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In this article, after presenting the basic idea of causal accounts of imple-
mentation and the problems they are supposed to solve, I sketch the model of 
computation preferred by Chalmers and argue that it is too limited to do full 
justice to computational theories in cognitive science. I also argue that it does 
not suffice to replace Chalmers’ favorite model with a better abstract model 
of computation; it is necessary to acknowledge the causal structure of physi-
cal computers that is not accommodated by the models used in computability 
theory. Additionally, an alternative mechanistic proposal is outlined.
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1. Introduction

The purpose of this paper is to offer an amendment to David Chalmers’ 
construal of computation and its role in cognition. Although I largely agree 
with his structural analysis of implementation, I think that it suffers from a 
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lack of attention to what is actually implemented and what notion of imple-
mentation is presupposed in arguments in cognitive science. Chalmers stip-
ulates that all computations be specified as combinatorial-state automata, 
but this makes his account of computation too narrow and ill-suited for the 
explanatory purposes of behavioral sciences.

Computational processes occur in the physical world, and their properties 
are not limited to those discussed in computability theory. I argue that prop-
erties of implementation that go beyond abstract properties of computation, 
such as timing considerations, are crucially important in cognitive research, 
and that a good theory of implementation should encompass them. I also 
stress that implementation should not be confused with modeling: instead 
of focusing exclusively on the formal models of computation, we should 
account for physical realization and its properties.

Before I go any further, a terminological note is in order. A standard tech-
nical notion employed in computer science to describe a formal structure of 
computation is “model of computation,” and I shall use it throughout this 
paper in this meaning only. Standard models of computation, such as a Tur-
ing Machine or lambda calculus, are highly abstract and describe only how 
functions are computed. For example, the Turing Machine formalism does 
not say how much real time one step of computation takes (note, however, 
that it is possible to create a formalism that does exactly that: Nagy & Akl, 
2011). It is important not to confuse this notion of model of computation 
with the one used in philosophy of science, e.g., to refer to computational 
models of the weather. Both are formal models that are supposed to repre-
sent reality (accordingly, computation or weather), but with different pur-
poses and in different ways.

At the same time, because the question of how formal models represent 
reality has been the traditional focus of philosophy of science, I submit that 
accounting for physical computation, which after all is a special case of that 
more general problem, does not call for a completely new approach. Indeed, 
with so many valuable insights already on the market, ranging from theory 
of measurement to various accounts of explanation, the idea of analyzing 
the notions of computation and implementation by subsuming them under 
a more general conception seems only natural. In essence, this is what I 
propose to do in this paper: like many philosophers of cognitive science 
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today, I espouse a general neo-mechanist conception of explanation, which, 
as I will show, is a natural extension of Chalmers’ causal-structural view of 
computation. The approach I advocate leads to a plausible theory of imple-
mentation which makes more sense of explanatory practices in computa-
tional cognitive science than the traditional functionalist view.

The remainder of this article is organized as follows. I begin by presenting 
the basic idea of causal accounts of implementation and the problems they 
are supposed to solve. I then sketch the model of computation preferred by 
Chalmers and argue that it is too limited to do full justice to computational 
theories in cognitive science. I also argue that it does not suffice to replace 
Chalmers’ favorite model with a better abstract model of computation; it is 
necessary to acknowledge the causal structure of physical computers that is 
not accommodated by the models used in computability theory. Subsequent 
to this, I outline a mechanistic proposal.

2. Causal Accounts of Implementation

According to Chalmers’ causal-structural approach, implementation is a 
relation between the physical structure of a system and the formal structure 
of a computation. The theory says that “A physical system implements a 
given computation when the causal structure of the physical system mir-
rors the formal structure of the computation” (Chalmers, 2011, p. 328). 
One advantage of bringing causality into the picture is that it solves several 
problems that arise for traditional accounts of implementation appealing to 
an isomorphism between formal structure and a physical system.

The main difficulty with this traditional view is that it asserts a one-to-
one correspondence between any state of the physical system and its formal 
structure. This seemingly innocuous claim has two related consequences, 
both of which are troublesome.

First, it implies that there have to be as few states in the physical system 
as in its corresponding formal structure. This conflicts with the intuitive 
view that some physical states must be inessential vis-a-vis the system’s 
computational characteristics: surely, the fact that, say, a sticker on my lap-
top computer is coming unstuck does not influence the performance of my 
word processor. 
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The second complication is even worse. Given that physical states are 
individuated within a particular theory and that different theories can carve 
the world at different joints, one can artificially generate any number of 
physical states in order to map them unto one’s favorite computation. So 
even if the physical system in question has fewer states than the math-
ematical construct, by using such set-theoretic operators as union (or their 
counterparts in a logical calculus), you can define as many physical states as 
required to interpret them in any way you want. This is how Putnam con-
structed his proof that any open physical system implements an inputless 
finite-state machine (Putnam, 1991). Such a description of the system will 
be complex but mathematically correct. Alas, this result makes the notion of 
computation more or less useless for the explanatory purposes of empirical 
science.

So what does one get with causality? The physical states taken to cor-
respond to formal ones are simply causal factors, so one can eliminate 
causally irrelevant states (including those generated via Putnamesque rede-
scriptions). The way to decompose the structure into its constituent parts is 
no longer just a matter of convention, which blocks the objection that the 
implementation relation holds between arbitrarily individuated objects in 
the world. Although one could still use the same mathematical tricks as Put-

Figure 1.  Some physical states will have no counterparts in the model of computa-
tion.
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nam did—since admittedly all causal ascriptions are theory-dependent—in 
practice the norms of causal explanation (and of explanation in general) 
require that it posit as few theoretical objects as possible. This means that 
parsimony considerations will take care of most such baroque ascriptions, 
including the ones necessary to turn a pail of water into a personal comput-
er.1 Also, since on most accounts of causality causal claims support counter-
factuals, and the counterfactual predictions derived from the conjecture that 
a pail of water implements a word processor will come out false, it follows 
that a pail of water is not a kind of computer.

3. CSAs as the Model of Computation

So what is implemented? Without knowing this, we will not know whether 
the causal structure of the system actually corresponds to it. It seems obvi-
ous that it should be something that can be interpreted causally. This is 
precisely what Chalmers suggests when he claims that what is implemented 
are combinatorial state automata (CSAs).

1 To see how statistical measures of parsimony are used to choose among 
empirically equivalent theoretical models in psychology cf. e.g. Pitt et al. (2002).

Figure 2.  By logically combining the states of a physical system that has fewer 
atomic states than a model of computation, you can establish a strict cor-
respondence between the system and the model.
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Chalmers rejects the idea that what corresponds to a physical system are 
state transitions in a finite-state machine, with its inputs and outputs (if 
any). The justification is based on the fact that simple finite-state automata 
are unsatisfactory for many purposes, due to the monadic nature of their 
states. The states in most computational formalisms have a combinatorial 
structure: a cell pattern in a cellular automaton, a combination of tape-state 
and head-state in a Turing machine, variables and registers in a Pascal pro-
gram, and so on (Chalmers, 2011, p. 330).

He then goes on to defend the view that a theory of implementation 
ought to rely on CSAs instead. He cites four reasons for his choice of this 
model of computation. First, the “CSA description can … capture the causal 
organization of a system to a much finer grain” because it specifies states as 
vectors, not as monadic entities. Vectors can easily encode the states of vari-
ous other kinds of machines. Second, CSAs are said to have more explana-
tory value than FSAs. Third, “CSAs reflect in a much more direct way 
the formal organization of such familiar computational objects as Turing 
machines, cellular automata, and the like.” The fourth reason is that CSAs 
may be generalized to accommodate finite and infinite machines (Chalmers, 
2011, p. 331).

The problem with this justification is that it relies on the view that a phys-
ical structure is described by means of a formal system, which is then inter-
preted causally. Obviously, Chalmers’ interpretations are intended not to be 
arbitrary, but his assumption that there must be a single model of computa-
tion to which all others are equivalent introduces an element of arbitrary 
decision. Chalmers motivates his appeal to CSAs by saying: “To develop 
an account of the implementation-conditions for a Turing machine, say, we 
need only redescribe the Turing machine as a CSA. The overall state of a 
Turing machine can be seen as a giant vector …” (Chalmers, 2011, p. 332). 
But, given the existence of other models of computation that satisfy the 
same requirements as CSAs, Chalmers’ choice is underdetermined at best.

The important point I want to make in this connection, and one that will 
reappear in section 5, is that although extensional equivalence of various 
models of computation is one of the most significant results of theoretical 
computer science, it tells us nothing about the causal complexity of the 
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physical incarnations of these models.2 Various models, if implemented 
physically, will differ in terms of basic causal structure. And in causal-struc-
tural accounts, we actually care for these structures, because they figure in 
causal explanations of behavior.

Turing machines were not invented to be implemented physically at all, 
but some people still build them for fun. Let us see if Chalmers’ claim will 
be plausible for such funny cases. Imagine a physical instantiation of a 
trivial logical negation Turing machine, built of, say, steel and rubber and 
printing symbols on paper tape. Its alphabet of symbols consists of “F” and 
“T.” If the machine finds “T” on its tape, it rewrites it to “F” and halts; if it 
finds “F,” it rewrites it to “T” and halts. Let us suppose that the machine’s 
head is so old and worn out that it tears the paper tape during the readout. 
As a result, no symbol will appear. 

Now, the machine’s redescription in terms of a CSA cannot predict this: 
its vector contains no information about how a part of the system can be 
influenced by the wear of elements. Only when we describe the Turing 
machine literally, as a causal system that has a particular causal blueprint 
(engineering specifications of how it is built), can we causally predict such 
a breakdown.

Why are breakdowns and malfunctions so important? They help us 
discover the causal complexity of the system. It is well-known to what 
considerable extent the study of brain lesions and various deficits informs 
the formulation and evaluation of theoretical hypotheses in cognitive sci-
ence (Glymour, 1994; Craver, 2007): without such evidence we would be 
completely unable to decide, on an empirical basis, which computations are 
actually implemented by the brain. At the same time, an abstract model of 
computation will not predict all the possible outcomes of the breakdown, as 
it abstracts away from a number of the system’s causal characteristics. So it 
will not tell us what is going to happen with the head; it will only say that 
the computation will no longer be correct.

There is a further problem with redescribing a machine in terms of CSAs. 
Let us suppose that my Linux laptop computer emulates an old Mac II 

2 Causal complexity is not to be confounded with computational complexity 
(Scheutz, 2001).
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series machine, using its old ROM. There is an ancient version of Word-
Perfect running on the emulated (virtual) Mac machine. Now, the crucial 
difference between the emulated Mac and my laptop is that the latter essen-
tially emulates the Mac hardware and has its own causal dynamics as well. 
As before, a difference in causal dynamics is involved: in an old Mac, the 
emulator cannot break, because there is no emulator at all. To accurately 
describe what it is to execute a Mac program on my laptop computer one 
has to account for the emulator and my laptop rather than merely rede-
scribe a Linux machine in terms of an old Mac. Given the importance of 
virtual machines in theories of mind (see e.g. Dennett 1991, Sloman 2008), 
we should allow for enough causal complexity to put the hypothesis of their 
existence in the brain to empirical test.

More importantly, measuring reaction time is one of the main empirical 
methods of testing hypotheses about mental processes in psychology and 
cognitive science (for a review, see Meyer et al., 1988). For example, the 
now classic results regarding the mental rotation of images relied on chro-
nometric methods (Shepard & Cooper, 1982). Although some hypotheses 
about reaction time can rely on computational complexity considerations 
(Van Rooij, 2008), one still needs to know the causal complexity of the 
system in question to decide which of the extensionally equivalent models 
of computation is actually implemented. Note that the same point applies 
to the difficult question of whether serial or parallel processing is involved 
in a given cognitive capacity3 because the mathematical function computed 
by a serial automaton may be extensionally the same as that computed by a 
system employing parallel processing. Computational complexity of algo-
rithms will not always be enough to decide empirically which is actually 
implemented; we also need to know the underlying machinery.

To sum up, cognitive scientists justify hypotheses about the implementa-
tion of cognitive processes by referring to non-formal properties and that 
includes spatiotemporal characteristics.4 This is what the talk of “details of 
implementation” is about. The task of philosophy of science, therefore, is 

3 For a discussion of how reaction time is related to this question in modern 
cognitive psychology see again Meyer et al. (1988).

4 See the use of “implementation” in Marr (1982).
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to build a theory of implementation that acknowledges that. A related point 
is that many adversaries of the computational theory of mind point out that 
Turing machines are formal structures without any time-dimensions (e.g., 
Bickhard & Terveeen, 1995; Wheeler, 2005) only to argue against computa-
tional explanation, but this kind of objection is based on the same conflation 
of implementation with the formal model.

4. Is a CSA General Enough?

By relying on CSAs, Chalmers limits his account to digital effective 
computation—although some argue that inadvertently CSAs can compute 
uncomputable functions (Brown, 2004.) But any conception of implemen-
tation should be general enough to encompass various types of computation 
known in computer science, including unconventional ones, such as mem-
brane computing or hypercomputation in a Malament-Hogarth spacetime 
(Hogarth, 1992). Philosophers are not privileged in their access to knowl-
edge about computation; they know no better than computer scientists or 
mathematicians. Digital models of computation (which I call “classical” 
later on), extensionally equivalent to (or less powerful than) partial recur-
sive functions, though prevalent in technological applications and presup-
posed in most variants of digital computationalism, should not be the only 
permissible kinds of models in a theory of implementation. True, usable 
forms of physical computation known today are probably not more power-
ful than a UTM,5 but the point of a theory of implementation should not be 
confused with that of the theory of computation, for computational equiva-
lence does not imply implementational equivalence. We should be able, 
therefore, to distinguish between the implementation of a UTM that simu-
lates, say, an analog computer and a physical implementation of the latter. 

Chalmers argues that his theory of implementation accommodates ana-

5 Arguably, analog networks operating on real values, like the ones described by 
Siegelmann (1994), are idealized distortions of neural networks that are subject 
to more noise than admitted by Siegelmann; this makes it less probable that they 
are really hypercomputational. However, if Siegelmann is right, my point is even 
stronger.
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log computation because one can digitally simulate any analog system 
with arbitrary precision.6 Allen Newell defended a similar contention more 
explicitly by appeal to the sampling theorem (Newell, 1980, p. 177). But 
the claim that you can simulate any analog system digitally is true only in 
theory. In practice, however, no physical signal can satisfy exactly the con-
ditions of the sampling theorem, and the reconstruction procedure (inter-
polation of the digital samples created from the analog source) cannot be 
carried out precisely. Now, one could still maintain that digital simulation is 
enough, since the analog source will also be noisy and cannot be measured 
with infinite precision (and both Chalmers and Newell argue this), but this 
does not serve the purposes of the theorist of implementation well.

An analog computational process will inevitably dif fer in terms of causal 
dynamics from its digital simulation. The upshot is that, having assumed 
at the outset that all computation is digital, Chalmers’ causal-structural 
approach cannot recognize any process as one instantiating an analog com-
putation. This leads to the conclusion that there is nothing computational 
about analog processes and computation is just an artifact of simulation; 
a counter-intuitive view at best, especially if you also hold, like Chalmers, 
that simulating and realizing cognition are actually the same.

As a matter of fact, theories in computational neuroscience do posit ana-
log and digital computation, distinguishing one from the other (O’Reilly, 
2006). It is reasonable to suppose that such posits are not false a priori. 
Accordingly, philosophers would be well-advised to adopt transparent 
computationalism, as defended by Ron Chrisley (2001). Let us just accept 
whatever notion of computation will (or would) be used in ideal computer 
science.7 This is the first amendment I propose: extend the scope of admis-

6 Actually, Chalmers also mentions the possibility of representing state transitions 
by means of differential equations and describing states of the CSA as real, 
continuous values. It seems rather unlikely that this would work, as there is, to 
my knowledge, no general model of analog computation that is a universal model 
as well. Another difficulty is that the idea of using differential equations in this 
context, like the idea of constructing a digital simulation (on which I focus above), 
amounts to yet another redescription, and redescription is the real source of the 
problem.

7 Piccinini & Scarantino (2010) recommend calling such computation “generic.”
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sible formal models to be realized.

5. Replacing CSAs with ASMs

If the point of the theory of implementation were to model any computation 
in cognitive science, Chalmers should abandon CSAs in favor of Abstract 
State Machines (ASMs), a formalism developed with precisely that purpose 
in mind. I will argue, however, that even replacing CSAs with a formalism 
designed to describe other models of computation will not save Chalmers’ 
theory of implementation.

Let me begin by sketching the idea of the formalism. ASMs are a pow-
erful tool used to model not only classical computation (Gurevich, 1995), 
including parallel computation (Blass & Gurevitch, 2003), but, in its 
extended versions, analog machines (Bournez & Derschowitz, forthcom-
ing) and quantum algorithms as well (Grädel & Nowack, 2003). It is also 
employed in high-level system analysis in computer science (Börger & 
Stärk, 2003). Although the ASM thesis—that you can use ASMs to model 
any algorithm—has not yet been proven for all unconventional computa-
tional formalisms, let me assume for the sake of argument that it is in fact 
true.

The axioms defining the notion of algorithm in terms of ASMs are as fol-
lows:

I.  An algorithm determines a sequence of computational states for each 
valid input.

II. The states of a computational sequence are structures.
III.  State transitions in computational sequences are determinable by 

some fixed, finite description.

The states in axiom II are understood as structures that fully determine the 
subsequent computational sequence. By adding the fourth axiom one can 
derive a proof of Church’s thesis for ASMs (Dershowitz and Gurevich, 
2008).

IV.  Only undeniably computable operations are available in initial 
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states.

Without axiom IV, oracles or genuine real numbers are admissible as initial 
states, rendering the computation non-classical.

One virtue of ASMs is that they can describe the behavioral dynamics 
of algorithms at several different levels of abstraction as well as model 
inter-component behavior on any desired level of detail. One can replace 
abstractly specified components of the system by an increasing number 
of concrete elements, thus gradually refining the description. One may, in 
effect, start with a general abstract specification of an algorithm and step by 
step add details until the final implementation is reached. Because the ASM 
formalism allows one to be general and specific according to one’s needs, 
it seems much more flexible than either CSAs or FSAs, not to mention 
Turing machines. No wonder, then, that ASMs are used to analyze various 
computer architectures, evaluate program correctness, assess whether code 
complies with specifications, etc.

To sum up, as state-transition systems, ASMs are easily interpretable in 
causal terms, which gives them an advantage over CSAs. The question then 
is whether it is really required that a philosophical theory of implementation 
use this tool rather than another. It is important to ask this question before 
we go on to define formally when a physical computational process is accu-
rately represented using ASMs.

While Chalmers defends his choice of CSAs as the correct formalism to 
describe models of computation by saying that one can redescribe other 
models in terms of CSAs (which he takes to be a virtue), the redescribed 
models cannot mirror the causal dynamics of physical incarnations of other 
machines. This means that his account is no longer purely causal, which 
leaves a door open for arbitrary Putnamesque ascriptions. But since ASMs 
also represent all the other computational models in an abstract way, they 
will not match those of their properties that influence the processing speed 
at the hardware level. So we have less explanatory value than expected: we 
cannot use reaction time in full to distinguish physical implementations.

Indeed, any abstract model of computation, whether it be CSAs, ASMs, or 
UTMs, will be too limited, as its purpose is not to model the time-dimension 
exactly. We need to include something more in our account of implementa-



371Beyond Formal Structure

tion: the physical process cannot be just a mirroring of abstract models that 
were never designed to include all causal dimensions of computation.

There is a second problem with ASMs. What about some other, possibly 
not equivalent, models of computation that can be used to describe compu-
tational systems on the level of behavioral equivalence (i.e., including all 
inputs and intermediary states)? For the sake of the argument, I assumed 
this is impossible, but what if it turns out that some hypercomputational 
analog machines require essentially infinite descriptions (which violates 
axiom III)? In short, using any abstract model of computation, even as flex-
ible as ASMs, could violate the thesis of transparent computationalism. For 
this reason, a philosophical account of implementation should remain neu-
tral in the discussion over modeling computational systems on the level of 
behavioral equivalence.

To summarize, ASMs are a better modeling tool than CSAs. But physical 
implementation is not just a matter of modeling. Conflation of modeling 
with implementing seems to be at the core of the traditional isomorphism 
view on implementation: a physical system implements a computation just 
in case a description of the computation is true of the system, and it is true 
when the structure of the description is isomorphic to the physical structure 
of the system in question. Yet representations and models have different 
properties than their referents: a street plan is not the same as the city it 
represents. If you want to understand why I usually walk several hundred 
meters to the north of my apartment every other day, a standard map of 
Warsaw will not be helpful because it does not show kiosks where apples 
are sold. To understand my behavior, you need to know Warsaw (among 
other things) or to use a more fine-grained representation of it. Similarly, if 
you want to explain how people solve a certain class problems by positing 
mental rotation, a standard formal model of mental computation will not 
suffice because it cannot represent the speed of the computation. The rea-
son is very simple: the purpose of the standard models of computation is to 
describe a system’s behavior as far as the steps of the computation are con-
cerned. What is needed, then, is a rich causal model rather than an abstract 
mathematical specification. This is the second amendment I propose.
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6. Mechanistically Adequate Models of Computation

In the foregoing I have proposed two amendments to Chalmers’ theory: 
first, that it should cover all the kinds of computation; second, that it should 
include the causal structure as part of implementation. Neo-mechanism 
offers a natural framework in which to combine these amendments (Macha-
mer, Darden & Craver, 2000; Craver, 2007).

Mechanistic conceptions of implementation, such as the one offered by 
Piccinini 2007, are a subclass of causal-structural accounts.8 In contradis-
tinction to traditional functionalist views on computation, they require that 
all causally relevant details be given (Piccinini & Craver, 2011).

Piccinini (2007) focuses on digital computation, and has only recently 
admitted the need to accommodate non-standard models, all under the 
umbrella of “generic computation” (Piccinini & Scarantino, 2010). His gen-
eral scheme of describing computational models is based on abstract string 
rewriting accounts of computation: computation is construed as rewriting 
strings of digits. 

A computing mechanism is a mechanism whose function is to gener-
ate output strings from input strings and (possibly) internal states, in 
accordance with a general rule that applies to all relevant strings and 
depends on the input strings and (possibly) internal states for its appli-
cation. (Piccinini 2007, p. 501)

This is suitable for digital computation but not for computing mechanisms 
that take genuine real numbers as input, and it is not obvious how to make 
it more general to cover generic computation. Moreover, string-rewriting 
systems are not so easy to map onto causal relationships as state-transition 
systems, for it is not at all clear what one should take as relata of the causal 
relations, if states are missing from the description. It is obviously not string 
values, but must rather be something that triggers the rewriting operation. 
Yet, in such a case, string-rewriting is mapped onto state transitions, and the 

8 For a book-length account see Miłkowski (forthcoming).
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original model is actually never used directly.
My suggestion is to remain both more general and less committed to clas-

sical computation. Computation is standardly understood as information-
processing, so the notion of information can be used to define what is 
crucial about models of computation for the account of implementation. 
A computational process is one that transforms the stream of information 
it gets as input to produce some stream of information at the output. Dur-
ing the transformation, the process may also appeal to information that is 
part of the very same process (internal states of the computational process). 
Information may, although need not, be digital: that is, there is only a finite, 
denumerable set of states that the information vehicle takes and that the 
computational process is able to recognize as well as produce at its output. 
A bit of digital information construed this way is exactly equivalent to Pic-
cinini’s notion of digit. (In the case of analog processing, the range of val-
ues recognized is restricted, but continuous, i.e., infinite.) By “information” 
I mean Shannon, quantitative information: the vehicle must be capable of 
taking at least two different states to be counted as information-bearing, 
otherwise it has no variability, so there cannot be any uncertainty as to the 
state it will assume. Note that the receiver’s uncertainty with regards to the 
state of the vehicle, which makes Shannon’s notion of information probabi-
listic in nature, has nothing to do with whether or not information-transmis-
sion is deterministic. Perfect, non-noisy channels still transmit information.

To say that a mechanistically adequate model of computation is imple-
mented is to say that the input and output information streams are causally 
linked and that this link, along with the specific structure of information 
processing, is completely described. The description of a mechanistically 
adequate model of computation comprises two parts: (1) an abstract speci-
fication of computation, which should include all the causally relevant 
variables; (2) a complete blueprint of the mechanism on three levels of its 
organization. In mechanistic explanation, there are no mechanisms as such; 
there are only mechanisms of  something: and here that something is (1). By 
providing the blueprint of the system, we explain its capacity, or compe-
tence, abstractly specified in (1).

Mechanisms are multilevel systems; they are composed of parts, which 
may be mechanisms themselves. The behavioral capacity of the whole 
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system—in our case the capacity of the abstract model—is generated by 
the operations of its parts. According to Craver, every mechanism has three 
levels of organization: a constitutive level, which is the lowest level in the 
given analysis; an isolated level, at which the parts of the mechanism are 
specified, along with their interactions (activities or operations); and the 
contextual level, at which the function the mechanism performs is seen in a 
broader context. For example, the context for an embedded computer might 
be a story about how it controls a missile.

Now, only the isolated level corresponds to what was the traditional focus 
of philosophical theories of implementation; it is the only level at which the 
abstract specification of computation, namely (1), is to reflect causal orga-
nization. The causal organization of a mechanism will inevitably be more 
complex than any abstract specification. However, since we are building a 
constitutive explanation of a given capacity, only the causal variables rel-
evant to that capacity will be included in our causal model. In normal con-
ditions, the causal model of a mechanism, given as a set of structural equa-
tions or a directed acyclic graph (Pearl, 2000), will specify all the dynamics 
that reflect all the valid state-transitions of (1). However, it will also contain 
more, namely a specification of interventions that will render the computa-
tional mechanism malfunctional. So we can directly adopt Chalmers’ ideas 
about FSAs and CSAs to describe how the trajectory of state-transitions in 
the specification of computation reflects the proper subset of the causally 
relevant variables in the complete causal model, effectively turning Chalm-
ers’ definition into a scheme for various models of computation.

The isolated level is not autonomous, and the parts of the mechanism at 
this level should be localized, or identified, at the lower level independently 
of their computational roles—otherwise the whole description of the iso-
lated level will remain unjustified. Notice that this principle of “bottoming-
out” (Machamer, Darden & Craver, 2000) does not preclude the possibility 
of some parts being constituted in a distributed manner. It does, however, 
block Putnam-style tricks, since disjunctive states at the isolated level will 
have no counterparts at the lower level. The description of the lower level 
does not contain these disjunctions at all. Obviously, one could map a high-
er-level disjunction to a lower-level disjunction, but this does not satisfy the 
“bottoming-out” requirement. The principles of identity at the constitutive 
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level come only from this level. You cannot explain how the higher-level 
objects are constituted at the lower level by saying that their constitution is 
determined at the higher level. This kind of top-down determination will fly 
in the face of the bottoming-out principle.9 Note also that this is not incom-
patible with using higher-level entities heuristically to discover lower-level 
entities.10

So instead of adding special provisos against using non-natural mappings, 
we simply require that the computational description at the isolated level 
not be completely independent of the constitutive level. In a similar vein, 
mechanistic explanation offers a way to individuate mechanisms (Craver, 
2007) that allows us to distinguish real systems from a mere hotchpotch 
of physical states. More importantly, parts of mechanisms are functional, 
and that helps to exclude from the set of mechanisms some physical sys-
tems, like tornadoes, piles of sand, or planetary systems (Piccinini, 2007, 
2010; Miłkowski, forthcoming) that do not realize any capacity. In short, it 
can systematically answer difficult objections to Chalmers’ theory (Cocos, 
2002) by saying what causal relationships are relevant, how to decompose 
systems, what parts of systems are, and so on. 

Mechanistic explanation is deeply rooted in the methodology of cognitive 
science. For an early example, compare Allen Newell and Herbert Simon’s 
information processing system (IPS), which was essentially an abstract 
model whose architecture reflected certain psychological hypotheses about 
human problem solving, such as limited short-term memory (Newell & 
Simon, 1972, pp. 20-1). Besides sketching the abstract capacities of the IPS, 
Newell & Simon (1972, pp. 808-9) also described its relevant time proper-
ties. These properties were needed in order to use reaction time as empirical 
evidence.

Even if, by the lights of present-day mechanists, such models of cognition 
qualify as incomplete—they obviously fail to “bottom out” at the neurolog-
ical level—Newell & Simon understood that in order to make the abstract 
structures explanatorily relevant they needed to relate them to their physical 

9 For a similar consideration see Piccinini (2010).
10 For a story about how the psychological theory of memory helped to 

understand the hippocampus see Craver (2007).
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limitations. Similarly, contemporary computational modeling tries to inte-
grate available neuroscientific evidence, and that is methodologically sound 
only if there is a causally-relevant difference between various physical 
implementations of computation. I take it as obvious that there is. And this 
was also presupposed in Marr’s methodology of explaining computational 
systems; his implementation level is not an isomorph of the algorithmic 
level (Marr, 1982).

What a computational mechanism is a mechanism of  has traditionally 
been called “competence.” Newell & Simon (1972) accounted for com-
petence by analyzing the cognitive task to be explained. Contrary to the 
received wisdom, mechanistic approaches explain cognitive competence 
with performance, and not performance with competence. This inversion 
means that data about performance are useful, and cognitive research is not 
just a matter of testing theoretical intuitions; it is also about experimental 
interventions and empirical data mining. Note that that is exactly what 
Newell & Simon did and claimed (1972, p. 11). They first performed task 
analysis to discover the nature of a cognitive capacity; then they described 
the behavioral performance of a single subject, and then they explained the 
performance with their computer model of the task. The immediate target 
of explanation was individual performance, but the distal target was also 
the competence, as the computer model was proven to be sufficient to solve 
the task. In Craver’s (2007) terminology, it is a how-possibly explanation.

To sum up, instead of requiring that one specify only an abstract model 
of computation, which is useful for computability theory, but not for com-
puter engineering, one should require something that an engineer in a fac-
tory might use to actually produce a computer. There is no need to delve 
into purely abstract modeling via CSAs or ASMs at all. Some specification 
of abstract causal structure will be needed, of course, but this is not enough. 
In particular, what is implemented is not only the abstract model of com-
putation but a complete causal structure of the mechanism, including its 
dynamics (i.e., state transitions). 

7. Conclusion

In the foregoing I have proposed an alternative to Chalmers’ account of the 
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implemented models of computation. While I endorse his causal-structural 
approach, my proposal is more mechanistic in spirit. The important point 
is that my (at least) three-level compositional account of mechanisms will 
engender hypotheses that can be tested using reaction times and various 
causal interventions. This means that it is more explanatorily and predic-
tively relevant because it goes beyond formal modeling.

Chalmers stresses that modeling is explanatorily relevant as far as it maps 
the organizationally invariant properties of the physical system being mod-
eled. This is why, by manipulating the model, we can predict and explain 
the behavior of the physical system. The same point was made long ago 
by Kenneth Craik (1943), who defined a model as “any physical or chemi-
cal system which has a similar relation-structure to that of the process it 
imitates” (Craik, 1943, p. 51). It is precisely this relation-structure that stays 
organizationally invariant and which is so important for computational 
modeling. In its mechanistic version, modeling can be brought to bear on 
more properties of the organization of physical systems than other struc-
tural or functional accounts allow. However, in order for that to happen, 
it is necessary to go beyond models of computation used in computability 
theory to use causal modeling in its full glory.
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