
Computational Mechanisms
and Models of Computation

Marcin Miªkowski

Institute of Philosophy and Sociology,
Polish Academy of Sciences (Poland)

Résumé : Dans la plupart des descriptions de la réalisation des processus
computationnels par des mécanismes physiques, on présuppose une correspon-
dance terme à terme entre les états causalement actifs des processus physiques
et les états de la computation. Cependant, soit de telles propositions stipulent
qu'un seul modèle de computation est implémenté, soit elles ne re�ètent pas la
diversité des modèles qui pourraient être implémentés physiquement. Dans ce
texte, je soutiens que les descriptions mécanistes de la computation devraient
autoriser une large variété de modèles de computation. En particulier, certains
modèles non-standard ne devraient pas être exclus a priori. On étudie de façon
plus détaillée la relation entre des modèles mathématiques de la computation
et des modèles adéquats du point de vue mécaniste.

Abstract: In most accounts of realization of computational processes by phys-
ical mechanisms, it is presupposed that there is one-to-one correspondence
between the causally active states of the physical process and the states of
the computation. Yet such proposals either stipulate that only one model of
computation is implemented, or they do not re�ect upon the variety of models
that could be implemented physically. In this paper, I claim that mechanistic
accounts of computation should allow for a broad variation of models of com-
putation. In particular, some non-standard models should not be excluded
a priori. The relationship between mathematical models of computation and
mechanistically adequate models is studied in more detail.

In this paper, I analyze the relationship between computational
mechanisms�physically instantiated computers�and models of computation.
Models of computation are used in various �elds, including, but not limited
to, computer science, information technology, and computational modeling in

Philosophia Scientiæ, 18(3), 2014, 215�228.



216 Marcin Miªkowski

cognitive science. They are used to analyze various relationships between algo-
rithms, to determine computational capabilities of various machines, to prove
theorems about computational complexity of algorithms, and so forth.

I distinguish a special class of models of computation, namely mechanisti-
cally interpretable models, and defend the claim that only some of the models
usually perused in computer science can be mechanistically adequate models
of physical computations; most of them need to be accompanied by additional
speci�cations of the mechanism, which I call instantiation blueprints. It is
plausible that both are needed in most computational explanations of cogni-
tive phenomena.

The structure of the paper is as follows. In the �rst section, I introduce
the notion of a model of computation and sketch some requirements that a
satisfactory theory of implementation should meet. Next, the modeling rela-
tionship between the model of the computational mechanism and its physical
instantiation is analyzed in terms of weak and strong equivalence. In the third
section, I argue that a mechanistically adequate model is required for strong
equivalence to obtain. At the same time, I admit that most models, even if
mechanistically adequate, are not complete models of mechanisms, and for this
reason, they are accompanied by background considerations, or instantiation
blueprints. The fourth section gives a short case study of a speci�c model
of computation, namely a Kolmogorov-Uspensky Machine, and shows how the
machine was implemented using a biological substrate�slime mold. I conclude
by pointing to other, less exotic examples studied in cognitive science.

1 Models of computation

Computer science abounds with talk of models of computation. For example,
entering the query �model of computation� in the online database of papers
in computer science, CiteSeerX [http://citeseerx.psu.edu], hosted by the
University of Pennsylvania, returns around 28 thousand documents, while �re-
alization of computation� returns around 800 results. In most cases, a model
of computation is a description of a computation in abstract terms. The
term �model of computation� is usually used without any de�nition specifying
its intension [Savage 1998], [Fernández 2009]. I will also introduce the term
with a de�nition by enumeration: the conventional models of computation
include Turing machines, lambda calculus, Markov algorithms, or �nite state
machines. These are conventional, as they have been shown to be equivalent
with regard to all the functions computable by entities implementing such
models (another name for the notion of equivalence in question is `Turing-
equivalence').

Notably, there are also unconventional models; some of them compute
functions incomputable for a universal Turing machine. Note that they com-
pute such functions only in principle; the question whether they can do so



Computational Mechanisms and Models of Computation 217

physically is still undecided. Some unconventional models simply rely on a
fairly non-standard method of implementation (chemical computation, wet-
ware computation, DNA computation), some are not digital (various analog
computers). In these unconventional models, quantum computation seems to
be quite prominent; one of the reasons being that certain quantum algorithms
are of interest to security applications. That is, they seem to outperform all
conventional machines in certain respects; for example, Shor's prime factor-
ization algorithm for quantum computers [Shor 1997] could be detrimental to
current encryption algorithms that rely on the assumption that prime factor-
ization is computationally very expensive.

Models of computation studied in computability theory (I refer to them
below as �models of computation in the proper sense�) are to be distinguished
from computational models, for example those used to study climate changes
or the weather. The latter are simply used to model a given phenomenon
using computational means [Humphreys 2003], [Winsberg 2010]. They do not
describe a computational process; rather they are used to describe something
computationally. In this paper, I refer to the �rst kind of models of compu-
tation, not to computational models in the latter sense (though, admittedly,
some models of computation will be at the same time computational models,
for example in computational neuroscience or psychology, e.g., [Lewandowsky
& Farrell 2011]).

Models of computation in the proper sense are mostly formal (see also
[Miªkowski 2011]). This means that they do not usually describe the physical
realization that they would require to be physically implemented. For example,
it would be quite peculiar to �nd that a paper about Turing machines delves
into engineering questions, such as which physical materials would serve the
role of the potentially in�nite tape best. Note that this is less true of uncon-
ventional computation such as DNA computation. Seminal papers about DNA
computation include both the mathematical description of the model (what
elementary operations are possible, how binary strings will be represented,
etc.), as well as speci�cation of the biological, or molecular, basis for the phys-
ical computation [Adleman 1994], [Boneh, Dunworth et al. 1996]. However,
a model of computation might well be physically or at least technologically
impossible. For example, an analogue computer that computes over real num-
bers (for example, as a neural network, see [Siegelmann & Sontag 1994]) might
be physically impossible, because in�nite resolution of measurement would be
required. Similarly, nobody would actually try to build a computer near a ro-
tating black hole simply to prove that hypercomputation is physically possible
[Etesi & Nemeti 2002].

Surprisingly, however, most philosophical accounts of realization (or im-
plementation) of computational processes by physical entities seem to ignore
the fact that models of computation are not only described in a mathematical,
formal manner. There are several types of philosophical accounts of com-
putational realization [Piccinini 2010]; in this paper, a structural or mecha-
nistic conception [Chalmers 2011], [Piccinini 2007], [Miªkowski 2013] will be



218 Marcin Miªkowski

assumed. Yet other accounts, such as the formal syntactic account [Pylyshyn
1984] or semantic conception [O'Brien & Opie 2009] usually similarly ignore
the non-formal part of realization. In addition, most defenders of the ac-
count of implementation via mechanisms or causal structures seem to pre-
suppose that there is one-to-one correspondence between the causally-active
states of the physical process and the states of the computation, as described
by its model.

Such proposals either stipulate that there be only one model of compu-
tation for implementation (for example, Chalmers stipulates that a combina-
torial �nite state machine should be used as it could be easily matched to
physical states of any system), or they do not re�ect upon the possible va-
riety of models of computation being implemented physically. Piccinini, for
example, relies on string-rewriting models of computation, which seem to ex-
clude all state-transition models. But the mechanistic account of computation
should also allow for a broad variety of models of computation. In particular,
non-standard models should not be excluded a priori. For example, it should
not be stipulated that only models equivalent (in terms of the set of functions
computed) to a universal Turing machine, or a less powerful mechanism, can
be implemented physically. Why should a philosopher decide a priori that the
�eld of unconventional or hyper-Turing computation is pseudoscienti�c? In
this respect, philosophers should adhere to the principle of transparent compu-
tationalism [Chrisley 2000]. In section three, I will show that this requirement
is easy to ful�ll when one takes into account the duality of descriptions of
models of computation in the �eld of unconventional computation.

Another important requirement for an adequate theory of implementation
is that it should appeal to aspects of what is called �implementation� in science.
This might sound trivial, but take an example from cognitive science�the
notable three-level account of explanation of computers developed by David
Marr [Marr 1982]. In this account, the lowest level is called �implementation�.
Broadbent, in his criticism of connectionist models, claims that these models
are only relevant to the implementation level [Broadbent 1985]: connectionist
networks are mere realizations of computations best described classically, not
as quasi-neural process in arti�cial neural networks. In response, Rumelhart &
McClelland claim that they too are only interested in algorithms implemented,
while they do not yet know about implementation in the brain [Rumelhart &
McClelland 1985]. I don't want to question here whether connectionism is
right or not. The point is that both parties in the controversy seem to agree
that implementation is (1) required for the physical computation to occur; and
(2) not speci�ed by algorithms alone. Broadbent simply assumes that there
are no algorithms, or abstract accounts of computation, that would make
connectionist models di�erent from classical models. Whether he is right or
not is a matter for another paper.

Let me summarize. By referring to how the term `model of computation'
is used in various �elds dealing with computers, I have implied that there are
two aspects to such models: the formal account of computable functions, and



Computational Mechanisms and Models of Computation 219

the non-formal account of physical realizations. Both aspects, I have claimed,
should be explicated by a descriptively accurate account of computational im-
plementation in philosophy of science. In addition, the account should not
presuppose that there is a single preferred mathematical account of computa-
tion, and thus should remain neutral in this regard.

2 Modeling relationship

The models of computation introduced in the previous section have a clearly
representational function: they are descriptions of computations. Depending
on the purpose of the model, they might describe a computational system in
terms of functions computable by the system; they might also give faithful
descriptions of how the function is being computed. In the �rst instance, the
model is weakly equivalent to the system in question [Fodor 1968]: the model
computes the same function, i.e., it has the same set of inputs and outputs
as the modeled system. In the latter case, it is strongly equivalent : it also
describes how inputs are transformed into outputs.

Weakly equivalent models can be useful, for example in proving that dif-
ferent types of machines can compute the same set of functions. For this
reason, a universal Turing machine can be used to describe the operation
of other models of computation; if one is successful in describing a machine
as weakly equivalent to a Turing machine, the result constitutes a proof of
Turing-computability of its functions.

Note that non-formal aspects of models are discarded when assessing the
relation of weak equivalence. Functions of the standard desktop computer will
be Turing-computable without there being anything that literally corresponds
to the potentially in�nite tape, writing head, or the elementary operations of
the Turing machine. Of course, the work of the desktop PC is in many respects
analogous to that of the Turing machine, but there are parts of the desktop
PC that do not have to correspond to the latter without thereby violating the
condition of weak equivalence. For example, there is no CPU in the Turing
machine, not to mention expansion cards or graphics boards.

Strongly equivalent models are more signi�cant for cognitive science, be-
cause cognitive science models do not merely describe the function being com-
puted (which would correspond, roughly, to what's meant by �competence� in
cognitive research) but also the way it is computed [Miªkowski 2013]. In ad-
dition, empirical evidence needed to distinguish between strongly and weakly
equivalent models arguably has to refer to non-formal properties of models
of computation, i.e., to physical features of the realization that in�uence, for
example, the speed of processing or the amount of available working memory.
Without this reference, empirical evidence such as response times, used in cog-



220 Marcin Miªkowski

nitive science and neuroscience to support hypotheses about the organization
of computational architecture and complexity of algorithms being implemented
[Sternberg 1969, 2011], [Posner 2005], would be useless in determining which
of the proposed accounts of cognitive processing is correct. The practice of
using such evidence gives support to the mechanistic account of computational
explanation [Miªkowski 2011].

Note however that the distinction between weakly and strongly equiva-
lent models does not rely on one's adherence to neo-mechanistic philosophy
of science (see next section for details on the mechanistic account), or on
Fodor's functionalist views on psychology. It can be argued that other theo-
rists also posited similar types of modeling relationships; for example, Rosen
distinguished between simulation (which corresponds to weak equivalence) and
modeling proper (strong equivalence), while being strongly opposed to mech-
anism [Rosen 1991, chap. 7].

3 Mechanistically adequate models

One of the most widely endorsed views in the philosophy of special sciences is
neo-mechanism [Machamer, Darden et al. 2000], [Craver 2007], [William 2008].
According to this view, to explain a phenomenon is to elucidate the underlying
mechanism. Mechanistic explanation is a species of causal explanation, and
explaining a mechanism involves describing its causal structure. While mech-
anisms are de�ned in various ways by di�erent authors, the core idea is that
they are organized systems, comprising causally relevant component parts and
operations (or activities) thereof. Components of the mechanism interact and
their orchestrated operation contributes to the capacity of the mechanism.

This neo-mechanistic framework has also been applied to computation
[Piccinini 2007], [Miªkowski 2011]. Piccinini focuses on digital e�ective com-
putation and has only recently admitted the need to accommodate uncon-
ventional models, all under the umbrella of �generic computation� [Piccinini
& Scarantino 2010]. His account of computational models is based on ab-
stract string rewriting: computation is construed as rewriting strings of digits
[Piccinini 2007, 501]. But this violates the principle of transparent computa-
tionalism. In addition, Piccinini has not developed any detailed account of
how �generic computation� is to be understood in mechanistic terms.

There are several mechanistic norms of explanation that are particularly
important in explaining computation. These are: the requirement of com-
pleteness; the requirement of specifying the capacity of the mechanism; and
the requirement that the model contain only causally relevant entities. I will
explicate these below. But �rst, let me elaborate on how computation can be
conceived in a mechanistic manner.

Computation is generally equated with information-processing, and this
is why the notion of information is crucial in models of computation for the



Computational Mechanisms and Models of Computation 221

account of implementation: a computational process is one that transforms the
stream of information it has as input into a stream of information for output.
During the transformation, the process may also appeal to information that is
part of the very same process (internal states of the computational process).
Information may be, although need not be, digital�that is, there is only a
�nite, denumerable set of states that the information vehicle can have and
that the computational process is able to recognize, as well as produce as
output. (In analogue computing, the range of values in question is restricted,
but continuous, i.e., in�nite.) By �information� I mean quantitative structural-
information-content in MacKay's sense of the term: the physical vehicle must
be capable of taking at least two di�erent states to be counted as information-
bearing (for a detailed explication of the notion of structural-information-
content and its relation to selective-information, i.e., Shannon information,
see [MacKay 1969]).

Computational explanations, according to the mechanistic account, are
constitutive mechanistic explanations: they explain how the computational
capacity of a mechanism is generated by the orchestrated operation of its
component parts. To say that a mechanism implements a computation is to
claim that the causal organization of the mechanism is such that the input
and output information streams are causally linked and that this link, along
with the speci�c structure of information processing, is completely described.
Importantly, the link can be cyclical and as complex as one could wish.

Understanding computation as information-processing o�ers several ad-
vantages over more traditional accounts, especially because it furnishes us
with criteria for strong equivalence. Namely, the strongly equivalent model of
computation C is best understood as the mechanistically adequate model of
C. To describe information-processing one usually employs models of compu-
tation used in computer science, mentioned in section 1 of this paper. To be
explanatorily relevant and descriptively accurate about a given physical com-
putational mechanism, the model chosen has to be mechanistically adequate.
Note that this requirement for descriptive accuracy and explanatory relevance
does not mean that all models in computer science have to be mechanistically
adequate. Rather, wherever weak equivalence is enough for one's purposes,
mechanistic explanation might be spurious. For example, a causal mechanis-
tic explanation is redundant and uninformative when one wants to explain
why Markov algorithms are equivalent to Turing machines. In such a case,
formal modeling is enough.

If physical instantiation is relevant (for example, in neuroscience or DNA
computing) then we use the mechanistic explanation. The description of a
mechanistically adequate model of computation comprises two parts: (1) an
abstract speci�cation of a computation, which should include all the causally
relevant variables; (2) a complete blueprint of the mechanism on three levels
of its organization. I will call the �rst part the formal model of the mecha-
nism and the second the instantiation blueprint of the mechanism, for lack
of a better term. While it should be clear that a formal model is required,



222 Marcin Miªkowski

it is probably less evident why the instantiation blueprint is also part of the
mechanistically adequate model. One of the norms of the mechanistic explana-
tion is that descriptions of mechanisms be complete [Craver 2007]. Of course,
this does not mean that one has to include every possible piece of informa-
tion in the description of the mechanism (also called the model of mechanism,
cf. [Glennan 2005]). It must be complete as a causal model, i.e., all causally
relevant parts and operations should be speci�ed without gaps or placeholder
terms.

But formal models cannot function as complete causal models of comput-
ers. For example, it is not enough to know that my laptop is an instantiation of
a von Neumann machine, or even that it runs Linux on an Intel x86 family of
processors. To explain why it executes the computation of one million digits of
π in such-and-such a time, one needs to know the details of the hardware, such
as the frequency of the CPU's clock. Only an appeal to the non-formal part of
the model can supply such data. As I pointed out in section 1, unconventional
models of computation might furnish us with parts of instantiation blueprints
at least, by specifying that DNA computation is used to �apply a sequence of
operations to a set of strands in a test tube� [Boneh, Dunworth et al. 1996,
85], that operations include the melting of double strands of DNA to dissolve
them, that the double strands of DNA are used to store information because
single ones are fragile, and so forth.

The model of the physical computational process, at the level of detail
required to support the claim that it is strongly equivalent, typically includes
an instantiation blueprint and an abstract model of computation. Of course, it
is possible to create a formalism of computation that would include timing and
other implementation factors so that it would, by itself, comprise anything that
common engineering blueprints typically contain. However, scientists usually
describe the properties of the abstract mathematical model separately from
physical machines, even if both are included in the same paper.

Another norm of the mechanistic explanation is that the model of the
mechanism should identify the capacity of the mechanism that is explained.
There are no mechanisms as such; there are only mechanisms of something�
and here that something is the formal model of computation. By providing
the instantiation blueprint of the system, we explain the physical exercise
of its capacity, or competence, abstractly speci�ed in the formal model. In
other words, the completeness norm requires that we include the instantiation
blueprint in our model, and the speci�cation norm tells us to specify the formal
model of the computation. But, as stated above, the model has to be causally
relevant as well. This leads to the observation that only mechanistically inter-
pretable models of computation might be used in the mechanistically adequate
descriptions of mechanisms.

Let me elaborate. Take a standard programming language, such as C++,
used to write various programs. In my usage of the term `model of compu-
tation', C++ de�nitely quali�es as one such model. But it is not a mech-



Computational Mechanisms and Models of Computation 223

anistically interpretable model for compiled C++ programs executed on my
desktop machine, because a compiler is needed to translate C++ to machine
code. In other words, the operation of my PC cannot be described in terms
of the primitive operations given by C++ speci�cation. In particular, even
some operations speci�ed in the source code might have no counterpart in the
compiled code. Some ine�cient code might be optimized by a compiler, and
even some variables that seem to contain values (for the programmer) might
not be identi�able in the binary version of the code [Scheutz 1999]. One could
retort that it is the instantiation blueprint, in this case, that includes the spec-
i�cation of the compiler; in particular, speci�cation in the way it is supposed
to interpret C++ instructions in terms of the machine code. But this would be
counterintuitive: this kind of speci�cation is still fairly abstract, and no phys-
ical instantiation is ever mentioned when describing the relationship between
machine instructions and higher-level languages.

For this reason, I propose to call models such as C++ programs, without
their compilers, mechanistically incomplete. To completely describe how they
work on a particular machine, we would also need to know the supporting
formal model of the compiler, interpreter, or some other tool that relates the
higher-level abstraction and the mechanistically interpretable formal model of
the computation. For example, on Intel x86 only the assembly language is
mechanistically interpretable; all other languages are mechanistically incom-
plete models that should be accompanied by a description that shows the
relationship between them and the assembly language. Notice that even code
developers do not usually know this relationship in any great detail (unless
they have written or read the code of the compiler, which can but does not
have to be written in the assembler as well). In everyday speech, we talk about
higher-level programs being executed, while strictly speaking this is only an
idealization (albeit a useful one). Literally, only a compiled or interpreted
program is executed.

This concludes my survey of the mechanistic theory of implementation.
Let me turn to a case study.

4 Physarum machine

In this section, I will analyze how slime mold was used by Adamatzky to im-
plement a Kolmogorov-Uspensky Machine (KUM). KUM was introduced by
Kolmogorov and developed later with his student, Uspensky, and is named
after its creators. Notice that KUM is (weakly) equivalent to recursive func-
tions [Kolmogorov & Shiryaev 1993]. The main reason why KUM was used
is that interpreting physical processes that do not contain �xed structures or
cellular-automaton structures is troublesome [Adamatzky 2007, 455]. In other
words, Adamatzky seems to presuppose that a Turing machine would not have



224 Marcin Miªkowski

been mechanistically adequate in this case; whereas KUM, as a formal model,
is a mechanistically adequate model in the sense used in this paper.

KUM is a prominent model of real-life computation. According to
Adamatzky, the operation of the machine is as follows:

KUMs are de�ned on a colored/labeled undirected graph with bounded
degrees of nodes and bounded number of colors/labels. KUMs operate, mod-
ifying their storage, as follows:

(1) Select an active node in the storage graph;

(2) Specify local active zone, i.e., the node's neighborhood;

(3) Modify the active zone by adding a new node with the pair of edges,
connecting the new node with the active node;

(4) Delete a node with a pair of incident edges;

(5) Add/delete the edge between the nodes.

A program for KUM speci�es how to replace the neighborhood of an active
node with a new neighborhood, depending on the labels of edges connected
to the active node and the labels of the nodes in proximity of the active node
[Adamatzky 2007, 456].

The instantiation blueprint contains the slime mold Physarum poly-
cephalum. Note that this machine was the �rst physical instantiation of KUM
(or at least the �rst documented instantiation). The slime mold was used in
a vegetative stage, as plasmodium. This is a single cell, visible to the naked
eye, and it propagates and searches for nutrients when placed on appropriate
nutrients (such as agar gel). It has previously been shown that this simple or-
ganism has the ability to �nd the minimum-length solution between two points
in a labyrinth [Nakagaki, Yamada et al. 2000]. Adamatzky built a Physarum
machine that contained wet �lter paper with colored oat �akes. The ma-
chine had two kinds of nodes: stationary (oat �akes) and dynamic (origins
of protoplasmic veins); the edge of the machine is a strand or vein of proto-
plasm connecting any of the nodes. The data and program are represented
by the spatial con�guration of stationary nodes, while results are provided by
the con�guration of dynamical nodes and edges. (In KUMs, the whole graph
structure is the result of the computation.)

Plasmodium, as we would expect, does not stop operating when the re-
quired result has been attained; it continues until the nutrients are depleted.
For this reason, Adamatzky supposes that the Physarum machine halts when
all data-nodes are utilized. In addition, there is an active zone that is simply
a growing node in plasmodium. The graphs of the Physarum machine have
bounded connectivity. However, one property of KUM is not satis�ed: not all
nodes are uniquely addressable (coloring the oat �akes was supposed to help
with this).

Adamatzky goes to detail the basic operations of the Physarum machine
(INPUT, OUTPUT, GO, HALT); but, in his 2007 paper, no single algorithm



Computational Mechanisms and Models of Computation 225

is actually shown to have run on the Physarum machine. For this reason,
there is no causal model of the plasmodium that would correspond to the
Physarum machine; and, more importantly, the capacity of the mechanism has
not been speci�ed in detail. We know that the Physarum machine is supposed
to be a realization of KUM, but no information about what is computed is
actually given. In other words, the description of the mechanism is incomplete
and violates mechanistic norms; it is just a sketch of the mechanism in the
article cited. However, in his later book [Adamatzky 2010], Adamatzky uses
Physarum machines to solve very simple tasks and explains how to program
them with light.

All in all, it is evident that the description of the implementation of
KUM seems to be of the form that I introduced in the previous section: a
formal model accompanied by an instantiation blueprint, which is biological
in this case.

5 Conclusion

In this paper, I analyzed the relationships of weak and strong equivalence
between models of computation. I claimed that mechanistic explanations re-
quire that mechanistically adequate models of computation include two parts:
formal models of the computation in question, and instantiation blueprints.
In contrast to earlier work on mechanisms, my account does not violate the
principles of transparent computationalism and yet avoids being excessively
liberal. Notice that the 2007 description of the Physarum machine, from the
mechanistic point of view, is not a satisfactory mechanistic model. It does
not specify the computation, and it was not shown that a causal model of
the way in which plasmodium behaves could be used to predict the results
of computation in KUM, or that results of the manipulation of plasmodium
could be predicted by using our knowledge of KUM initial con�guration. For
this reason, the Physarum machine remains a bold hypothesis, which is only
later made plausible by showing how it can be programmed.

But let me put unconventional models to the side. The reason I intro-
duced them is that they make it clear that implementation is not a matter
of formal models only. Rather, hardware is very important in the function-
ing of computers. There is a lot of evidence that models of computation in
neuroscience [Piccinini & Bahar 2013] and cognitive science [Miªkowski 2013]
include some speci�cations of the constitutive parts of the mechanism, which
I called instantiation blueprints. There are reasons, therefore, to believe that
the mechanistic theory of implementation of computation, here only roughly
depicted, is both normatively and descriptively adequate.



226 Marcin Miªkowski

Acknowledgments

Work on this paper was �nanced by a Polish Ministry of Science Habilitation
Grant # N N101 138039, and the National Science Centre OPUS Grant under
the decision DEC-2011/03/B/HS1/04563. The author wishes to thank the
audience of the CLMPS in Nancy in 2011, where a shorter version of this
paper was presented.

Bibliography

Adamatzky, Andrew [2007], Physarum machine: Implementation of
a Kolmogorov-Uspensky machine on a biological substrate, Parallel
Processing Letters, 17(04), 455�467, doi:10.1142/S0129626407003150.

�� [2010], Physarum Machines: Computers from Slime Mould, World
Scienti�c series on nonlinear science., Series A, Monographs and treatises,
vol. 74, Singapore: World Scienti�c.

Adleman, Leonard M. [1994], Molecular computation of solutions to com-
binatorial problems, Science, 266(5187), 1021�1024, doi:10.1126/science.
7973651.

Boneh, Dan, Dunworth, Christopher, Lipton, Richard J., & Sgall, Ji°í
[1996], On the computational power of DNA, Discrete Applied Mathematics,
71(1�3), 79�94, doi:10.1016/S0166-218X(96)00058-3.

Broadbent, Donald [1985], A question of levels: Comment on McClelland
and Rumelhart, Journal of Experimental Psychology: General, 114(2), 189�
190, doi:10.1037/0096-3445.114.2.189.

Chalmers, David J. [2011], A computational foundation for the study of
cognition, Journal of Cognitive Science, 12, 325�359.

Chrisley, Ronald [2000], Transparent computationalism, in: New
Computationalism, edited by M. Scheutz, Sankt Augustin: Academia
Verlag, Conceptus-Studien, vol. 14, 105�121.

Craver, Carl F. [2007], Explaining the Brain. Mechanisms and the mosaic
unity of neuroscience, New York: Oxford University Press.

Etesi, Gabor & Nemeti, Istvan [2002], Non-Turing computations via
Malament-Hogarth space-times: General relativity and quantum cosmol-
ogy, International Journal of Theoretical Physics, 41(2), 341�370, doi:
10.1023/A:1014019225365.



Computational Mechanisms and Models of Computation 227

Fernández, Maribel [2009], Models of Computation: An Introduction to
Computability Theory, Undergraduate Topics in Computer Science, London:
Springer, doi:10.1007/978-1-84882-434-8.

Fodor, Jerry A. [1968], Psychological Explanation: An Introduction to the
Philosophy of Psychology, New York: Random House.

Glennan, Stuart S. [2005], Modeling mechanisms, Studies in History and
Philosophy of Science Part C: Studies in History and Philosophy of
Biological and Biomedical Sciences, 36(2), 443�464, doi:10.1016/j.shpsc.
2005.03.011.

Humphreys, Paul [2003], Computational models, Philosophy of Science, 69,
1�11.

Kolmogorov, Andre�� N. & Shiryaev, Albert N. [1993], Selected Works
of A.N. Kolmogorov. Vol. III: Information Theory and the Theory of
Algorithms, Mathematics and its Applications, vol. 27, Dordrecht: Kluwer.

Lewandowsky, Stephan & Farrell, Simon [2011], Computational Modeling
in Cognition: Principles and practice, Thousand Oaks: Sage Publications.

Machamer, Peter, Darden, Lindley, & Craver, Carl F. [2000], Thinking
about mechanisms, Philosophy of Science, 67(1), 1�25.

MacKay, Donald M. [1969], Information, Mechanism and Meaning,
Cambridge, MA: MIT Press.

Marr, David [1982], Vision. A Computational Investigation into the Human
Representation and Processing of Visual Information, New York: Freeman.

Miªkowski, Marcin [2011], Beyond formal structure: A mechanistic perspec-
tive on computation and implementation, Journal of Cognitive Science,
12(4), 359�379.

�� [2013], Explaining the Computational Mind, Cambridge, MA: MIT Press.

Nakagaki, Toshiyuki, Yamada, Hiroyasu, & Tóth, Ágota [2000],
Intelligence: Maze-solving by an amoeboid organism, Nature, 407(6803),
470, doi:10.1038/35035159.

O'Brien, Gerard & Opie, Jon [2009], The role of representation in computa-
tion, Cognitive Processing, 10(1), 53�62, doi:10.1007/s10339-008-0227-x.

Piccinini, Gualtiero [2007], Computing mechanisms, Philosophy of Science,
74(4), 501�526, doi:10.1086/522851.

�� [2010], Computation in physical systems, in: The Stanford Encyclopedia
of Philosophy, edited by E. N. Zalta, fall 2012 edn., URL plato.stanford.

edu/archives/fall2012/entries/computation-physicalsystems/.



228 Marcin Miªkowski

Piccinini, Gualtiero & Bahar, Sonya [2013], Neural computation and the
computational theory of cognition, Cognitive Science, 37(3), 453�488, doi:
10.1111/cogs.12012.

Piccinini, Gualtiero & Scarantino, Andrea [2010], Computation vs. in-
formation processing: Why their di�erence matters to cognitive science,
Studies in History and Philosophy of Science Part A, 41(3), 237�246, doi:
10.1016/j.shpsa.2010.07.012, computation and cognitive science.

Posner, Michael I. [2005], Timing the brain: Mental chronometry as a tool
in neuroscience, PLoS biology, 3(2), e51, doi:10.1371/journal.pbio.0030051.

Pylyshyn, Zenon W. [1984], Computation and cognition: Toward a founda-
tion for cognitive science, Cambridge, MA: MI.

Rosen, Robert [1991], Life Itself: A comprehensive inquiry into the nature,
origin, and fabrication of life, New York: Columbia University Press.

Rumelhart, David E. &McClelland, James L. [1985], Levels indeed! A re-
sponse to Broadbent, Journal of Experimental Psychology: General, 114(2),
193�197, doi:10.1037/0096-3445.114.2.193.

Savage, John E. [1998], Models of Computation: Exploring the power of com-
puting, Reading, MA: Addison Wesley.

Scheutz, Matthias [1999], The ontological status of representations,
in: Understanding Representation in the Cognitive Sciences, edited by
A. Riegler, M. Peschl, & A. von Stein, Springer, 33�38, doi:10.1007/
978-0-585-29605-0_4.

Shor, Peter W. [1997], Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer, SIAM Journal on Computing,
26(5), 1484�1509, doi:10.1137/S0097539795293172.

Siegelmann, Hava T. & Sontag, Eduardo D. [1994], Analog computation
via neural networks, Theoretical Computer Science, 131(2), 331�360, doi:
10.1016/0304-3975(94)90178-3.

Sternberg, Saul [1969], The discovery of processing stages: Extensions
of donders' method, Acta Psychologica, 30(0), 276�315, doi:10.1016/
0001-6918(69)90055-9.

�� [2011], Modular processes in mind and brain, Cognitive neuropsychology,
28(3�4), 156�208, doi:10.1080/02643294.2011.557231.

William, Bechtel [2008], Mental Mechanisms, New York: Routledge.

Winsberg, Eric B. [2010], Science In the Age of Computer Simulation,
Chicago; London: University of Chicago Press.


