
Beyond Formal Structure:
A Mechanistic Perspective on Computation and

Implementation*

Marcin Miłkowski

Institute of Philosophy & Sociology
Polish Academy of Sciences, Warsaw

mmilkows@ifispan.waw.pl

In this article, after presenting the basic idea of causal accounts of imple-
mentation and the problems they are supposed to solve, I sketch the model of
computation preferred by Chalmers and argue that it is too limited to do full
justice to computational theories in cognitive science. I also argue that it does
not suffice to replace Chalmers’ favorite model with a better abstract model
of computation; it is necessary to acknowledge the causal structure of physi-
cal computers that is not accommodated by the models used in computability
theory. Additionally, an alternative mechanistic proposal is outlined.

Key words: computation, implementation, computational explanation, ana-
log computing

1. Introduction

The purpose of this paper is to offer an amendment to David Chalmers’
construal of computation and its role in cognition. Although I largely agree
with his structural analysis of implementation, I think that it suffers from a

*The research for this paper was financed by a grant from the Polish Ministry of
Science under the program Iuventus Plus (project IP2010 02970). The author grate-
fully acknowledges very helpful comments from Witold Hensel and three anony-
mous referees of this journal to the previous version of this paper, as well as the
audience at the 14th Congress for Logic, Methodology, and Philosophy of Science in
Nancy in July 2011.

Journal of Cognitive Science 12: 359-379, 2011
©2011 Institute for Cognitive Science, Seoul National University

360 Marcin Miłkowski

lack of attention to what is actually implemented and what notion of imple-
mentation is presupposed in arguments in cognitive science. Chalmers stip-
ulates that all computations be specified as combinatorial-state automata,
but this makes his account of computation too narrow and ill-suited for the
explanatory purposes of behavioral sciences.

Computational processes occur in the physical world, and their properties
are not limited to those discussed in computability theory. I argue that prop-
erties of implementation that go beyond abstract properties of computation,
such as timing considerations, are crucially important in cognitive research,
and that a good theory of implementation should encompass them. I also
stress that implementation should not be confused with modeling: instead
of focusing exclusively on the formal models of computation, we should
account for physical realization and its properties.

Before I go any further, a terminological note is in order. A standard tech-
nical notion employed in computer science to describe a formal structure of
computation is “model of computation,” and I shall use it throughout this
paper in this meaning only. Standard models of computation, such as a Tur-
ing Machine or lambda calculus, are highly abstract and describe only how
functions are computed. For example, the Turing Machine formalism does
not say how much real time one step of computation takes (note, however,
that it is possible to create a formalism that does exactly that: Nagy & Akl,
2011). It is important not to confuse this notion of model of computation
with the one used in philosophy of science, e.g., to refer to computational
models of the weather. Both are formal models that are supposed to repre-
sent reality (accordingly, computation or weather), but with different pur-
poses and in different ways.

At the same time, because the question of how formal models represent
reality has been the traditional focus of philosophy of science, I submit that
accounting for physical computation, which after all is a special case of that
more general problem, does not call for a completely new approach. Indeed,
with so many valuable insights already on the market, ranging from theory
of measurement to various accounts of explanation, the idea of analyzing
the notions of computation and implementation by subsuming them under
a more general conception seems only natural. In essence, this is what I
propose to do in this paper: like many philosophers of cognitive science

361Beyond Formal Structure

today, I espouse a general neo-mechanist conception of explanation, which,
as I will show, is a natural extension of Chalmers’ causal-structural view of
computation. The approach I advocate leads to a plausible theory of imple-
mentation which makes more sense of explanatory practices in computa-
tional cognitive science than the traditional functionalist view.

The remainder of this article is organized as follows. I begin by presenting
the basic idea of causal accounts of implementation and the problems they
are supposed to solve. I then sketch the model of computation preferred by
Chalmers and argue that it is too limited to do full justice to computational
theories in cognitive science. I also argue that it does not suffice to replace
Chalmers’ favorite model with a better abstract model of computation; it is
necessary to acknowledge the causal structure of physical computers that is
not accommodated by the models used in computability theory. Subsequent
to this, I outline a mechanistic proposal.

2. Causal Accounts of Implementation

According to Chalmers’ causal-structural approach, implementation is a
relation between the physical structure of a system and the formal structure
of a computation. The theory says that “A physical system implements a
given computation when the causal structure of the physical system mir-
rors the formal structure of the computation” (Chalmers, 2011, p. 328).
One advantage of bringing causality into the picture is that it solves several
problems that arise for traditional accounts of implementation appealing to
an isomorphism between formal structure and a physical system.

The main difficulty with this traditional view is that it asserts a one-to-
one correspondence between any state of the physical system and its formal
structure. This seemingly innocuous claim has two related consequences,
both of which are troublesome.

First, it implies that there have to be as few states in the physical system
as in its corresponding formal structure. This conflicts with the intuitive
view that some physical states must be inessential vis-a-vis the system’s
computational characteristics: surely, the fact that, say, a sticker on my lap-
top computer is coming unstuck does not influence the performance of my
word processor.

362 Marcin Miłkowski

The second complication is even worse. Given that physical states are
individuated within a particular theory and that different theories can carve
the world at different joints, one can artificially generate any number of
physical states in order to map them unto one’s favorite computation. So
even if the physical system in question has fewer states than the math-
ematical construct, by using such set-theoretic operators as union (or their
counterparts in a logical calculus), you can define as many physical states as
required to interpret them in any way you want. This is how Putnam con-
structed his proof that any open physical system implements an inputless
finite-state machine (Putnam, 1991). Such a description of the system will
be complex but mathematically correct. Alas, this result makes the notion of
computation more or less useless for the explanatory purposes of empirical
science.

So what does one get with causality? The physical states taken to cor-
respond to formal ones are simply causal factors, so one can eliminate
causally irrelevant states (including those generated via Putnamesque rede-
scriptions). The way to decompose the structure into its constituent parts is
no longer just a matter of convention, which blocks the objection that the
implementation relation holds between arbitrarily individuated objects in
the world. Although one could still use the same mathematical tricks as Put-

Figure 1. Some physical states will have no counterparts in the model of computa-
tion.

363Beyond Formal Structure

nam did—since admittedly all causal ascriptions are theory-dependent—in
practice the norms of causal explanation (and of explanation in general)
require that it posit as few theoretical objects as possible. This means that
parsimony considerations will take care of most such baroque ascriptions,
including the ones necessary to turn a pail of water into a personal comput-
er.1 Also, since on most accounts of causality causal claims support counter-
factuals, and the counterfactual predictions derived from the conjecture that
a pail of water implements a word processor will come out false, it follows
that a pail of water is not a kind of computer.

3. CSAs as the Model of Computation

So what is implemented? Without knowing this, we will not know whether
the causal structure of the system actually corresponds to it. It seems obvi-
ous that it should be something that can be interpreted causally. This is
precisely what Chalmers suggests when he claims that what is implemented
are combinatorial state automata (CSAs).

1 To see how statistical measures of parsimony are used to choose among
empirically equivalent theoretical models in psychology cf. e.g. Pitt et al. (2002).

Figure 2. By logically combining the states of a physical system that has fewer
atomic states than a model of computation, you can establish a strict cor-
respondence between the system and the model.

364 Marcin Miłkowski

Chalmers rejects the idea that what corresponds to a physical system are
state transitions in a finite-state machine, with its inputs and outputs (if
any). The justification is based on the fact that simple finite-state automata
are unsatisfactory for many purposes, due to the monadic nature of their
states. The states in most computational formalisms have a combinatorial
structure: a cell pattern in a cellular automaton, a combination of tape-state
and head-state in a Turing machine, variables and registers in a Pascal pro-
gram, and so on (Chalmers, 2011, p. 330).

He then goes on to defend the view that a theory of implementation
ought to rely on CSAs instead. He cites four reasons for his choice of this
model of computation. First, the “CSA description can … capture the causal
organization of a system to a much finer grain” because it specifies states as
vectors, not as monadic entities. Vectors can easily encode the states of vari-
ous other kinds of machines. Second, CSAs are said to have more explana-
tory value than FSAs. Third, “CSAs reflect in a much more direct way
the formal organization of such familiar computational objects as Turing
machines, cellular automata, and the like.” The fourth reason is that CSAs
may be generalized to accommodate finite and infinite machines (Chalmers,
2011, p. 331).

The problem with this justification is that it relies on the view that a phys-
ical structure is described by means of a formal system, which is then inter-
preted causally. Obviously, Chalmers’ interpretations are intended not to be
arbitrary, but his assumption that there must be a single model of computa-
tion to which all others are equivalent introduces an element of arbitrary
decision. Chalmers motivates his appeal to CSAs by saying: “To develop
an account of the implementation-conditions for a Turing machine, say, we
need only redescribe the Turing machine as a CSA. The overall state of a
Turing machine can be seen as a giant vector …” (Chalmers, 2011, p. 332).
But, given the existence of other models of computation that satisfy the
same requirements as CSAs, Chalmers’ choice is underdetermined at best.

The important point I want to make in this connection, and one that will
reappear in section 5, is that although extensional equivalence of various
models of computation is one of the most significant results of theoretical
computer science, it tells us nothing about the causal complexity of the

365Beyond Formal Structure

physical incarnations of these models.2 Various models, if implemented
physically, will differ in terms of basic causal structure. And in causal-struc-
tural accounts, we actually care for these structures, because they figure in
causal explanations of behavior.

Turing machines were not invented to be implemented physically at all,
but some people still build them for fun. Let us see if Chalmers’ claim will
be plausible for such funny cases. Imagine a physical instantiation of a
trivial logical negation Turing machine, built of, say, steel and rubber and
printing symbols on paper tape. Its alphabet of symbols consists of “F” and
“T.” If the machine finds “T” on its tape, it rewrites it to “F” and halts; if it
finds “F,” it rewrites it to “T” and halts. Let us suppose that the machine’s
head is so old and worn out that it tears the paper tape during the readout.
As a result, no symbol will appear.

Now, the machine’s redescription in terms of a CSA cannot predict this:
its vector contains no information about how a part of the system can be
influenced by the wear of elements. Only when we describe the Turing
machine literally, as a causal system that has a particular causal blueprint
(engineering specifications of how it is built), can we causally predict such
a breakdown.

Why are breakdowns and malfunctions so important? They help us
discover the causal complexity of the system. It is well-known to what
considerable extent the study of brain lesions and various deficits informs
the formulation and evaluation of theoretical hypotheses in cognitive sci-
ence (Glymour, 1994; Craver, 2007): without such evidence we would be
completely unable to decide, on an empirical basis, which computations are
actually implemented by the brain. At the same time, an abstract model of
computation will not predict all the possible outcomes of the breakdown, as
it abstracts away from a number of the system’s causal characteristics. So it
will not tell us what is going to happen with the head; it will only say that
the computation will no longer be correct.

There is a further problem with redescribing a machine in terms of CSAs.
Let us suppose that my Linux laptop computer emulates an old Mac II

2 Causal complexity is not to be confounded with computational complexity
(Scheutz, 2001).

366 Marcin Miłkowski

series machine, using its old ROM. There is an ancient version of Word-
Perfect running on the emulated (virtual) Mac machine. Now, the crucial
difference between the emulated Mac and my laptop is that the latter essen-
tially emulates the Mac hardware and has its own causal dynamics as well.
As before, a difference in causal dynamics is involved: in an old Mac, the
emulator cannot break, because there is no emulator at all. To accurately
describe what it is to execute a Mac program on my laptop computer one
has to account for the emulator and my laptop rather than merely rede-
scribe a Linux machine in terms of an old Mac. Given the importance of
virtual machines in theories of mind (see e.g. Dennett 1991, Sloman 2008),
we should allow for enough causal complexity to put the hypothesis of their
existence in the brain to empirical test.

More importantly, measuring reaction time is one of the main empirical
methods of testing hypotheses about mental processes in psychology and
cognitive science (for a review, see Meyer et al., 1988). For example, the
now classic results regarding the mental rotation of images relied on chro-
nometric methods (Shepard & Cooper, 1982). Although some hypotheses
about reaction time can rely on computational complexity considerations
(Van Rooij, 2008), one still needs to know the causal complexity of the
system in question to decide which of the extensionally equivalent models
of computation is actually implemented. Note that the same point applies
to the difficult question of whether serial or parallel processing is involved
in a given cognitive capacity3 because the mathematical function computed
by a serial automaton may be extensionally the same as that computed by a
system employing parallel processing. Computational complexity of algo-
rithms will not always be enough to decide empirically which is actually
implemented; we also need to know the underlying machinery.

To sum up, cognitive scientists justify hypotheses about the implementa-
tion of cognitive processes by referring to non-formal properties and that
includes spatiotemporal characteristics.4 This is what the talk of “details of
implementation” is about. The task of philosophy of science, therefore, is

3 For a discussion of how reaction time is related to this question in modern
cognitive psychology see again Meyer et al. (1988).

4 See the use of “implementation” in Marr (1982).

367Beyond Formal Structure

to build a theory of implementation that acknowledges that. A related point
is that many adversaries of the computational theory of mind point out that
Turing machines are formal structures without any time-dimensions (e.g.,
Bickhard & Terveeen, 1995; Wheeler, 2005) only to argue against computa-
tional explanation, but this kind of objection is based on the same conflation
of implementation with the formal model.

4. Is a CSA General Enough?

By relying on CSAs, Chalmers limits his account to digital effective
computation—although some argue that inadvertently CSAs can compute
uncomputable functions (Brown, 2004.) But any conception of implemen-
tation should be general enough to encompass various types of computation
known in computer science, including unconventional ones, such as mem-
brane computing or hypercomputation in a Malament-Hogarth spacetime
(Hogarth, 1992). Philosophers are not privileged in their access to knowl-
edge about computation; they know no better than computer scientists or
mathematicians. Digital models of computation (which I call “classical”
later on), extensionally equivalent to (or less powerful than) partial recur-
sive functions, though prevalent in technological applications and presup-
posed in most variants of digital computationalism, should not be the only
permissible kinds of models in a theory of implementation. True, usable
forms of physical computation known today are probably not more power-
ful than a UTM,5 but the point of a theory of implementation should not be
confused with that of the theory of computation, for computational equiva-
lence does not imply implementational equivalence. We should be able,
therefore, to distinguish between the implementation of a UTM that simu-
lates, say, an analog computer and a physical implementation of the latter.

Chalmers argues that his theory of implementation accommodates ana-

5 Arguably, analog networks operating on real values, like the ones described by
Siegelmann (1994), are idealized distortions of neural networks that are subject
to more noise than admitted by Siegelmann; this makes it less probable that they
are really hypercomputational. However, if Siegelmann is right, my point is even
stronger.

368 Marcin Miłkowski

log computation because one can digitally simulate any analog system
with arbitrary precision.6 Allen Newell defended a similar contention more
explicitly by appeal to the sampling theorem (Newell, 1980, p. 177). But
the claim that you can simulate any analog system digitally is true only in
theory. In practice, however, no physical signal can satisfy exactly the con-
ditions of the sampling theorem, and the reconstruction procedure (inter-
polation of the digital samples created from the analog source) cannot be
carried out precisely. Now, one could still maintain that digital simulation is
enough, since the analog source will also be noisy and cannot be measured
with infinite precision (and both Chalmers and Newell argue this), but this
does not serve the purposes of the theorist of implementation well.

An analog computational process will inevitably dif fer in terms of causal
dynamics from its digital simulation. The upshot is that, having assumed
at the outset that all computation is digital, Chalmers’ causal-structural
approach cannot recognize any process as one instantiating an analog com-
putation. This leads to the conclusion that there is nothing computational
about analog processes and computation is just an artifact of simulation;
a counter-intuitive view at best, especially if you also hold, like Chalmers,
that simulating and realizing cognition are actually the same.

As a matter of fact, theories in computational neuroscience do posit ana-
log and digital computation, distinguishing one from the other (O’Reilly,
2006). It is reasonable to suppose that such posits are not false a priori.
Accordingly, philosophers would be well-advised to adopt transparent
computationalism, as defended by Ron Chrisley (2001). Let us just accept
whatever notion of computation will (or would) be used in ideal computer
science.7 This is the first amendment I propose: extend the scope of admis-

6 Actually, Chalmers also mentions the possibility of representing state transitions
by means of differential equations and describing states of the CSA as real,
continuous values. It seems rather unlikely that this would work, as there is, to
my knowledge, no general model of analog computation that is a universal model
as well. Another difficulty is that the idea of using differential equations in this
context, like the idea of constructing a digital simulation (on which I focus above),
amounts to yet another redescription, and redescription is the real source of the
problem.

7 Piccinini & Scarantino (2010) recommend calling such computation “generic.”

369Beyond Formal Structure

sible formal models to be realized.

5. Replacing CSAs with ASMs

If the point of the theory of implementation were to model any computation
in cognitive science, Chalmers should abandon CSAs in favor of Abstract
State Machines (ASMs), a formalism developed with precisely that purpose
in mind. I will argue, however, that even replacing CSAs with a formalism
designed to describe other models of computation will not save Chalmers’
theory of implementation.

Let me begin by sketching the idea of the formalism. ASMs are a pow-
erful tool used to model not only classical computation (Gurevich, 1995),
including parallel computation (Blass & Gurevitch, 2003), but, in its
extended versions, analog machines (Bournez & Derschowitz, forthcom-
ing) and quantum algorithms as well (Grädel & Nowack, 2003). It is also
employed in high-level system analysis in computer science (Börger &
Stärk, 2003). Although the ASM thesis—that you can use ASMs to model
any algorithm—has not yet been proven for all unconventional computa-
tional formalisms, let me assume for the sake of argument that it is in fact
true.

The axioms defining the notion of algorithm in terms of ASMs are as fol-
lows:

I. An algorithm determines a sequence of computational states for each
valid input.

II. The states of a computational sequence are structures.
III. State transitions in computational sequences are determinable by

some fixed, finite description.

The states in axiom II are understood as structures that fully determine the
subsequent computational sequence. By adding the fourth axiom one can
derive a proof of Church’s thesis for ASMs (Dershowitz and Gurevich,
2008).

IV. Only undeniably computable operations are available in initial

370 Marcin Miłkowski

states.

Without axiom IV, oracles or genuine real numbers are admissible as initial
states, rendering the computation non-classical.

One virtue of ASMs is that they can describe the behavioral dynamics
of algorithms at several different levels of abstraction as well as model
inter-component behavior on any desired level of detail. One can replace
abstractly specified components of the system by an increasing number
of concrete elements, thus gradually refining the description. One may, in
effect, start with a general abstract specification of an algorithm and step by
step add details until the final implementation is reached. Because the ASM
formalism allows one to be general and specific according to one’s needs,
it seems much more flexible than either CSAs or FSAs, not to mention
Turing machines. No wonder, then, that ASMs are used to analyze various
computer architectures, evaluate program correctness, assess whether code
complies with specifications, etc.

To sum up, as state-transition systems, ASMs are easily interpretable in
causal terms, which gives them an advantage over CSAs. The question then
is whether it is really required that a philosophical theory of implementation
use this tool rather than another. It is important to ask this question before
we go on to define formally when a physical computational process is accu-
rately represented using ASMs.

While Chalmers defends his choice of CSAs as the correct formalism to
describe models of computation by saying that one can redescribe other
models in terms of CSAs (which he takes to be a virtue), the redescribed
models cannot mirror the causal dynamics of physical incarnations of other
machines. This means that his account is no longer purely causal, which
leaves a door open for arbitrary Putnamesque ascriptions. But since ASMs
also represent all the other computational models in an abstract way, they
will not match those of their properties that influence the processing speed
at the hardware level. So we have less explanatory value than expected: we
cannot use reaction time in full to distinguish physical implementations.

Indeed, any abstract model of computation, whether it be CSAs, ASMs, or
UTMs, will be too limited, as its purpose is not to model the time-dimension
exactly. We need to include something more in our account of implementa-

371Beyond Formal Structure

tion: the physical process cannot be just a mirroring of abstract models that
were never designed to include all causal dimensions of computation.

There is a second problem with ASMs. What about some other, possibly
not equivalent, models of computation that can be used to describe compu-
tational systems on the level of behavioral equivalence (i.e., including all
inputs and intermediary states)? For the sake of the argument, I assumed
this is impossible, but what if it turns out that some hypercomputational
analog machines require essentially infinite descriptions (which violates
axiom III)? In short, using any abstract model of computation, even as flex-
ible as ASMs, could violate the thesis of transparent computationalism. For
this reason, a philosophical account of implementation should remain neu-
tral in the discussion over modeling computational systems on the level of
behavioral equivalence.

To summarize, ASMs are a better modeling tool than CSAs. But physical
implementation is not just a matter of modeling. Conflation of modeling
with implementing seems to be at the core of the traditional isomorphism
view on implementation: a physical system implements a computation just
in case a description of the computation is true of the system, and it is true
when the structure of the description is isomorphic to the physical structure
of the system in question. Yet representations and models have different
properties than their referents: a street plan is not the same as the city it
represents. If you want to understand why I usually walk several hundred
meters to the north of my apartment every other day, a standard map of
Warsaw will not be helpful because it does not show kiosks where apples
are sold. To understand my behavior, you need to know Warsaw (among
other things) or to use a more fine-grained representation of it. Similarly, if
you want to explain how people solve a certain class problems by positing
mental rotation, a standard formal model of mental computation will not
suffice because it cannot represent the speed of the computation. The rea-
son is very simple: the purpose of the standard models of computation is to
describe a system’s behavior as far as the steps of the computation are con-
cerned. What is needed, then, is a rich causal model rather than an abstract
mathematical specification. This is the second amendment I propose.

372 Marcin Miłkowski

6. Mechanistically Adequate Models of Computation

In the foregoing I have proposed two amendments to Chalmers’ theory:
first, that it should cover all the kinds of computation; second, that it should
include the causal structure as part of implementation. Neo-mechanism
offers a natural framework in which to combine these amendments (Macha-
mer, Darden & Craver, 2000; Craver, 2007).

Mechanistic conceptions of implementation, such as the one offered by
Piccinini 2007, are a subclass of causal-structural accounts.8 In contradis-
tinction to traditional functionalist views on computation, they require that
all causally relevant details be given (Piccinini & Craver, 2011).

Piccinini (2007) focuses on digital computation, and has only recently
admitted the need to accommodate non-standard models, all under the
umbrella of “generic computation” (Piccinini & Scarantino, 2010). His gen-
eral scheme of describing computational models is based on abstract string
rewriting accounts of computation: computation is construed as rewriting
strings of digits.

A computing mechanism is a mechanism whose function is to gener-
ate output strings from input strings and (possibly) internal states, in
accordance with a general rule that applies to all relevant strings and
depends on the input strings and (possibly) internal states for its appli-
cation. (Piccinini 2007, p. 501)

This is suitable for digital computation but not for computing mechanisms
that take genuine real numbers as input, and it is not obvious how to make
it more general to cover generic computation. Moreover, string-rewriting
systems are not so easy to map onto causal relationships as state-transition
systems, for it is not at all clear what one should take as relata of the causal
relations, if states are missing from the description. It is obviously not string
values, but must rather be something that triggers the rewriting operation.
Yet, in such a case, string-rewriting is mapped onto state transitions, and the

8 For a book-length account see Miłkowski (forthcoming).

373Beyond Formal Structure

original model is actually never used directly.
My suggestion is to remain both more general and less committed to clas-

sical computation. Computation is standardly understood as information-
processing, so the notion of information can be used to define what is
crucial about models of computation for the account of implementation.
A computational process is one that transforms the stream of information
it gets as input to produce some stream of information at the output. Dur-
ing the transformation, the process may also appeal to information that is
part of the very same process (internal states of the computational process).
Information may, although need not, be digital: that is, there is only a finite,
denumerable set of states that the information vehicle takes and that the
computational process is able to recognize as well as produce at its output.
A bit of digital information construed this way is exactly equivalent to Pic-
cinini’s notion of digit. (In the case of analog processing, the range of val-
ues recognized is restricted, but continuous, i.e., infinite.) By “information”
I mean Shannon, quantitative information: the vehicle must be capable of
taking at least two different states to be counted as information-bearing,
otherwise it has no variability, so there cannot be any uncertainty as to the
state it will assume. Note that the receiver’s uncertainty with regards to the
state of the vehicle, which makes Shannon’s notion of information probabi-
listic in nature, has nothing to do with whether or not information-transmis-
sion is deterministic. Perfect, non-noisy channels still transmit information.

To say that a mechanistically adequate model of computation is imple-
mented is to say that the input and output information streams are causally
linked and that this link, along with the specific structure of information
processing, is completely described. The description of a mechanistically
adequate model of computation comprises two parts: (1) an abstract speci-
fication of computation, which should include all the causally relevant
variables; (2) a complete blueprint of the mechanism on three levels of its
organization. In mechanistic explanation, there are no mechanisms as such;
there are only mechanisms of something: and here that something is (1). By
providing the blueprint of the system, we explain its capacity, or compe-
tence, abstractly specified in (1).

Mechanisms are multilevel systems; they are composed of parts, which
may be mechanisms themselves. The behavioral capacity of the whole

374 Marcin Miłkowski

system—in our case the capacity of the abstract model—is generated by
the operations of its parts. According to Craver, every mechanism has three
levels of organization: a constitutive level, which is the lowest level in the
given analysis; an isolated level, at which the parts of the mechanism are
specified, along with their interactions (activities or operations); and the
contextual level, at which the function the mechanism performs is seen in a
broader context. For example, the context for an embedded computer might
be a story about how it controls a missile.

Now, only the isolated level corresponds to what was the traditional focus
of philosophical theories of implementation; it is the only level at which the
abstract specification of computation, namely (1), is to reflect causal orga-
nization. The causal organization of a mechanism will inevitably be more
complex than any abstract specification. However, since we are building a
constitutive explanation of a given capacity, only the causal variables rel-
evant to that capacity will be included in our causal model. In normal con-
ditions, the causal model of a mechanism, given as a set of structural equa-
tions or a directed acyclic graph (Pearl, 2000), will specify all the dynamics
that reflect all the valid state-transitions of (1). However, it will also contain
more, namely a specification of interventions that will render the computa-
tional mechanism malfunctional. So we can directly adopt Chalmers’ ideas
about FSAs and CSAs to describe how the trajectory of state-transitions in
the specification of computation reflects the proper subset of the causally
relevant variables in the complete causal model, effectively turning Chalm-
ers’ definition into a scheme for various models of computation.

The isolated level is not autonomous, and the parts of the mechanism at
this level should be localized, or identified, at the lower level independently
of their computational roles—otherwise the whole description of the iso-
lated level will remain unjustified. Notice that this principle of “bottoming-
out” (Machamer, Darden & Craver, 2000) does not preclude the possibility
of some parts being constituted in a distributed manner. It does, however,
block Putnam-style tricks, since disjunctive states at the isolated level will
have no counterparts at the lower level. The description of the lower level
does not contain these disjunctions at all. Obviously, one could map a high-
er-level disjunction to a lower-level disjunction, but this does not satisfy the
“bottoming-out” requirement. The principles of identity at the constitutive

375Beyond Formal Structure

level come only from this level. You cannot explain how the higher-level
objects are constituted at the lower level by saying that their constitution is
determined at the higher level. This kind of top-down determination will fly
in the face of the bottoming-out principle.9 Note also that this is not incom-
patible with using higher-level entities heuristically to discover lower-level
entities.10

So instead of adding special provisos against using non-natural mappings,
we simply require that the computational description at the isolated level
not be completely independent of the constitutive level. In a similar vein,
mechanistic explanation offers a way to individuate mechanisms (Craver,
2007) that allows us to distinguish real systems from a mere hotchpotch
of physical states. More importantly, parts of mechanisms are functional,
and that helps to exclude from the set of mechanisms some physical sys-
tems, like tornadoes, piles of sand, or planetary systems (Piccinini, 2007,
2010; Miłkowski, forthcoming) that do not realize any capacity. In short, it
can systematically answer difficult objections to Chalmers’ theory (Cocos,
2002) by saying what causal relationships are relevant, how to decompose
systems, what parts of systems are, and so on.

Mechanistic explanation is deeply rooted in the methodology of cognitive
science. For an early example, compare Allen Newell and Herbert Simon’s
information processing system (IPS), which was essentially an abstract
model whose architecture reflected certain psychological hypotheses about
human problem solving, such as limited short-term memory (Newell &
Simon, 1972, pp. 20-1). Besides sketching the abstract capacities of the IPS,
Newell & Simon (1972, pp. 808-9) also described its relevant time proper-
ties. These properties were needed in order to use reaction time as empirical
evidence.

Even if, by the lights of present-day mechanists, such models of cognition
qualify as incomplete—they obviously fail to “bottom out” at the neurolog-
ical level—Newell & Simon understood that in order to make the abstract
structures explanatorily relevant they needed to relate them to their physical

9 For a similar consideration see Piccinini (2010).
10 For a story about how the psychological theory of memory helped to

understand the hippocampus see Craver (2007).

376 Marcin Miłkowski

limitations. Similarly, contemporary computational modeling tries to inte-
grate available neuroscientific evidence, and that is methodologically sound
only if there is a causally-relevant difference between various physical
implementations of computation. I take it as obvious that there is. And this
was also presupposed in Marr’s methodology of explaining computational
systems; his implementation level is not an isomorph of the algorithmic
level (Marr, 1982).

What a computational mechanism is a mechanism of has traditionally
been called “competence.” Newell & Simon (1972) accounted for com-
petence by analyzing the cognitive task to be explained. Contrary to the
received wisdom, mechanistic approaches explain cognitive competence
with performance, and not performance with competence. This inversion
means that data about performance are useful, and cognitive research is not
just a matter of testing theoretical intuitions; it is also about experimental
interventions and empirical data mining. Note that that is exactly what
Newell & Simon did and claimed (1972, p. 11). They first performed task
analysis to discover the nature of a cognitive capacity; then they described
the behavioral performance of a single subject, and then they explained the
performance with their computer model of the task. The immediate target
of explanation was individual performance, but the distal target was also
the competence, as the computer model was proven to be sufficient to solve
the task. In Craver’s (2007) terminology, it is a how-possibly explanation.

To sum up, instead of requiring that one specify only an abstract model
of computation, which is useful for computability theory, but not for com-
puter engineering, one should require something that an engineer in a fac-
tory might use to actually produce a computer. There is no need to delve
into purely abstract modeling via CSAs or ASMs at all. Some specification
of abstract causal structure will be needed, of course, but this is not enough.
In particular, what is implemented is not only the abstract model of com-
putation but a complete causal structure of the mechanism, including its
dynamics (i.e., state transitions).

7. Conclusion

In the foregoing I have proposed an alternative to Chalmers’ account of the

377Beyond Formal Structure

implemented models of computation. While I endorse his causal-structural
approach, my proposal is more mechanistic in spirit. The important point
is that my (at least) three-level compositional account of mechanisms will
engender hypotheses that can be tested using reaction times and various
causal interventions. This means that it is more explanatorily and predic-
tively relevant because it goes beyond formal modeling.

Chalmers stresses that modeling is explanatorily relevant as far as it maps
the organizationally invariant properties of the physical system being mod-
eled. This is why, by manipulating the model, we can predict and explain
the behavior of the physical system. The same point was made long ago
by Kenneth Craik (1943), who defined a model as “any physical or chemi-
cal system which has a similar relation-structure to that of the process it
imitates” (Craik, 1943, p. 51). It is precisely this relation-structure that stays
organizationally invariant and which is so important for computational
modeling. In its mechanistic version, modeling can be brought to bear on
more properties of the organization of physical systems than other struc-
tural or functional accounts allow. However, in order for that to happen,
it is necessary to go beyond models of computation used in computability
theory to use causal modeling in its full glory.

References

Bickhard, M.H., & Terveen. L. 1995. Foundational issues in artificial intelligence
and cognitive science: Impasse and solution. North-Holland.

Blass, A., & Yuri G. 2003. Abstract state machines capture parallel algorithms. ACM
Transactions on Computational Logic, 4(4), 578-651.

Börger, E. & Stärk, R. 2003. Abstract state machines. A method for high-level
system design and analysis. Berlin Heidelberg New York: Springer-Verlag.

Bournez, O., & Dershowitz N. (forthcoming). Foundations of analog algorithms.
http://www.cs.tau.ac.il/~nachumd/papers/Analog.pdf (visited August 2, 2011).

Brown, C. 2004. Implementation and indeterminacy. In J. Weckart & Y. Al-Saggaf
(Eds.), Conferences in research and practice in information technology (Vol.
37, pp. 27-31).

Chalmers, D. J., 2011. A Computational Foundation for the Study of Cognition.
Journal of Cognitive Science, 12, 325-359.

Chrisley, R. 2000. Transparent computationalism. In M. Scheutz (Ed.) New
computationalism: conceptus-studien (14th ed., pp. 105-121). Sankt Augustin:

378 Marcin Miłkowski

Academia Verlag.
Cocos, C. 2002. Computational processes: A reply to Chalmers and Copeland. Sats

– Nordic Journal of Philosophy, 3(1), 25-49.
Craik, K. 1943. The nature of explanation. Cambridge: Cambridge University Press.
Craver, C.F. 2007. Explaining the brain. Mechanisms and the mosaic unity of

neuroscience. Oxford: Oxford University Press.
Dennett, D.C. 1991. Consciousness explained. New York: Back Bay Books / Little

Brown and Company.
Dershowitz, N., & Gurevich, Y. 2008. A natural axiomatization of computability

and proof of Church’s Thesis. The Bulletin of Symbolic Logic, 14(3), 299-350.
Glymour, C. 1994. On the methods of cognitive neuropsychology. The British

Journal for the Philosophy of Science, 45(3), 815-835.
Grädel, E., & Nowack, A. 2003. Quantum computing and abstract state machines.

In E. Börger, A. Gargantini, & E. Riccobene (Eds.), Abstract state machines
(2589, pp. 309-323). Berlin, Heidelberg: Springer.

Gurevich, Y. 1995. Evolving algebras 1993: Lipari guide. In E. Börger (Ed.)
Specification and validation methods (pp. 231-243). Oxford: Oxford University
Press.

Hogarth, M. 1992. Does general relativity allow an observer to view an eternity in a
finite time? Foundations of Physics Letters, 5, 173?181.

Machamer, P., Darden, L., & Craver, C. 2000. Thinking about mechanisms.
Philosophy of Science, 67(1), 1-25.

Marr, D. 1982. Vision. New York: W. H. Freeman and Company.
Meyer, D.E., Osman, A., Irwin, D.E., & Yantis, S. 1988. Modern mental

chronometry. Biological Psychology, 26(1-3), 3-67.
Miłkowski, M. (forthcoming). Explaining the computational mind. Cambridge,

MA: MIT Press.
Nagy, N., & Akl, S. 2011. Computations with uncertain time constraints: effects on

parallelism and universality. In C. Calude, J. Kari, I. Petre, & G. Rozenberg
(Eds.) Unconventional computation (pp. 6714:152-163). Berlin / Heidelberg:
Springer.

Newell, A., & Simon, H.A. 1972. Human problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

Newell, A. 1980. Physical symbol systems. Cognitive Science, 4(2), 135-183.
O’Reilly, R. C. 2006. Biologically based computational models of high-level

cognition. Science, 314(5796), 91-4.
Pearl, J. 2000. Causality: models, reasoning, and inference. Cambridge: Cambridge

University Press.
Piccinini, G. 2007. Computing mechanisms. Philosophy of Science, 74(4), 501-526.

379Beyond Formal Structure

Piccinini, G. 2010. Computation in physical systems. In E. N. Zalta (Ed.), The
Stanford Encyclopedia o f Philosophy (Fall 2010 Edition). Retrieved
from http://plato.stanford.edu/archives/fall2010/entries/computation-
physicalsystems/.

Piccinini, G. & Craver, C. 2011. Integrating psychology and neuroscience:
functional analyses as mechanism sketches. Synthese, 183(3), 283-311.

Piccinini, G. & Scarantino, A. 2010. Information processing, computation, and
cognition. Journal of Biological Physics, 37(1), 1-38.

Pitt, M.A., Myung, I.J., & Zhang, S. 2002. Toward a method of selecting among
computational models of cognition. Psychological Review, 109(3), 472-491.

Putnam, H. 1991. Representation and reality. Cambridge, Mass. The MIT Press.
Scheutz, M. 2001. Computational versus causal complexity. Minds and Machines,

11, 543-566.
Siegelmann, H. 1994. Analog computation via neural networks. Theoretical

Computer Science, 131(2), 331-360.
Shepard, R. N. & Cooper, L. A. 1982. Mental images and their transformations.

Cambridge Mass.: MIT Press.
Sloman, A. 2008. The well-designed young mathematician. Artificial Intelligence

172(18), 2015-2034.
Van Rooij, I. 2008. The tractable cognition thesis. Cognitive science, 32(6), 939-84.
Wheeler, M. 2005. Reconstructing the cognitive world. Cambridge, Mass.: MIT

Press.

