
Notre Dame Journal of Formal Logic
Volume 49, Number 2, 2008

An Undecidable Property
of Recurrent Double Sequences

Mihai Prunescu

Abstract For an arbitrary finite algebra (A, f (·, ·), 0, 1) one defines a double
sequence a(i, j) by a(i, 0)=a(0, j)=1 and a(i, j)= f (a(i, j −1), a(i −1, j)).
The problem if such recurrent double sequences are ultimately zero is undecid-
able, even if we restrict it to the class of commutative finite algebras.

1 Introduction

Definition 1.1 Consider an arbitrary finite algebra A = (A, f, 0, 1) where
f : A × A → A is a binary operation and 0, 1 are two constants. We call 1 the start
symbol. The recurrent double sequence associated to A is a function a : N×N → A
defined as follows:

a(i, j) =

{
1 if i = 0 ∨ j = 0,

f (a(i, j − 1), a(i − 1, j)) if i > 0 ∧ j > 0.

If f is commutative, the recurrent double sequence shall be symmetric:

a(i, j) = a(j, i).

Definition 1.2 The recurrent double sequence a(i, j) is said to be ultimately zero
if

A |H ∃ N ∈ N ∀ i, j ∈ N i > 0 ∧ j > 0 ∧ i + j > N −→ a(i, j) = 0.

Theorem 1.3 It is undecidable if the recurrent double sequence defined by an al-
gebra A is ultimately zero. This question remains undecidable if it is restricted to the
class of commutative finite algebras.

Received November 28, 2007; accepted December 3, 2007; printed March 12, 2008
2000 Mathematics Subject Classification: Primary, 03D10
Keywords: recurrent computation, double sequence, Turing machine, undecidable

property, finite commutative algebra
c© 2008 by University of Notre Dame 10.1215/00294527-2008-004

143

http://www.nd.edu/~ndjfl
http://www.nd.edu

144 Mihai Prunescu

Of course, the commutative case implies the general one. However, I believe that
starting with an easier sketch of proof for the general case provides a natural intro-
duction to the matter.

Definition 1.4 We call Z the class of algebras A such that the corresponding double
sequence a is ultimately zero. We call CZ the class of commutative algebras A ∈ Z.

Definition 1.5 The recurrent double sequence a : N × N → A of A shall be seen
as an infinite matrix with a(0, 0) = a0,0 = 1 in the left upper corner. Let

Dn = {ai, j | i + j = n}

be the nth diagonal. Then a = ∪Dn is a partition of the recurrent double
sequence a.

This small research started with a sequence of computer experiments done by the
author. The algebras (A, f, 0, 1) were finite fields A equipped with ternary poly-
nomials f ∈ A[x, y, z] as operations. The recurrent sequences were generated by
the rule a(i, j) = f (a(i, j − 1), a(i − 1, j − 1), a(i − 1, j)). Finite field elements
have been interpreted as colors and the resulting matrices were displayed as colored
images.1 For the sake of symmetry, only polynomials that are symmetric in x and z
were applied. Applying the interpolation over finite field, one sees that to consider
only polynomials does not represent any restriction of the generality. In the special
case of the linear polynomials x + my + z produces self-similar sets; see [2] for
a proof. Linear symmetric polynomials in x and z of the form ax + by + az are
no more self-similar in general—one recognizes self-similarity partially overlapped
with other periodic and quasi-periodic phenomena. The unbelievable variety of im-
ages produced by general polynomials (even for small fields like F5) suggested that
the recurrent double sequences are Turing complete and that a lot of their properties
are undecidable.

Other relevant results on topics related to the result proved here can be found in
the monograph [1]. The unique result used here is the Theorem of Rice [3] in its
modern formulation concerning sets of (codes of) Turing machines, as stated, for
example, in [4].

2 The General Problem

In this section we present a straightforward interpretation of Turing machines in the
recurrent double sequences.

Definition 2.1 An instance of the Halting Problem is a pair (M, w), where
M = (6, Q, q0, qs, b̄, δ) is a Turing machine and w ∈ 6∗ is an input for M . Here
the tape of M is infinite in both directions; 6 is the alphabet of M ; Q is M’s set
of states; q0 and qs are the start state and, respectively, the stop state; b̄ ∈ 6 is the
blank symbol; and δ : 6 × Q → 6 × Q × {R, L , S} is the transition function.

Lemma 2.2 To every instance (M, w) of the Halting Problem one can algorithmi-
cally associate a finite algebra A = (A, f, 0, 1) such that A ∈ Z if and only if, for
input w, the machine M stops and after stopping the tape is cleared.

Proof If Lemma 2.2 is true, then the problem Z is not algorithmically solvable.
This is true because to stop with a cleared tape is an undecidable property of Turing
machines, according to the Theorem of Rice.

Recurrent Double Sequences 145

Figure 1 x4
+ z4

− x4 yz4
+ x3z3

∈ F5[x, y, z].

Let (M, w) be an instance of the Halting Problem. The algebra A shall be con-
structed step by step following its generated double sequence.

Step 1 The start symbol of A is a new letter 1 that doesn’t belong to the Turing
machine M . On the other hand, 0 ∈ A shall be the blank symbol b̄ of M .

Step 2 Let the input w ∈ 6∗ be the word w1 . . . wn . Using a set U of new
letters one defines f such that the content of a diagonal Dw of the double sequence
is exactly

1 0 0 δ0 w1 . . . wn 0 0 1 .

The letters of U shall be used only for this goal and never again. The simulation of
the Turing machine starts with the diagonal Dw.

Step 3 The just constructed diagonal Dw is said to be a diagonal of type 0. Start-
ing with Dw, diagonals are alternatively of types 0, 1, 0, 1, and so on. Successive
diagonals of type 0 simulate successive configurations of the Turing machine. The
diagonals of type 1 between them are used to transfer the information from a simu-
lated configuration to the next one.

146 Mihai Prunescu

Figure 2 2x3
+ 2z3

+ y2
− x2z2

∈ F5[x, y, z].

Step 4 The alphabet used for diagonals of type 0 contains 6 ∪ (6 × Q). We
denote letters from 6 × Q with δi . The meaning of the letter ‘(a, q)’ is that the head
of M reads a with M being in the state q .

Step 5 If 00 is the alphabet used for diagonals of type 0, the alphabet used for
diagonals of type 1 will be 01 = (00 × 00 \ {(0, 0)}) ∪ {0}.

Step 6 The function f is defined on diagonals of type 0 in the obvious way
f (a, b) = (a, b) if at least one of a and b is not 0 or 1, and f (0, 0) = f (1, 0) =

f (0, 1) = 0.

Step 7 The function f is defined on diagonals of type 1 such that if the element
ai, j of the last diagonal of type 0 simulated a certain cell of the tape of M at a
given time k, then the cell ai+1, j+1 simulates the same cell at the time k + 1. The
following example shows how the diagonal of type 1 in between makes possible
that the element ai+1, j+1 gets information from three successive cells: ai, j and the

Recurrent Double Sequences 147

elements ai−1, j+1 and ai+1, j−1 simulating its neighbors on the tape of M .

b
δ (δ, b)

a (a, δ) c

Step 8 Every diagonal of type 0 is with two cells longer than the precedent one
and the head makes one step per time, so there is no danger that the simulation leaves
the matrix or even that the simulation meets the first row or the first column.

Step 9 For the special letter δ = (0, qs) we define f such that f (δ, 0) =

f (0, δ) = 0. This makes the double sequence ultimately zero if and only if the
machine stops with a cleared tape.

Step 10 Now take A to be {1} ∪ U ∪ 00 ∪ 01 and take an f : A × A → A
respecting all the conditions given above. �

3 The Commutative Problem

Definition 3.1 Let 0 6= ∅ be a set and ≡ be the partition of 0 × 0 consisting of
the following sets: for all a ∈ 0 the singleton sets {(a, a)} and for all a, b ∈ 0 with
a 6= b the two-element sets {(a, b), (b, a)}. Then ≡ is an equivalence relation over
0. Consider the set of equivalence classes,

0 · 0 = (0 × 0)/ ≡,

which is the set of unordered pairs of elements of 0. We denote the equivalence class
of (a, b) with [a, b] and call this the unordered pair of a and b.

Lemma 3.2 To every instance (M, w) of the Halting Problem one can algorithmi-
cally associate a commutative finite algebra A = (A, f, 0, 1) such that A ∈ CZ if
and only if, for input w, (the machine M stops with cleared tape without having done
any step in the negative side of the tape) or (the machine M makes at least one step
in the negative side of its tape and the first time when M makes such a step the tape
of M is cleared).

Proof If Lemma 3.2 is true, then CZ is not algorithmically solvable. This is true be-
cause the given condition is an undecidable property of Turing machines, according
to the Theorem of Rice.

The function f shall be constructed again in parallel with the recurrent double
sequences. It shall be again so that on some special (half of) diagonals one simulates
successive configurations of the Turing machine on input w. The function f being
commutative, one cannot make directly the difference between Left and Right. To
overcome this difficulty one can try to double the number of letters of 0 and write
every letter c as cc′. The function f should now act symmetrically on diagonals of
type 0, so we define f (a, b) to be the unordered pair [a, b]. This strategy is not
sophisticated enough: if we look at words aba and bab on a diagonal of type 0, they
both produce a word xx on the following diagonal of type 1, where x = [a, b]. This
means that this encoding may lose essential information. The solution shall be to
triple the number of letters and to encode every letter c in a sequence cc′c′′, where c′

and c′′ are new letters used only for this goal.

148 Mihai Prunescu

Step 1 The start symbol of A is a new letter 1 that does not belong to the Turing
machine. Also the letter 0 of S is now a new letter.

Step 2 Let the input w ∈ 6∗ be the word w1 . . . wn . Using a set U of new letters
one defines f commutatively such that the content of a diagonal Dw of the recurrent
double sequence is exactly

109 w′′
nw′

nwn . . . w′′

1w′

1w1 δ′′

0δ′

0δ0 000 δ0δ
′

0δ
′′

0 w1w
′

1w
′′

1 . . . wnw′
nw′′

n 091 .

Here 09 means a word built up by 9 zeros. The letters of U shall be used only for
this goal and then never again. The simulation of the Turing machine starts with this
diagonal.

Step 3 From now on we use the words Left and Right relatively to the recurrent
double sequence, as Left and Right of the current diagonal, which is written down as
in the preceding item.

Step 4 The just constructed diagonal Dw is a diagonal of type 0. This time there
are 8 types of diagonals: types 0, 1, . . . , 7. Starting with Dw diagonals are of types 0,
1, . . . , 7, 0, 1, . . . , 7, and so on. Successive diagonals of type 0 simulate successive
configurations of the Turing machine. The diagonals of types 1, . . . , 7 between them
are used to transfer the information from a simulated configuration to the next one.

Step 5 The alphabet 00 used for diagonals of type 0 contains three disjoint copies
of the set 6 ∪ (6 × Q) \ {b̄}. Every letter c or δ has copies c′, c′′ and δ′, δ′′,
respectively. The fact that c ∈ 6 is contained in a cell of the Turing machine is
encoded by the connected word cc′c′′ occurring in the right-hand side of a diagonal
of type 0. δ ∈ 6 × Q is encoded in the right-hand side of a diagonal of type 0 by a
word δδ′δ′′. The blank symbol b̄ as content of a cell of the Turing machine is always
encoded in the simulation by the word 000 on a diagonal of type 0. In the left-hand
side of the development the codes for c and δ are c′′c′c, δ′′δ′δ, respectively.

Step 6 Let 00 be the alphabet used for diagonals of type 0. For i = 1, 2, . . . , 7
the alphabet used for diagonals of type i will be 0i = (0i−1 · 0i−1 \ {[0, 0]}) ∪ {0}.

Step 7 The function f is defined on diagonals of type i = 0, 1, . . . , 6 in the
obvious way f (a, b) = [a, b] if at least one of a and b are not 0 or 1, and
f (0, 0) = f (1, 0) = f (0, 1) = 0.

Step 8 The function f shall be defined on diagonals of type 7 such that if the
element ai, j of the last diagonal of type 0 contains a letter (c, c′, c′′, δ, δ′, δ′′,
or 0) that appears in a subword of length 3 simulating a cell of the tape of M at
a given time k, then the element ai+4, j+4 of the recurrent double sequences shall be
the corresponding letter of the diagonal word simulating the configuration of M at
time k + 1. This is done in the following way.

Recurrent Double Sequences 149

Step 9 Let ai, j = δ′
∈ 00 be a part of the following segment of simulation in

a diagonal of type 0: . . . cc′c′′δδ′δ′′dd ′d ′′ . . . , and suppose that in the next config-
uration the tape-cell containing δ shall contain e ∈ 6. As proved in the postponed
Lemma 4.6, ai+3, j+4 = α and ai+4, j+3 = β, with α, β ∈ 07, such that α encodes
the word cc′c′′δδ′δ′′dd ′ or its reverse and β encodes the word c′c′′δδ′δ′′dd ′d ′′ or its
reverse. One has either the words themselves (if we look at the right-hand side of the
double sequence) or the reversed words (if we look at the left-hand side of the double
sequence). If we are in the right-hand side, the matching of the encoded words looks
like

c c′ c′′ δ δ′ δ′′ d d ′

c′ c′′ δ δ′ δ′′ d d ′ d ′′ .

If we are in the left-hand side, the matching is

d ′ d δ′′ δ′ δ c′′ c′ c
d ′′ d ′ d δ′′ δ′ δ c′′ c′ .

In both cases the matching is a word of length 7 around δ′, so the value f (α, β) is
uniquely determined to be e′, where e ∈ 6 is the letter that shall replace δ in the
corresponding tape-cell of M in the next configuration. The same arguments work
for every connected subword of length 8 which is disjoint from the central 000 word,
like c′′δδ′δ′′dd ′d ′′e, and so on.

Step 10 Every diagonal of type 0 is with eight elements longer then its prede-
cessor of type 0 (four elements left-hand and four elements right-hand) and the sim-
ulation needs at most three elements more per step, so there is no danger that the
simulation leaves the matrix or even that it meets the first row.

Step 11 If the connected subword δδ′δ′′ with the special letter δ = (a, qs) arises,
then we define f such that the corresponding elements in the next diagonal of type
0 are all aaa′′ for a 6= b̄ and 000 for a = b̄. From this moment the simulation of the
Turing machine ended.

Step 12 For the connected subwords of length 8 containing the central 000 the
function f is defined such that words of the type c′′c′c000cc′c′′ are preserved in
the next configuration. Words δ′′δ′δ000δδ′δ′′ are replaced with e′′e′e000ee′e′′ if
δ = (a, q) → (e, q ′, R). Words δ′′δ′δ000δδ′δ′′ are replaced with a′′a′a000aa′a′′

if δ = (a, q) → (e, q ′, L). This is the other legal way to stop the computation, as
already stated in Section 3.

Step 13 Now take A to be {1} ∪ U ∪
7
i=0 0i and f : A × A → A to respect all the

conditions given above. �

4 Symmetric Codes

Definition 4.1 Let 00 be a finite alphabet with ≥ 2 letters and 0 ∈ 00 a special
letter. We define the sequence of alphabets 0i such that 0i+1 = (0i ·0i \{[0, 0]})∪{0}

and f : 0i × 0i → 0i+1 such that f (a, b) = [a, b] if at least one of the arguments
is not 0, respectively, f (0, 0) = 0. For an alphabet 0 let 0∗ be the set of words over
0 and 0≥k the set of words of length ≥ k over 0. The set of words of length k shall
be simply denoted 0k .

150 Mihai Prunescu

Definition 4.2 Let πi : 0≥2
i →0∗

i+1 given as πi (w1 . . . wn)= f (w1, w2) f (w2, w3)

. . . f (wn−1, wn). Let π : 08
0 → 07 given as π(w) = π6π5π4π3π2π1π0(w). We call

the words w, π0(w), π1π0(w), . . . , π5π4π3π2π1π0(w) = π(w) the coding steps.

Definition 4.3 Now let 00 be the alphabet defined in Section 3. Let E be
the set of all words in 08

0 that can possibly arise as diagonal words during a
simulation. They are exactly the connected subwords of length 8 in all words
aa′a′′bb′b′′cc′c′′dd ′d ′′ where a, b, c, d ∈ 6 ∪ 6 × Q are not necessarily different,
and if some e ∈ {a, b, c, d} are 0, then the corresponding e′

= e′′
= 0. The

restriction of π to E → 07 shall be called simply π .

Definition 4.4 Let S be the set of connected subwords of length 8 in all words
ba′′a′a000aa′a′′b where a, b ∈ 6 ∪ 6 × Q are not necessarily different, and if
a = 0, then the corresponding a′

= a′′
= 0. Again the restriction of π to S → 07

shall be called simply π .

Definition 4.5 For a word w ∈ 0∗, w = w1 . . . wn , call σ(w) the reversed word
wn . . . w1.

Lemma 4.6 For all v, w ∈ E ∪ S, if π(w) = π(v), then w = v or w = σ(v).

Proof The proof works by direct checking. Given π(w), one reconstructs w back-
ward.

Words in v ∈ E: It is enough to check the worst cases with repetitions of let-
ters. Start with the word cc′c′′cc′c′′cc′. The coding steps have the following form:
x1x2x3x1x2x3x1x2, y1 y2 y3 y1 y2 y3 y1, z1z2z3z1z2z3, v1v2v3v1v2, t1t2t3t1, u1u2u3,
s1s2, α, where α ∈ 07. Starting with α, one gets back α = [s1, s2] so the two
possibilities for the diagonal of type 6 are s1s2 and s2s1. The first one leads directly
to w, the other one directly to σ(w); there are not other possibilities to reconstruct
the word.

For a complete proof of the lemma, one has to check the following worst cases:
(a) all the connected subwords of length 8 in cc′c′′000cc′c′′000000 and (b) all the
connected subwords of length 8 in cc′c′′cc′c′′cc′c′′000. All these cases have the
following common property: at all levels of coding, including the level 0, two suc-
cessive letters are equal if and only if they are 0.

Words in v ∈ S: The words occurring here are the exceptions in our symmetric
encoding: They do not enjoy the property that successive letters at every level are
equal if and only if they are both 0, but they are, however, well behaved even by
being the only words in question that don’t enjoy this property. Look at c′′c′c000cc′.
The coding steps are x1x2x300x3x2, y1 y2 y30y3 y2, z1z2z3z3z2, v1v2v3v2, t1t2t2,
s1s2, α. In decoding we have again the choice s1s2 or s2s1. If we choose s1s2, that
can backward develop only in t1t2t2, and so on. One easily checks all other words in
question. �

To recapitulate: Letters have been encoded by directed words of the form cc′c′′ or
δδ′δ′′ in order to make the difference between the left and the right neighbor in a
symmetric double sequence. For symmetrically encoded words of length 8 one needs
7 supplementary types of diagonals. A letter of type 7 encodes a word of length 8
and so always has information from three successive simulated Turing cells. The

Recurrent Double Sequences 151

common part of two successive subwords of length 8 has length 7 and so always has
a central letter: this is the letter to copy or replace on the next diagonal of type 0.

The referee pointed out that the technique applied in the last proof is related with
the set-theoretic definition of ordered pairs given by Wiener [5] and Kuratowski
(a, b) = {{a}, {a, b}}. Indeed, the principle of backward reconstruction used here
is based on this idea: one chooses an ordering (a, b) for some unordered pair [a, b]

by looking for an occurrence of a or b in the unordered pairs in the neighborhood.
Both constructions done here work in polynomial time.

Note

1. The full color output of the images on pages 145 and 146 can be viewed in the online
version of this journal issue at Project Euclid (http://projecteuclid.org/ndjfl).

References

[1] Börger, E., E. Grädel, and Y. Gurevich, The Classical Decision Problem, Perspectives in
Mathematical Logic, Springer-Verlag, Berlin, 1997. Zbl 0865.03004. MR 1482227. 144

[2] Prunescu, M., “Self-similar carpets over finite fields,” presented at CiE 2007, Siena, 2007.
144

[3] Rice, H. G., “Classes of recursively enumerable sets and their decision problems,”
Transactions of the American Mathematical Society, vol. 74 (1953), pp. 358–66.
Zbl 0053.00301. MR 0053041. 144

[4] Schöning, U., Theoretische Informatik—Kurz Gefaßt, Spektrum Akademischer Verlag,
Heidelberg, 1997. MR 1244107. 144

[5] Wiener, N., “A simplification of the logic of relations,” Proceedings of the Cambridge
Philosophical Society, vol. 17 (1914), pp. 387–90. Zbl 45.0122.16. 151

Acknowledgments

The author extends his thanks to the American Mathematical Society.

Brain Products
Freiburg
GERMANY
and
Institute of Mathematics of the Romanian Academy
Bucharest
ROMANIA
mihai.prunescu@math.uni-freiburg.de

http://projecteuclid.org/ndjfl
http://www.emis.de/cgi-bin/MATH-item?0865.03004
http://www.ams.org/mathscinet-getitem?mr=1482227
http://www.emis.de/cgi-bin/MATH-item?0053.00301
http://www.ams.org/mathscinet-getitem?mr=0053041
http://www.ams.org/mathscinet-getitem?mr=1244107
http://www.emis.de/cgi-bin/MATH-item?45.0122.16
mailto:mihai.prunescu@math.uni-freiburg.de

	1. Introduction
	2. The General Problem
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	3. The Commutative Problem
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Step 11
	Step 12
	Step 13

	4. Symmetric Codes
	Note
	References
	Acknowledgments

