based on a homophily type
of influence (Flache et al. 2017). Furthermore, our results also suggest that increasing the sample size of experi-
ments may be detrimental to the community, since for certain parameter combinations, it drastically decreases
the chances of achieving a correct consensus. Yet, at the same time, decreasing the sample size of experiments
may not always be beneficial: under specific parameters a decrease in sample size can make a wrong consen-
sus more likely. In light of these features, our model fills a gap in the literature on scientific polarization since it
shows how polarization can emerge even if agents fully share evidence and don’t discount any of the gathered
data, but treat all evidence as equally certain.

6.2 Since the current model is exploratory, it leaves room for further enhancements and variations. For instance,
it would be interesting to examine the robustness of our results once the ‘wisdom of the crowd’ assumption
is relaxed so that agents do not start with diagnostic values, the average of which is close to the correct one.
Moreover, examining potential mitigating mechanisms (such as measures mentioned in the previous Section)
would be a way of investigating the question: how can we improve the performance of a community whose
members disagree on the diagnosticity of the evidence?
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Appendix A: Mathematical Analysis

In this section, we briefly explain how the division in well-prepared and ill-prepared agents is obtained.
An agent i is well-prepared in case its expected posterior value for H is greater than .5. The expected posterior
value in H for i at time point t is computed by a function exp : [0, 1] 7→ [0, 1], which takes as an input the
diagnostic value P t

i (1|H) of agent i. In particular, for a given diagnostic value x and for a single draw from the
probability distribution P (·|H) the expected posterior value is obtained as follows:

exp(x) = P (1|H) · P t
i (H) · x · 1

P t
i (H) · x+ P t

i (¬H) · P (1|¬H)︸ ︷︷ ︸
P t+1

i (H|1)

+

P (0|H) · P t
i (H) · (1− x) · 1

P t
i (H) · (1− x) + P t

i (¬H) · (1− P (1|¬H))︸ ︷︷ ︸
P t+1

i (H|0)

.

Assuming a prior P t
i (1|H) of .5, the equation exp(x) = .5 has two solutions, l1 = 1 − P (1|¬H) and l2 =

P (1|¬H). In other words, an agent whose diagnostic value P t
i (1|H) is strictly in the interval (l1, l2) has an

expected posterior credence in H of greater than .5, otherwise at most .5. The same applies to experiments of
sample sizes greater than 1, since such experiments can be equivalently modeled by iterative single draws. We
also note that all agents start the simulation with a prior of .5 and whenever the diagnostic value is updated (as
a result of a social exchange), all previous experimental results get reevaluated with a prior of .5 . It is therefore
sufficient to determine the solution of exp(x) with a prior of .5.

Appendix B: ODD Protocol

This section presents the model according to Grimm et al. (2020) ODD protocol. As a consequence, the terms
and notions we employ here to describe our model are intended in the way Grimm et al. (2020) define them.

Purpose and main pattern of the model

Scientific disagreement is a widespread and well-known phenomenon studied in the history and philosophy of
science. Sometimes, disagreements become persistent and difficult to tackle due to differences in methodolo-
gies, research protocols and background assumptions, giving rise to a disagreement on the evidential weight
of a given corpus of data. One of the possible outcomes of these disagreements is a polarized scenario, in the
sense of a fragmented community of scientists in which two or more subgroups are generated and in which
none of these subgroups are willing to collaborate with each other, even when the corpus of data is shared
among the parties.
The present model is an abstract model designed for theoretical exploration and hypothesis generation. In par-
ticular, the main aim is to explore the relationship between disagreement over the diagnostic value of evidence
and polarization formation in scientific communities.
The model is suitable for studying this question because it allows for the representation of central elements of
scientific inquiry in a community whose members may disagree about the diagnostic value of the evidence.
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1. The agents are Bayesian reasoners, which means that they comply with the standards of epistemic ratio-
nality. At the same time, we can represent them as assigning different diagnostic value to the available
evidence.

2. The process of inquiry is represented in terms of agents making random draws from the probability dis-
tribution that stands for the objective probability of success of H . The difficulty of the research problem
is represented in terms of the difference between P (e|H) and P (e|¬H), which form the agents’ back-
ground assumptions in view of which they update their beliefs.

3. The epistemic success of the community is measured in terms of the consensus of the community on
H . Such a representation of epistemic success allows for plausible assumptions about scientific inquiry,
such as:

• The success of the community is negatively correlated with the difficulty of the scientific problem,
• The success of the community is positively correlated with the initial precision of scientists.

Entities, state variables, and scales

Entities

The model features two different entities: the agents, who represent the scientists, and the environment (or
observer), which describes the scientific problem at stake and keeps track of time. In every turn of the model,
the scientific community gathers a new piece of evidence about the disputed hypothesis H . Each piece of evi-
dence is fully shared and registered in the state variable evidence of the environment. The variable collects all
the results up to that point and hence represents the state of the art concerning the evidence forH . In addition,
the environment also keeps track of the time, i.e. of the number of steps that have been performed up to that
point.
On the other hand, the scientists are characterized by the diagnostic value they assign to evidence and their
degree of confidence in hypothesis H , which are tracked by two state variables. A formal account of these two
state variables (and their use) is given in Section Submodels Submodels. When agent-belief > 0.99 the agent
fully supports H , whereas if agent-belief < 0.01, the agent fully rejects H . The state-variables of scientists and
environment are respectively summarized in Tables 4 and 5 respectively.

Variable Variable-Type Meaning

ticks (built-in Netl-
ogo function)

integer, dynamic the number of steps performed, which rep-
resents the passing of time

evidence array of integers, dy-
namic

the number of ones in all the previous ex-
periments (until the one observed in the
present step)

Table 4: State Variables for Environment.

Variable Variable-Type Meaning

agent-belief [0, 1], dynamic the probability an agent assigns to hypoth-
esis H

agent-diag-value [0, 1], dynamic the diagnostic value an agent assigns to the
output 1 of a data point of an experiment
(see Sections Submodels and 1.2)

Table 5: State Variables for Scientists.

Scales

As the model is purely exploratory and theoretical, we do not draw any correspondence between the state vari-
ables and real scale. However, intuitively, every tick corresponds to the finding of new evidence with respect to
the scientific problem.
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Process overview

Each step of the simulation has the following schedule.

1. A new piece of evidence becomes available in the scientific community, following the creation of an ex-
periment submodel. The value is added to the state variable evidence of the environment.

2. Each agent executes the belief-update process based on the evidence that has been produced so far. Con-
sequently, for each agent, the agent-belief variable is updated.

3. Agents go through the influence-each-other process. They update their agent-diag-value variable, based
on the state variables of the agents they are connected with.

4. Every agent who has changed the value for agent-diag-value in the last step reevaluates all available evi-
dence. In particular, each agent executes the process of belief-update based on all the evidence that has
been produced so far.

5. Ticks and observations are updated. The environment also checks if the stop condition is fulfilled.

The simulation stops when either

• 5000 steps have been performed or

• every agent either fully supports H or fully rejects H .

The second condition represents the effective termination of the debate, i.e. a situation in which every scientist
in the community has drawn a definitive conclusion on hypothesis H , and no further communication within
the community will lead to further change. See Section Stability Of The Results for a justification of the first
condition.
Our schedule is meant to represent the process of scientific inquiry, in which scientists continuously obtain po-
tentially relevant evidence through experimentation, evaluate this evidence, and discuss with other members
of the community on the basis of their background assumptions, i.e. their diagnostic values. Step 1 represents
the publication of new evidence, e.g., in a paper, which will be read and evaluated by all scientists in Step 2.
Subsequently, Step 3 may be taken to represent a discussion which scientists could have at a conference.9 Fi-
nally, in Step 4 a scientist that has changed her mind with respect to the interpretation of evidence, reevaluates
the evidence that the community has been produced so far.

Design concepts

Basic principles

This model addresses a well known problem in social epistemology, i.e. how scientific polarization originates.
Yet, although few theoretical models have already been proposed to account for this phenomenon (O’Connor
& Weatherall 2018; Pallavicini et al. 2018; Singer et al. 2017), the present one tackles the question from a novel
perspective. Its basic principle is that although scientists may be exposed to the same evidence, they may
interpret it differently, and, hence, reach different conclusions. In particular, it may be the case that certain
scientists assign a more correct value to the relevance of a certain piece of evidence with respect to a certain
hypothesis than others. Our model explores the consequences of this very simple observation for the formation
of consensus.
This model is composed of two submodels (Section Submodels) that are taken from the existing formal lit-
erature on opinion dynamics and formal philosophy of science. On the one hand, the way scientists interact
when discussing their diagnostic values is regulated through a (slightly modified) bounded confidence model
(Hegselmann & Krause 2002). Scientists discuss their diagnostic values only with scientists who have a simi-
lar belief in terms of the hypothesis H and in terms of diagnostic value itself (this is Step 3 of Section Process
overview). On the other hand, the way agents update their beliefs with respect to new evidence is treated in a
Bayesian framework. This is inspired by the way scientists are represented in many formal models on the social
organization of science (Zollman 2007, 2010).
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Emergence

The key outcome of the model is the frequency with which the community reaches a correct consensus, and how
it is brought about from the internal mechanism. A correct consensus may emerge in two different cases. On
the one hand, it can be the case that the agents all start interpreting evidence adequately, and, consequently,
just by observing the data points that are produced the agents all end up supporting H . On the other hand, it
may be the case that some agents have a diagnostic value which would make them move towards rejecting H
when observing data. In this case, a correct consensus is brought about by the fact that agents may influence
each other on their diagnostic values and the agents with a correct enough diagnostic value pull on their side
the other agents.

Adaptation

The scientists have one adaptive behavior: deciding who to discuss their diagnostic values with. The decision
is taken following the rules described in Section Submodels and based on the values forϕ and ϵ. In this sense, it
is a indirect objective-seeking procedure. In particular, this choice affects the agent-variable agent-diag-value,
and it is taken based on the agent’s actual variables agent-diag-value and agent-belief.. The agent can choose
between all the other agents and selects a subset of them to discuss. An agent lets another agent influence
herself if

1. the Euclidean distance between the values for the state variable agent-belief of the two agents is below
the tolerance threshold epsilon (a model parameter), and

2. the Euclidean distance between the values for the state variable agent-diag-value of the two agents is
below the tolerance threshold phi (a model parameter).

By doing so, an agent is influenced only by agents who have opinions similar enough to hers, i.e. she selects the
agents she considers acceptable and let them influence her. The influence process takes place to modify the
state variable diagnostic value following the submodel influence process.

Objectives

As no adaptation mechanism is direct objective-seeking, no objective needs to be specified.

Learning

There is no learning involved in this model.

Prediction

There is no process of prediction in this model.

Sensing

All agent knows their own agent variables. They use them extensively when updating them in processes of belief
update (see Section Process overview). They know these values accurately. In addition, for each agent variable
(agent-belief and agent-diag-value), an agent knows whether for each other agent the distance between her
value and the other agent’s value is lower than a certain threshold; agents use this information when choosing
who to discuss their diagnostic values with (see Section Adaptation). Also in this case, the comparison is carried
out accurately.
Scientists know their agent-variables as they use those variables to represent their confidence in a certain hy-
pothesis and to interpret evidence. Moreover, it is reasonable to assume that scientists sense what are the
agent-variables of other agents as they interact with them. One can imagine the process of discussion as an
exchange of information from both sides after which a decision is made on whether or not to let the other side
influences you.
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Interaction

Agents interact with each other during the discussion phase. In particular, an agent interacts at every turn only
with the other agents that, in that turn, satisfy certain requirements (see Section Adaptation). In particular,
if agents i and agent j interact then they interact directly. The interaction consists in the modification of the
agents’ diagnostic value based on the values of the agents they interact with. The rationale for the mechanism
is explained in Section Adaptation.

Stochasticity

Two processes make use of stochastic mechanisms. First, the initialization of agents use a random number
generator to assign to each agent a value agent-diag-value. In particular, every time a new agent is generated a
value for agent-diag-value is drawn from a uniform distribution (see Section ??). The reason for this is that sci-
entists may have different diagnostic values. Secondly, the creation of a new experiment uses a random mech-
anism: the number of successes for each experiment is generated by a binomial distribution with probability
P (1|H) and number of trials as the parameter for the total number of data points. In this case, stochasticity
represents the fact that when performing an experiment different outputs are possible and they are possible
with a probability that depends on the underlying state of the world.

Collectives

There is no collective in the model.

Observation

The observations that are collected step by step by the model are shown in Table 6.

Observation
Name

Observation-Type Meaning

beliefs vector of real values be-
tween [0, 1]

vector that contains the values of state-
variable agent-belief for every agent.

diag-values vector of real values be-
tween [0, 1]

vector that contains the values of state-
variable agent-diag-value for every agent.

Table 6: Measures Observed.

In addition, when the simulation ends, from these two measures we compute what we call the collective result,
i.e. the outcome in terms of consensus of a run: "correct-consensus", "wrong-consensus" and "polarization".
The first corresponds to a case in which every agent fully supportsH , the second to every agent fully rejecting H,
and the third one to any other configuration. Finally, we observe the frequency of these three different outputs
over one hundred runs for every parameter combination. We call T − freq , W − freq and P − freq the values
for these frequencies.10 The simulation ends when every agent either fully supports H or fully rejects H . We
evaluate the final result only in terms of factual beliefs (i.e. of the state variable agent-belief ) because that is the
only way a scientific community is asked to provide an opinion.
Although we did perform some exploratory analysis using observations collected at different time steps, our
main focus is on the frequency of those three final outputs.

Initialization

Initialization of the model is divided in two phases, corresponding to the setup of the scientific community (i.e.
the agents and the features of their behaviour) and the setup of the scientific problem the agents face. We start
with the latter.
As mentioned in Section Purpose and main pattern of the model, the scientists face the problem of deciding
whether or not hypothesis H is true in the world in which they conduct their experiments (where we assume
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that H is true). To inform their decision, scientists perform experiments with a certain sample size. For each
data point of the sample, they distinguish between an output of type 1 and an output of type 0 (1 and 0 are
mutually exclusive) as the outcome of the experiment. Such experiments are used to determine whether H or
¬H is more likely. Consequently, in the initialization, we fix the values of P (1|H) and P (1|¬H).
We assume that P (1|H) = 0.5, i.e. that if H is the true state of the world (as it is), in the long run half of the
data points will be of type 1 and half of type 0. Then, we assume that P (1|¬H) ∈ [0.55, 1), and we take the
distance d = P (1|¬H) − P (1|H) to correspond to the difficulty of the problem at stake.11 The smaller d is,
the more likely H and ¬H are to yield a similar outcome, and the harder it is to decide which one of the two is
responsible for it on the basis of an experiment.
To set up the scientific community, we create N agents, where N can take up any value in [5, 100]. The state
variable agent-belief for each agent is set to 0.5, representing that scientists enter the debate without prior
commitment to H over ¬H . We assume that each agent is aware of the correct value for the probability of
obtaining an output 1 from ¬H (that is Pi(1|¬H) = P (1|¬H) for each i). Yet, at the same time, we consider
the possibility for agents to assign to Pi(1|H) a value different from P (1|H). The value Pi(1|H) is captured
by the state variable agent-diag-value which is drawn for each agent from a uniform distribution U(P (1|H) −
λ, P (1|H) + λ), with λ ∈ [0, 0.5]. This implies that

• agents may have different diagnostic values, and that

• agents may interpret evidence in a ‘wrong‘ way.

Here, λ represents the initial dispersion of agents’ background assumptions: we do not assume that agents
assign the correct diagnostic value to evidence, but that it is very likely that the average computed over all the
assigned diagnostic values is close toP (1|H). In this, our model assumes a form of ‘wisdom of the crowd’, since
if all agents would assign the average value of their initial diagnostic values, most of them would be closer to
the real value.
Three other parameters are necessary to define the way agents interact and perform experiments (see Table 3),
which will be explained in Section Submodels.

Submodels

Our model has three main submodels.

Creation of an experiment

At the beginning of each round, an experiment is performed and the result is made available to every agent.
An experiment e consists of a number k of outputs of type ‘1’ (which we will call "ones", from now on) over a
number of trials n: k is drawn from a binomial distribution with number of trials n = DP , and probability p =
P (1|H) of producing a success. This representation of scientific experimentation has been used extensively in
the philosophical approach to modelling scientific communities (Zollman 2007; O’Connor & Weatherall 2018).
The number of trials for experiment DP is a parameter in the interval [5, 100].

Belief update

An agent may be presented with the outcomes of one or more experiments. In both cases, they update their
belief through classical Bayesian updating. Let e1, . . . , em be the pieces of evidence the agent inspects and let
P l
i (H) represent the belief before inspecting piece el+1. The value P l

i (H) corresponds to the state variable
agent-belief before the update, and P l+1

i (H) to the state variable agent-belief after the update. The agent’s
degree of belief after having observed el+1 is computed as follows:

P l+1
i (H) = P l

i (H|el+1) =
P l
i (H) · P l

i (el+1|H)

P l
i (el+1)

=
P l
i (H) · P l

i (el+1|H)

P l
i (H) · P l

i (el+1|H) + P l
i (¬H) · P l

i (el+1|¬H)
. (7)

Consequently, if an agent inspects m pieces of evidence: Pm
i (H) = Pm−1

i (H|em) = Pm−2
i (H|em ∧ em−1) =

· · · = P 0
i (H|e1 ∧ · · · ∧ em). As we are dealing always with the same binomial distribution, Pm

i (H) is equal to
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P 0
i (H|E), where E is an experiment with k = k1 + · · · + km ones in n = n1 + · · · + nm trials. Importantly,

in performing the update, the agent also employs P l
i (el+1|H) and P l

i (el+1|¬H), which are respectively the
likelihood that agent i assigns to hypothesis H of producing evidence el+1, and the likelihood that agent i
assigns to hypothesis ¬H of producing evidence el+1. These two values can be computed as follows. If el+1

contains k ones over n trials, then:

P l
i (el+1|H) =

(
n

k

)(
Pi(1|H))k(1− Pi(1|H)

)n−k
, (8)

and
P l
i (el+1|¬H) =

(
n

k

)(
Pi(1|¬H))k(1− Pi(1|¬H)

)n−k
. (9)

Here, Pi(1|H) corresponds to the value of the state variable agent-diag-value at the moment in which the up-
date is performed. It represents the likelihood an agent assigns to obtaining a success in the experiment given
thatH is true. By contrast, we takePi(1|¬H) = P (1|¬H) to be equal for all agents and consider it a parameter
of the model: agents disagree over the relationship between 1 and H , but not over the relationship between 1
and ¬H .

Influence each other

After updating their beliefs on the basis of evidence, agents proceed to influence each other, by going through
two phases:

• choosing with whom to communicate (the ‘influencers’); and

• updating the variable agent-diag-value based on the influencers’ values for the variable agent-diag-value.

Agent i chooses the set Ii of influencers such that j ∈ Ii iff

(agent-diag-valuei − agent-diag-valuej) ≤ ϕ and (agent-beliefi − agent-beliefj) ≤ ϵ. (10)

This means that an agent j influences i iff the opinions of the two agents are sufficiently similar in terms of 1) di-
agnostic value of evidence, and 2) degree of belief in H . The values ϕ ∈ [0, 1] and ϵ ∈ [0, 1] are parameters that
are fixed when the model is initialized. Notably i ∈ Ii. Once the set Ii has been defined, the influence of the cho-
sen agents is represented by assigning a new value for agent-diag-value of i, denoted as agent-diag-valuet+1

i .
This is computed as follows:

agent-diag-valuet+1
i =

∑
j∈Ii

agent-diag-valuetj
|Ii|

, (11)

where agent-diag-valuetj is the value for the state variable of agent j prior to being influenced. The new value
for the state variable of agent i is obtained by averaging all the values for the same state variable of all the
influencers.
This submodel employs the mechanism from the bounded confidence model, as first proposed by Hegselmann
& Krause (2002) and then extended in many other instances of the opinion dynamics literature (Hegselmann &
Krause 2002, 2006). As in these models, we also use a homophily-biased type of influence (Flache et al. 2017) to
represent scientists’ interactions, as it is reasonable to assume that scientific discussions happen more often
among like-minded scientists. In particular, we introduce two conditions that need to be fulfilled for agent
i to engage in discussion with agent j: agent i needs to be close enough to i both in terms of background
assumptions and of factual beliefs (expressed in parameters ϕ and ϵ respectively). Furthermore, scientists are
influenced by other scientists by being pulled closer to their diagnostic values: this represents the way an agent
modifies her background assumptions to get closer to those of whom she discussed with.
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Notes

1The bounded-confidence framework by Hegselmann and Krause has also been applied to a related ques-
tion concerning the impact of different epistemic norms, guiding disagreeing scientists, on the efficiency of
collective inquiry (Douven 2010; De Langhe 2013).

2A formal account of these two state variables (and their use) is given in Appendix B.
3See Theoretical Background for a more detailed justification.
4Appendix A explains how values l1, l2 are obtained
5See Section Results for some more information.
6This is not the case whenλ is very low, as in that case, almost no agent is ill-prepared, and so it is very likely

that even if the ill-prepared discuss with each other, they are not able to become well-prepared.
7This method yields two relevant measures: first-order sensitivity indices (S) and total-order sensitivity in-

dices (ST). First-order sensitivity indices show the individual, fractional contribution of each factor to output
variance; total-order sensitivity indices show the overall contribution of each factor along with the interaction
of the other factors (Ligmann-Zielinska et al. 2020). The sum of the first-order indices gives the fractional output
variance that is explained by the individual factors. The remaining value is the fractional output variance that
is explained by factor interactivity.

8Of course, since our model is highly idealized, any such normative point is conditional on the model being
validated as representative of an actual scientific community.

9See Theoretical Background for a more detailed justification.
10See Section Stability of the results.
11One may wonder why we did not choose [0.51, 1) instead of [0.55, 1) as the interval for P (1|¬H). The

reason for this is mainly of computational nature. If the value of P (1|¬H) is too close to P (1|H), agents need
very large amounts of evidence to either support or reject H , which requires simulations to run for very long
time.

JASSS, 26(4) 5, 2023 http://jasss.soc.surrey.ac.uk/26/4/5.html Doi: 10.18564/jasss.5113



References

De Langhe, R. (2013). Peer disagreement under multiple epistemic systems. Synthese, 190, 2547–2556

Deffuant, G., Amblard, F., Weisbuch, G. & Faure, T. (2002). How can extremism prevail? A study based on the
relative agreement interaction model. Journal of Artificial Societies and Social Simulation, 5(4), 1

Douven, I. (2010). Simulating peer disagreements. Studies in History and Philosophy of Science Part A, 41(2),
148–157

Douven, I. (2019). Optimizing group learning: An evolutionary computing approach. Artificial Intelligence, 275,
235–251

Douven, I. & Hegselmann, R. (2022). Network effects in a bounded confidence model. Studies in History and
Philosophy of Science, 94, 56–71

Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S. & Lorenz, J. (2017). Models of social
influence: Towards the next frontiers. Journal of Artificial Societies and Social Simulation, 20(4), 2

Friedman, D. C. & Šešelja, D. (2022). Scientific disagreements, fast science and higher-order evidence. Forth-
coming. Available at: http://philsci-archive.pitt.edu/21246/

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D. L., Edmonds, B., Ge, J., Giske,
J., Groeneveld, J., Johnston, A. S. A., Milles, A., Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M. S.,
Stillman, R. A., Thiele, J. C. & Ayllón, D. (2020). The ODD protocol for describing agent-based and other sim-
ulation models: A second update to improve clarity, replication, and structural realism. Journal of Artificial
Societies and Social Simulation, 23(2), 7

Hahn, U. & Hornikx, J. (2016). A normative framework for argument quality: Argumentation schemes with a
Bayesian foundation. Synthese, 193(6), 1833–1873

Hegselmann, R. & Krause, U. (2002). Opinion dynamics and bounded confidence models, analysis, and simula-
tion. Journal of Artificial Societies and Social Simulation, 5(3), 2

Hegselmann, R. & Krause, U. (2006). Truth and cognitive division of labor: First steps towards a computer aided
social epistemology. Journal of Artificial Societies and Social Simulation, 9(3), 10

Henderson, L. (2022). Higher-order evidence and losing one’s conviction. Noûs, 56(3), 513–529

Kopecky, F. (2022). Arguments as drivers of issue polarisation in debates among artificial agents. Journal of
Artificial Societies and Social Simulation, 25(1), 4

Ligmann-Zielinska, A., Siebers, P.-O., Magliocca, N. R., Parker, D. C., Grimm, V., Du, J., Cenek, M., Radchuk, V.,
Arbab, N. N., Li, S., Berger, U., Paudel, R., Robinson, D. T., Jankowski, P., An, L. & Ye, X. (2020). One size does not
fit all: A roadmap of purpose-driven mixed-method pathways for sensitivity analysis of agent-based models.
Journal of Artificial Societies and Social Simulation, 23(1), 6. doi:10.18564/jasss.4201

Longino, H. (2002). The Fate of Knowledge. Princeton, NJ: Princeton University Press

Longino, H. E. (2022). What’s social about social epistemology? The Journal of Philosophy, 119(4), 169–195

Mäs, M. & Flache, A. (2013). Differentiation without distancing. Explaining bi-polarization of opinions without
negative influence. PLoS One, 8(11), e74516

Morey, R. D., Romeijn, J.-W. & Rouder, J. N. (2016). The philosophy of Bayes factors and the quantification of
statistical evidence. Journal of Mathematical Psychology, 72, 6–18

Olsson, E. J. (2013). A Bayesian simulation model of group deliberation and polarization. In F. Zenker (Ed.),
Bayesian Argumentation, (pp. 113–133). Berlin Heidelberg: Springer

O’Connor, C. & Weatherall, J. O. (2018). Scientific polarization. European Journal for Philosophy of Science, 8(3),
855–875

Pallavicini, J., Hallsson, B. & Kappel, K. (2018). Polarization in groups of Bayesian agents. Synthese, 198(1), 1–55

JASSS, 26(4) 5, 2023 http://jasss.soc.surrey.ac.uk/26/4/5.html Doi: 10.18564/jasss.5113

http://philsci-archive.pitt.edu/21246/


Rosenstock, S., Bruner, J. & O’Connor, C. (2017). In epistemic networks, is less really more? Philosophy of
Science, 84(2), 234–252

Singer, D. J., Bramson, A., Grim, P., Holman, B., Jung, J., Kovaka, K., Ranginani, A. & Berger, W. J. (2017). Rational
social and political polarization. Philosophical Studies, 176, 1–25

Solomon, M. (2007). Social Empiricism. Cambridge, MA: MIT Press

Stegenga, J. (2016). Three criteria for consensus conferences. Foundations of Science, 21(1), 35–49

Zollman, K. J. (2007). The communication structure of epistemic communities. Philosophy of Science, 74(5),
574–587

Zollman, K. J. (2010). The epistemic benefit of transient diversity. Erkenntnis, 72(1), 17–35

JASSS, 26(4) 5, 2023 http://jasss.soc.surrey.ac.uk/26/4/5.html Doi: 10.18564/jasss.5113


	Introduction
	Theoretical Background
	Model Description
	Purpose and main pattern of the model
	Entities, state variables
	Process overview
	Initialization
	Submodels
	Creation of an experiment
	Belief update
	Influence each other

	A brief summary on agents' behaviour

	Results
	Stability of the results
	Reaching consensus
	The impact of evidence
	More evidence, fewer friends
	More evidence, same friends: Broadening the parameter space

	Sensitivity analysis

	Discussion
	Conclusion
	Acknowledgments
	Appendix A: Mathematical Analysis
	Appendix B: ODD Protocol
	Purpose and main pattern of the model
	Entities, state variables, and scales
	Entities
	Scales

	Process overview
	Design concepts
	Basic principles
	Emergence
	Adaptation
	Objectives
	Learning
	Prediction
	Sensing
	Interaction
	Stochasticity
	Collectives
	Observation

	Initialization
	Submodels
	Creation of an experiment
	Belief update
	Influence each other



