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Abstract

A structure of finite signature is constructed so that: for all existential formulas 37 ¢(Z, 7)
and for all tuples of elements % of the same length as the tuple &, one can decide in a quadratic
time depending only on the length of the formula, if 34 (@, §) holds in the structure. In
other words, the structure satisfies the relativized model-theoretic version of P=NP in the
sense of [4]. This is a model-theoretical approach to results of Hemmerling and Gafiner.

A .M.S.-Classification: 03B05, 03B25.

1 Introduction

The technic and many objects used here were introduced by Bruno Poizat in [5] where he con-
structed a structure with truth-predicate for existential formulas with one free variable using a
linear time coding procedure. Poizat considers a structure in the language of two independent
successor-functions (see Section 2 below) plus a unary predicate V; every existential formula
Y(x) = 37 ¢(z,7) is coded by a linear-size term 7,(x), such that the following holds:

Va [37 ¢z, §) < V(g (2))]-

Since there are only unary functions, this construction works only for formulae in one free variable.
The presence of this free variable makes the construction of V' rather involved.

In the present paper, a different choice of V' will be made such that there will be a decision
procedure in polynomial time in the length of the formula for all existential formula 3§ (%, 7).
In other words, the structure satisfies the relativized version of P=NP.

The construction is bazed on the following principles:

1. As in Poizat’s case, a general Elimination Lemma for unary structures with generic predi-
cates. (Section 2)

2. By the Elimination Lemma, the satisfaction of 37 ¢(&#,¥) depends only of some local in-
formation on #. For this information to be encoded by a quantifier-free formula B(Z) of
polynomial length, the generic predicate V is chosen to be sparse. (Section 3)

3. The predicate V will encode the truth value of sentences only. In fact, only some special
kind of V3-sentences are encoded. (Section 4)

4. The elimination algorithm works as follows: to check if F satisfies the formula 3§ p(Z, ¥) first
compute the neighborhood formula B(Z) then use the truth predicate V' to decide whether
the sentence VZ [B(Z) = 3§ ©(&, )] does or doesn’t hold in the structure. (Section 5)
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2 Generic predicates

We consider first the language {so, s1,p,a} where sg, s; and p are unary functions, and a is a
constant. The ground set

B:={s;,08,0---05;, (a)|n €N, g €{0,1}}

is the set of all terms in a using the function symbols s and s;. In fact sp and s; are two
independent successors that freely generate B. The number n of function symbols sg and s;
necessary to write down an element = € B is called its length and is denoted by |z|. The elements
of a given length build a level. The level n consists in 2" many distinct elements. The set B shall
be called the block. The predecessor function p is implicitly defined on the block by the axiom:

Vz [plx) =z x=a] A posg(x) =posi(z) =z.

If u and v are two variables, all satisfiable equation a(u) = 8(v), where a(u) and B(v) are terms,
is equivalent in B with an equation of the form:

5p" (u) = p°(v).
Indeed, equations like sq(t) = s1(¢') are not satisfiable in B, and equations like so(t) = so(t') are

equivalent in B with ¢ = t'. Also, a p followed by an s always reduce. On the other hand, we
cannot substitute p(t) = p(t') with ¢t =¢' in B.

We expand now the language by a unary predicate V; we call L the language {so,s1,p,a,V}.
A coloured block is B with its three functions, the constant and some interpretation (denoted
also by V) of the predicate V. We call black those elements e sucht that V(e) is true. The
other elements shall be called white. To be shorter we write in the following only (B,V) for
the structure (B, so, 51,p,a, V). We will consider in fact structures that consist in disjoint unions
of infinitely many coloured blocks, where one root interprets the constant a and there are no
constants in the language for the other roots. Such a structure shall be denoted only by (M, V)
instead of (M, s, 51,p,a,V).

A triangle of height n is a conjunctive formula T'(z) as follows: For all 2"*! — 1 terms ¢(x)
of length < n in the given variable x exactly one of the atomic formulas V (¢(z)) or =V (¢(z))
occurs in the conjunction. No other atomic formula does occur in the conjunction T'(z). There

are exactly 22"~ triangles of height n.

Let us use the alphabet of 15 letters V, 3, z, ', ), (, =, V, A, S0, 81, P, =, V, a for writing down
formulas. Different variables are built by z and ' like: z, z', 2", ... We denote by |¢(Z)| the
length of a formula ¢(%) as word over this alphabet.

For a tuple Z € M we call m-neighborhood of 7 a conjunction of all formulas To, (p™(2:)), and
for all terms y, y’ occurring in these triangles, formulae p(y) =y, p(v) #y, y = v', y # ', exactly
those of them which are realized by the tuple 2 in M. If the tuple consists in only one element,
we speak about an individual neighborhood.

Defined like this, the m-neighborhood of a tuple is an information of exponential length in m.
Happily there are predicates V with the following property: one can completely describe m-
neighborhoods by quantifier-free formulas of lengths depending only polynomially in m. For this,
there are not to many neighborhoods of radius n in the structure, and they have a previsible
shape. Such predicates will be introduced in the next section.

The predicate V is called generic if it satisfies the following condition G:
G : if (M,V) realizes some finite individual neighborhood N (z)
then (M, V) realizes N'(z) infinitely many times.

A structure (M, V) that is an infinite disjoint union of identic coloured blocks has always a generic
predicate.



Lemma 2.1 Let (M,V) be a structure consisting of a disjoint union of (not necessarily identic)
blocks such that V is a generic predicate. Consider a formula 1 (E) which is logically equivalent
with a prenex 3-formula. Let | (Z)| = n. Then there is a quantifier-free formula A\(Z) such that
M =VZ (&) & MNE). Moreover, all the terms in T and a occurring in A(Z) have length smaller
than 2n.

In other words, in order to decide if a tuple Z € M satisfies this (), it is enough to know the
2n-neighborhood of the tuple (Z,a) and which individual 2n-neighborhoods are realized in M.

Proof: This is exactly Poizat’s “Lemme d’Elimination” proved in [5]. O

3 Sparse predicates

Let (M,V) be a structure consisting in an infinite union of coloured blocks. The predicate V is
called sparse if it satisfies the following condition:

Ve [V(z) — 3IneN Fe€ {0,1}" Ir z=sVs05e, ---8:,(r) A p(r) =r].

Lemma 3.1 Let (M,V) be a structure such that V is sparse. For all x € M the following holds:
if x is at distance > 3m from its root, then the individual m-neighborhood of x contains at most
one black point, which is of the form sTp™(x) with 0 < n < 2m.

Proof: Let h > 3m be the distance of  to the root. Suppose that there are two different black
points in the m-neighborhood of . At least one of them satisfies the following conditions: there
is an I € N such that the point is 2/ + 1 far from the root, and moreover both h — m < I and
h+m > 2] hold. From h <[+ m and h > 2] — m one gets 2m > [. Recall that h <[+ m; this
means h < 3m, which is a contradiction. |

Lemma 3.2 Let (M,V) be a structure consisting in an infinite union of identical blocks such
that V is sparse. There is a unit-cost algorithm such that for input x € M and m € N it
constructs a quantifier-free formula B(x) which determines the individual m-neighborhood of x up
to isomorphism. The algorithm works in time O(m).

Proof: Compute the sequence z, p(x),...,p>"(x) and check at every step if you has got a root
and if the argument has been an sy or an s; of the result. If you get a root, construct the
so1-term t(-) defining @, and output z = t(p*(z)) A pF(z) = p**i(z) A pF(z) = | # a, for
an appropiated 0 < k < 3m. If you don’t get any root down to depth 3m, then look for a
black point in the sequence p™(z), s1p™(x),...,s2™p™(x). If there is a black point, then output
T = t(p™(z)) A pP™(z) # p*H1(z) A V(sip™(x)) with appropiated so1-term #(-) and i. If there
is no black point we can write instead z = t(p™(z)) A p*™(z) # p*™t1(z) A . Here ¥ is a new
symbol meaning “there are no black points in the m-neighborhood”. The value of m is clear in
the given context. |

Before stating the Lemma about neighborhoods of tuples, we have to do some considerations about
finite subsets of (M, V). Say that x; and z; are m-dependent if Ny, (z;) N Ny, (x;) # 0. This is
the case if and only if p™(z;) € {z;,p(z;),...,p*™(z;)} V p"(z;) € {zi,p(zi),...,p*"(z;)}. We
observe that the m-dependence is symmetric and reflexive, but not transitive.

Consider a finite sequence 1, ...,x; of elements of M. If we connect every two m-dependent
elements z; and z; with the shortest path in M from z; to x;, all these paths build a finite set
of binary subtrees of M. Every subtree marks an equivalence class for the transitive closure of
the m-dependence, seen as relation over the finite set {z1,...,2}. A tree containing s of the
k elements is completely described by giving s — 1 many equalities of the form z; = t(p?(z;))



where |t| + d < 3m and ¢ is an appropiated term. If the set {z1,...,z;} produces ¢ many trees
according to the m-dependence, this situation can be completely described by displaying k& — ¢
many equations and the information that those relations of equality between terms of the set
N (£) which don’t follow in M from the displayed equalities are not valid.

Lemma 3.3 Let (M,V) be a structure like in the precedent Lemma. There is a unit-cost algorithm
working in polynomial time in m such that for input consisting in a tuple £ € M of length k and
m € N it constructs a quantifier-free formula B(&) which determines the m-neighborhood of T up
to isomorphism. The algorithm works in time O(mk?) and the length of B(Z) is O(mk).

Proof: We get all individual m-neighborhoods of the elements x; with the precedent lemma. By
making 6m many equality tests for every pair (z;,2;) we find those pairs which are m-dependent
and we compute the partition in sub-trees. For those pairs we compute the shortest true equal-
ity #; = t(p®(z;)). This works as follows: The m-dependence means to get an equality of the
form p™(z;) = p®(z;) with 0 < s < 3m. From the computations done for the individual m-
neighborhoods we know the 3m-history of both z; and z;; this means the equations of type
x; = t(p>™(x;)) with t term of length 3m. From the meeting point we walk upwards through both
histories and find the first point where they differ. For all pairs (z;,2;) the amount of work is in
O(m).

The formula () consists in a conjunction of: the k£ many individual m-neighborhoods, the k — ¢
many equations necessary to define the sub-trees, and the symbol X. Here ¥ can occur only once,
with the following meaning: A =V (¢) for all terms in N,,(Z) which were not displayed as black
A N\ t1 # to for all pairs (t1,%2) of terms in N;, (&) such that ¢; = ¢t does not follow in M from
the displayed equalities. Like before, the value of m is clear in the given context. O

The symbol ¥ helps us to do a short description with minimal positive information for the expo-
nentially complex object N, ().

4 The truth-predicate

We extend the 15-letter alphabet used to write down formulas with the symbols implication —
and X. This last symbol is used to describe m-neighborhoods in a structure (M, V) with sparse
predicate V. All these letters are encoded in binary words 1 ...e5 € {0,1}°.

—

We consider all pairs of formulas (8(%), (%)) in the language (so, s1,p,a, V') such that:

—

e )(F) is logically equivalent with an existential formula 3§ (&, i) where ¢(Z, ) is quantifier-
free. Let n be the length of (%) in the 15-letter alphabet.

e (3(Z) is a formula produced by Lemma 3.3 to describe the 2n-neighborhood N>, (Z) for some
tuple Z of elements in some structure (M, V') consisting in an infinite union of identic blocks,
with a root interpreting a and such that V is sparse.

Observe that the length of B(&) in the 17-letter alphabet is only O(n?). Indeed, any variable
occurs at most O(n) times and is written in the form z - with less than n many accents.

To get later a complete elimination of quantifiers, we encode also all the pure existential sentences
0 = 3y o(). These are existential formulas with an empty set of free variables.

We consider all V3-sentences 8 of the form:
VE [B(Z) = 37 o(Z,7)]-
Such a sentence @ of length [ is encoded by the sequence of letters €1 . ..e5;. We define the code:

[0] == st 05508 05, 0--- 085, (a).



Here is ¢ the smallest natural number such that t + 5 > 8n?2: if 5l is already greater than 8n? we
take ¢ = 0. The elements [] defined here form the set of all codes.

The structure M is a countably infinite union of blocks, the first of them having a root that
interprets the constant a. The construction is described as follows:

All blocks are copies of the first block: if b is a root then V' (t(a)) if and only if V(¢(b)). It is
sufficient to define the colouration of the a-block. This makes the predicate V' generic.

The elements which are not codes are coloured as follows: let all elements s7s2*!(r) be black.
All other non-codes are white. Only some codes will be black. This makes the predicate V
sparse.

We order the sentences 6 after the length n of the existential formula 1 (Z) inside the sentence,
then according to the length of [0], and lexicographically.

Before the first code is coloured, the structure contains only the black points given above. Points
which have not been coloured yet are considered to be white.

Codes are coloured inductively.

If a sentence 6 is true in the structure obtained after colouring the finitely many codes done
before (and the corresponding elements in the other blocks), the code [f] is painted black.
If not, it remains white.

In the moment that a code becomes black, all the corresponding points in the other blocks become
black also. |

Lemma 4.1 Let (M,V) be a structure consisting in an infinite union of copies of a block, so that
V is generic and sparse. Consider a sentence 8 =V T [B(Z) — 37 ¢(Z,§)] such that the existential
sub-formula has length n. In order to know if 8 is true in M it is enough to know the colour of
terms t(a) with |t| < 2n? and the list of isomorphism-types of individual 4n?-neighborhoods realized
m M.

Proof: According to Poizat’s Lemma 2.1 the existential formula 37 ¢(Z,¥) is equivalent to a
quantifier-free formula A(Z) containing terms in (#,a) of length < 2n. So we have to eliminate
the universal quantifiers in V# 3(Z) — A(Z), respectively to eliminate the existential quantifiers in
AF B(Z) A—A(Z). We know that 8(F) is a conjunction. Worst case in a were a chain of n relations
Vite(zk)) Az = tg—1(zk—1) A--- A x1 = to(a) such that all ¢; are shorter than 2n. For terms in
x; we get similarly the bound 4n?. O

The codes are coloured such that V([f]) < 6 in the final structure. A sentence 6 is a V3 formula
6(a) without free variables. According to the Lemma 4.1 we could determine the truth of 8(a) if
we know all about the terms ¢(a) of length < 2n? (which are already done) and which individual
neighborhoods of height 8n? (equivalently: radius 4n?) will be realized in the ready structure.

Lemma 4.2 Suppose that the predicate V' has been defined for all codes corresponding to exis-
tential formulas of length < n, but still hasn’t been defined for any sentence of length n or more.
Then all individual neighborhoods of height < 8n? which will be realized by the (ready) structure
(M,V) have been already realized in the current structure.

Proof: All new black point which shall be painted in the future produces the following triangles
of height 8n?: all 812 + 1 kinds of white triangle containing only one black point on the pure s;
(right) side. But such triangles has been already produced before with the points sfsi™!(r). O

Lemma 4.3 To sum up, there is an L-structure (M,V) consisting in a disjoint union of infinitely
many identic blocks such that the predicate V is generic and sparse, and for all encoded Y3 formal
L-sentences 0: (M,V) E 6+ V([4)).



5 The satisfaction-problem

Let (M, V) be the structure constructed in Section 4. Consider the following satisfaction problem
SAT over (M,V):

SAT : given an existential formula Jy;,...,ys (21, --- Tk, y1,---,Ys) of length 5n

written binarily and a tuple uy,...,ux € M, it is asked if (M,V) =37 o(4, 7).

Lemma 5.1 The number k of different free variables occurring in the formula 37 ¢(Z,7) of length
n in the 15-letter alphabet satisfies k(k + 1) < 2n. Consequently, the algorithm given by Lemma
3.3 for constructing the succint description B(F) for the neighborhood Ny, (@) works in time O(n?).

e

Proof: The variables encoded by the shortest words are z, z', " up to zx_1 =z . If every
variable occured once, this makes a length of 1 +2 + --- + k < n. The number of ordered pairs
(us,uj) is k(k — 1) < k(k +1) < 2n. O

Theorem 5.2 There is a deterministic unit-cost algorithm able to solve the problem SAT over
(M, V) in uniform polynomial time O(n?) for existential formulae of length n. Consequently, the
structure (M,V) satisfies P = NP for unit-cost computations and has fast quantifier-elimination.

Proof: Consider an input of SAT of the form ¢u with )(Z) = 3§ (&, §) pure existential formula
of length n and @ € M a tuple of the same length k as the tuple of different free variables Z.

Using Lemma 3.3 we get a quantifier-free formula §(%@) that determines up to isomorphism the
2n-neighborhood of the tuple (@,a). The algorithm takes time O(n?) according to Lemma 5.1.
Now construct the following sentence 6:

VE[B(E) = 37 ¢(Z,9)]-

Compute the code [0] in M and check if V([f]) does hold. In order to compute the code [0] we
must write 5(z) using the 15-letter alphabet. However, the total number of occurrences of the
variables in 3(7F) is only O(n), so [f] has length O(n?).

Recall that in (M, V') the sentence € does hold if and only if V([¢]) holds.

If 6 holds, then 37 (@, 7). If 6 does not hold, then there cannot be any tuple & with 2n-
neighborhood isomorphic with the corresponding neighborhood of @ that satisfies 37 ¢(Z, ),
because the existential sentences with parameters in the structure depend only of this local in-
formation. (This is the original Lemme d’Elimination!) So @ also doesn’t satisfy 3§ o(Z, 7).

O

6 Commentaries

1. First of all, we justify the claim that the structure (M,V’) has fast quantifier-elimination.
For this, we recall the formalism introduced in [4]. We expand the language L to a language
LC containing two new constants 0 := sg(a) and 1 := s;(a), the characteristic functions
for the relations = and V' with output in {0,1}, and the standard selector function defined
by S(0,y,2) =y, S(1,y,2) = z and S(z,y,2) = = for z ¢ {0,1}. We observe that for
u,v € {0,1}, ~u = S(u,1,0), u Av = S(u,0,v) and v Vv = S(u,v,1). For an existential
formula (Z) let ¢ the {0, 1}-tuple of length 5n encoding the formula. We consider these
elements {0, 1} to be elements of M.

Now we can read the Theorem in the following way:



Corollary 6.1 There is a recursive sequence (Cy,) of circuits such that |Cy, | = O(n*), Cp
has 6n input-gates, only one output-gate, consists in gates computing a, so, s1, p, =, V and
S with unit-cost over M, and for all existential formula (%) = 37 p(Z,7) of length n the
following holds:

VE [3§ 9(&,5) ¢ Cnlir) = 1].

Open questions: Poizat’s limited elimination in [5] has linear term complexity. Can we
obtain full elimination with polynomial term complexity instead of polynomial circuit com-
plexity? Can we obtain full elimination in linear time (circuit, or even term)?

2. Like in the classical Theory of Complexity, P=NP produces the collapse of the whole poly-
nomial hierarchy. Can we get more, for example a uniform collapse? We refine the question
in the following form:

Prove or disprove: Let (M, V) be a structure consisting in a disjoint union of blocks such
that the predicate V' is generic and eventually sparse. We already know that (M,V) has
quantifier-elimination: for all formula v (#) with arbitrary prefix there is a quantifier-free
formula A(Z) such that M | V& ¢(Z) < A(Z). Is there any polynomial ¢(n) such that the
following implication does always hold?

for all (%) : |9(Z) | =n — all terms in A(Z) are shorter than g(n).

If this question had a positive answer, one could construct a structure like here with a
truth-predicate for all formal sentences and with an uniform polynomial-time elimination
procedure for all formulas; where the time depends only on the length of the formulas and
not on its prefix-complexity. Of course, this would be somehow too nice to be true.
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