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Abstract
In this paper, I argue that computationalism is a progressive research tradition. Its 
metaphysical assumptions are that nervous systems are computational, and that 
information processing is necessary for cognition to occur. First, the primary rea‑
sons why information processing should explain cognition are reviewed. Then I 
argue that early formulations of these reasons are outdated. However, by relying on 
the mechanistic account of physical computation, they can be recast in a compel‑
ling way. Next, I contrast two computational models of working memory to show 
how modeling has progressed over the years. The methodological assumptions of 
new modeling work are best understood in the mechanistic framework, which is evi‑
denced by the way in which models are empirically validated. Moreover, the meth‑
odological and theoretical progress in computational neuroscience vindicates the 
new mechanistic approach to explanation, which, at the same time, justifies the best 
practices of computational modeling. Overall, computational modeling is deserv‑
edly successful in cognitive (neuro)science. Its successes are related to deep concep‑
tual connections between cognition and computation. Computationalism is not only 
here to stay, it becomes stronger every year.

Keywords  Computationalism · Computational theory of mind · Computational 
neuroscience · Computer metaphor · Information processing · Computational 
modeling · Computational cognitive science · Working memory

1  Introduction

In this paper, I argue that computationalism is a progressive research tradition. No 
longer does it use mere computational metaphors. Instead, it offers empirically vali‑
dated computational models, which can be best understood as offering mechanistic 
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explanations. The argument proceeds in the following fashion: First I argue that “the 
computational theory of mind” is a misnomer. It is not a theory but a rich, evolving 
research tradition. Then I review early conceptual arguments for the computational 
study of nervous systems. These arguments are no longer compelling, but can be 
restated in the light of the mechanistic account of physical computation. They also 
substantiate best research practices in computational neuroscience. To show this, I 
briefly show how research on working memory has progressed.

In particular, my focus is on validating computational models by empirical evi‑
dence, which, according to critics of computationalism, should not be at all pos‑
sible.1 The care for the empirical validity of models stems naturally from their 
methodological assumptions. These assumptions can be understood best in the light 
of the mechanistic approach to physical computation, rather than in terms of the 
semantic approach to computation, or three-leveled methodology of computational 
explanation introduced and developed by Marr (1982).

The paper is structured as follows: In the next section, I review early conceptual 
arguments for computational modeling in psychology and neuroscience. These argu‑
ments are not entirely compelling, but can be salvaged by turning to the mechanis‑
tic theory of explanation (Sect.  3). In Sect.  4, I turn to two cases, and argue that 
there has been considerable research progress in computational neuroscience, which 
shows that the mechanistic account is both descriptively and normatively accurate 
for computational neuroscience. The early models are illustrated here by the work of 
Young (1964, 1978) on memory, based on his groundbreaking research on cephalo‑
pods. They were largely speculative and metaphorical, and the key problem was how 
to evaluate computational models empirically. While Marr’s systematic approach 
led to considerable progress in cognitive modeling, it did not solve this problem sat‑
isfactorily, and cognitive models have continued to be merely consistent with neu‑
roscientific evidence. However, contemporary modeling methodology goes beyond 
mere consistency, and is poised to offer new predictions. This is illustrated by the 
work of Eliasmith et al. (2012) on the large-scale functional model of the brain. This 
kind of methodology is required by the mechanistic—but not semantic—approach 
to computational explanation. The fact that current best practices are in line with the 
mechanistic approach lends support both to this approach, and to computationalism.

2 � Computationalism as a Research Tradition

While it is customary to use terms the computational theory of mind and compu-
tationalism interchangeably, this custom may be misleading. Theories are usually 
thought to be not only explanatory but also predictive. Computationalism remains 
too abstract to predict almost any non-trivial fact about biological brains. The main 
assumption of computationalism is that nervous systems are computers, and cog‑
nition can be explained in terms of nervous system computation. This assumption 
substantiates the claim that biological agents engage only in tractable computation 

1  A short survey of objections to computationalism is offered by (Miłkowski 2017a).
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(Frixione 2001; Rooij et al. 2010). But it is not of much use when explaining phe‑
nomena which are typically listed in textbooks for cognitive psychology.

Computationalism is not a theory but a research program that is helpful in creat‑
ing both theories and individual models of cognitive phenomena. While the notion 
of the research program has been introduced to the philosophy of science by Lakatos 
(1976) to account for scientific change and rationality, one part of his account does 
not fit the dynamics of research well. Lakatos assumes that there is an unchangeable 
core in any given research program. Laudan (1977) has shown that this is rarely the 
case. Programs usually change over time. Moreover, Laudan has stressed that the 
fruitfulness of research programs lies not only in predicting empirical facts, but also 
in theoretical problem solving, which has been ignored altogether by Lakatos.

To make it clear that Laudan’s account is embraced here, his notion of research 
tradition will be used instead. He cites three characteristics of research traditions 
(Laudan 1977, pp. 78–79). First, “every research tradition has a number of specific 
theories which exemplify and partially constitute it.” Indeed, there are multiple 
approaches to brain computation, from classical symbolic computation, to connec‑
tionism, to dynamic spiking neural networks. Second, they exhibit “certain meta-
physical and methodological commitments which, as an ensemble, individuate the 
research tradition and distinguish it from others.” I analyze these methodological 
and metaphysical commitments below in this section. Third, traditions go through a 
number of formulations and usually have a long history, which is easily evidenced, 
both in changes of basic assumptions, and in development of computational models 
of working memory, as described in Sect. 3. Early models were fairly sketchy and 
computational talk could be understood to be merely metaphorical. This is not the 
case anymore.

One could continue to talk of the computational theory of mind, while stressing 
that the term itself is an umbrella term. However, it is less misleading to think of 
computationalism as a diverse research tradition composed of multiple, historically 
variable computational theories of mind (or brain). By conflating the research tradi‑
tion with one of the early theories, one could be tempted to reject the whole tradi‑
tion. In particular, one might conflate computationalism with one of its versions, 
usually dubbed “GOFAI,” or Good Old-Fashioned Artificial Intelligence. John 
Haugeland defined GOFAI as the assumption that intelligence is based on the capac‑
ity to think reasonably, and reasonable thinking amounts to a faculty for internal 
“automatic” symbol manipulation (Haugeland 1985, p. 113). Haugeland’s formula‑
tion is thought to be related, for example by Margaret A. Boden (2014), to the physi‑
cal symbol system hypothesis defended by Allen Newell and Herbert Simon (Newell 
1980; Newell and Simon 1976).

The physical symbol system hypothesis states that a “physical symbol system 
has the necessary and sufficient means for general intelligent action” (Newell and 
Simon 1976, p. 116). The problem with taking this claim at face value would be 
that even universal computers may run extremely simple software throughout their 
lifetime. They may have precious little to do with what we may call “general intel‑
ligent action,” in particular because some of them may take no inputs at all. This is 
also why Newell and Simon elucidate what they mean by “sufficient means”: “any 
physical symbol system of sufficient size can be organized further to exhibit general 
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intelligence,” (Newell and Simon 1976, p. 116). In other words, while it may seem 
that computationalism claims that cognition is any computation, the proponents of 
this idea did not mean that all computation exhibits cognitive features; only some 
physical computation exhibits general intelligence. Thus, it is not just internal sym‑
bol manipulation; this manipulation has to be—in some sense—organized further.

The motivation for computationalism can be found in a number of texts on com‑
puter simulation in psychology. For example, Apter (1970, pp. 17–18), an early 
defender of the simulation approach taken by Newell and Simon, listed four ways 
that computers resemble brains:

(1)	 Both are general-purpose devices.
(2)	 Both are information-processing devices.
(3)	 Both may incorporate models within themselves.
(4)	 Both achieve their intellectual excellence by carrying out large numbers of primi-

tive operations.

Let me, therefore, analyze the ways in which these properties are understood by 
Apter to show that the analogy has to be rephrased in modern terms. Then I will 
also briefly analyze influential methodological advice that has shaped computational 
modeling in psychology and neuroscience.

2.1 � Flexibility

Both computers and brains are general-purpose devices: they can operate in a vari‑
ety of ways, which makes them adaptable to their environment, and this, in turn, can 
explain intelligence. This is exactly why Newell and Simon made universal compu‑
tation part of their hypothesis. Newell’s rendering of the argument deserves some 
attention:

Central to universality is flexibility of behavior. However, it is not enough just 
to produce any output behavior; the behavior must be responsive to the inputs. 
Thus, a universal machine is one that can produce an arbitrary input–output 
function; that is, that can produce any dependence of output on input (Newell 
1980, p. 147).2

But are cognitive agents actually unboundedly flexible in their behavior? Is there 
evidence that, say, human beings are able to adapt to any environmental constraints? 
To demonstrate this empirically, one would have to actually observe an infinite 

2  One could argue that Newell actually uses a notion of universality that is different than the one used 
in the computability theory, as he proceeds to talk of behavioral flexibility in spite of limited physical 
resources (I thank one of the anonymous reviewers of this paper for this comment). However, the physi‑
cal symbol system is then proven to be computationally equivalent to a universal Turing machine. My 
claim here can be understood in line with Newell and Simon’s idea that one has to understand intelligent 
action as constrained and enabled by the structure of the environment; therefore, impressive behavioral 
complexity and flexibility can be a feature of a relatively simple organism (Simon 1956). Rationality can 
occur without universal computation.
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number of behaviors displayed by human beings, which is, alas, physically impossi‑
ble for finite observers. The only evidence we have is that people actually sometimes 
learn to adapt, and to control their environment. But sometimes they fall short of 
recognizing more complex causal relationships, because they rely too much on the 
received feedback (for a discussion and review of experiments, see Osman 2014). 
In other words, the hypothesis that behavior is infinitely flexible not only cannot 
be confirmed, but also seems to be disconfirmed, This is shown by a number of 
phenomena related to our illusions of control or illusions of chaos, as well as by 
highly stereotypical behavior triggered by situational factors (Wood and Neal 2007). 
Human behavior may be vastly flexible but not infinitely flexible. This is even more 
true of animal behavior, which is sometimes highly stereotypical.

However, no physical computers ever literally instantiate a universal Turing 
machine. We only idealize finite-state machines as universal Turing machines for 
the sake of simplicity. As Gary Drescher states: “There are no precise rules gov‑
erning the suitability of this idealization; roughly, the idealization is appropriate 
when a finite-state automaton has a large array of state elements that it uses more 
or less uniformly that thereby serve as general memory” (Drescher 1991, p. 38). 
PCs, smartphones, and tablets are all, in reality, just finite-state automata, with the 
ability to compute a large class of functions that a universal Turing machine also 
computes. However, they do not compute all of them: their memory or input is not 
really unbounded, hence, they are not physical universal machines. However, these 
finite-state machines can be made quite flexible by running various kinds of routines 
in a given situation.

Newell admits that real systems are bounded in their resources, but retorts that 
“the structural requirements for universality are not dependent on unbounded mem‑
ory, only whether the absolute maximal class of input–output functions can be 
realized” (Newell 1980, p. 178). What counts is not unbounded, but “sufficiently 
open memory” and “the structure of the system,” because for “every machine with 
unbounded memory, there are machines with identical structure, but bounded mem‑
ory, that behave in an identical fashion on all environments (or problems) below a 
certain size or complexity” (Newell 1980, p. 161). However, from the mathematical 
point of view, these machines are not technically universal, even if they may be use‑
fully idealized as such.3

Other theorists were also at pains to show that cognition cannot happen with‑
out universal computation. For example, Pylyshyn (1984) claimed that cogni‑
tion requires not only flexibility, which in turn requires universality, but also that 
semantic interpretability requires universality. In other words, he has claimed that 
finite-state machines (FSM) cannot be semantically interpretable; however, this 
argument has been rebutted by Nelson (1987). Moreover, Pylyshyn relies on the 
argument from natural language acquisition, which claims that natural languages 
require universal computation (Pylyshyn 1973, pp. 26, 1984, pp. 87–88). The argu‑
ment is stated thus: at least some natural languages that human beings acquire are so 

3  It is trivially easy to show they are not universal by proving a pumping lemma for a given bounded-
memory machine.
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complex that they require a universal Turing machine to process them (technically 
speaking, they are context-free languages). However, the empirical evidence for the 
claim is ambiguous and scarce (Shieber 1985).

Additionally, universal computation may seem brittle in some environments, 
lacking complex emotional motivation and being “single-minded,” which has been 
one of the major worries of critics of computationalism for years (Neisser 1963). 
This brittleness is now informally referred to as the inability to solve the frame prob‑
lem (Dennett 1984; Wheeler 2005). Universal computation does not solve the brit‑
tleness problem by itself (even if the frame problem in the proper technical sense of 
the term is, in principle, solvable; cf. (Shanahan 1997). As Newell and Simon would 
probably repeat, this computation has to be “further organized.”

To sum up, the arguments that were supposed to justify the explication of “gen‑
eral-purpose computation” in terms of universality were unsuccessful. There is no 
empirical evidence that, say, human memory is actually unbounded, or that it could 
be unbounded if human beings were to use external resources such as pencil and 
paper [as suggested by Turing (1937) in his initial idealization of human computers]. 
Universal computation is neither necessary nor sufficient for behavioral flexibility.

2.2 � Information‑Processing

The second aspect of the analogy is that both computers and minds (or brains) pro‑
cess information. Some contemporary theorists, in particular those inspired by the 
ecological psychology of James J. Gibson, reject the notion that people process 
information just like computers (Chemero 2003). But their criticism is related more 
to the issue of representational information (see Sect. 2.3). The same is at stake with 
regards to the enactive account of cognition. Enactivists have claimed that autono‑
mous biological systems are all cognitive, but that cognition does not involve any 
information intake: “The notions of acquisition of representations of the environ‑
ment or of acquisition of information about the environment in relation to learning, 
do not represent any aspect of the operation of the nervous system” (Maturana and 
Varela 1980, p. 133).

However, the information at stake need not be semantic information, if it were, 
this part of the analogy would be included already in the capacity for incorporating 
internal models. The notion of information sufficient to express this aspect of the 
analogy is structural information content, as defined by MacKay (1969), which indi‑
cates the minimum equivalent number of independent features which must be speci‑
fied, i.e., the degrees of freedom or logical dimensionality of the information vehicle 
(whether or not it represents something). This kind of information is pervasive, and 
present in any causal process (Collier 1999). One can speak of structural informa‑
tion content in living beings as well.

To sum up, it is not controversial to say that brains and computers process struc‑
tural information, which may, or may not, be digital. It is much more controversial, 
however, to say that nervous systems manipulate internal symbols that represent 
reality.
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2.3 � Modeling Reality

The third aspect of the analogy between brains and computers is that both can 
create models of reality. In other words, one of the basic functions of the brain is 
to build models of the environment. Apter (1970, p. 18) points out that this was 
particularly stressed by J.Z. Young, whose work is the focus of the next section 
on working memory, and by Kenneth Craik (1943), one of the early proponents of 
the structural representations:

By a model we thus mean any physical or chemical system which has a 
similar relation-structure to that of the process it imitates. By ‘relation-
structure’ I do not mean some obscure non-physical entity which attends the 
model, but the fact that it is a physical working model which works in the 
same way as the process it parallels, in the aspects under consideration at 
any moment. Thus, the model need not resemble the real object pictorially; 
Kelvin’s tide-predictor, which consists of a number of pulleys on levers, 
does not resemble tide in appearance, but it works in the same way in cer‑
tain essential respects (Craik 1943, p. 51)

Craik’s approach is similar to what is now called structural representations 
(Cummins 1996; Gładziejewski and Miłkowski 2017; O’Brien and Opie 1999; 
Ramsey 2007). However, not all proponents of computational approaches to the 
study of cognition embrace the structural account of representations.

Notably, many computationalists rely on the notion of symbol, whose most 
important feature (in contrast to structural representations) is that the relationship 
between its vehicle and its content is arbitrary (Fodor 1975; Haugeland 1985; 
Newell 1980; Simon 1993). The notion of the symbol used by some of these theo‑
rists, however, remains ambiguous (Dennett 1993; Steels 2008). Sometimes New‑
ell and Simon talked of symbols in the sense of the computability theory, where 
they are just distinguishable entities in a computing device (e.g., on a Turing 
machine tape). Sometimes they thought of Lisp symbols, which are pointers to 
other data structures, and sometimes as elements that designate or denote ele‑
ments of reality (for further analysis and examples, see Miłkowski 2016a). While 
it is understandable that their intention was to show that computers can operate 
not only on numbers, but on arbitrary elements, and that the obvious term for 
such an arbitrary element is symbol, their terminological confusion makes it dif‑
ficult to evaluate what they meant by symbol in any context.

At the same time, symbolic and structural representations are thought to be 
opposite, because the vehicles of structural representations are not arbitrarily 
related to their contents (Sloman 1978). Suppose that computation is manipula‑
tion of internal symbols. Is processing structural models not computation? The 
notion of symbol is too ambiguous to provide a single answer. It is far from clear 
whether even the broadest notion of the symbol, understood as a distinct part 
of the Turing machine’s alphabet, could be applicable to analog computational 
models, which were prominent among early theorists of artificial intelligence and 
computer models in neuroscience (Von Neumann 1958; Young 1964).
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Moreover, unclear ideas about intentionality or aboutness, analyzed in terms of 
syntactical relationships between symbols by many proponents of symbolic com‑
putation (Haugeland 1985), might engender the appearance that computationalists 
confuse syntax with semantics (Harnad 1990; Searle 1980). The computationalist 
may say that one can treat syntax as semantics in an idealizing fashion (Dennett 
1987; Haugeland 1985). But this idealization is not forced by computationalism 
itself. Craik and Young had little reason to think of their models as arbitrary pieces 
of syntax.

This part of the early computationalism is in need of overhaul and reappraisal.

2.4 � Complex Behavior Out of Simple Building Blocks

The fourth part of the analogy is that both computers and brains have a large num‑
ber of similar building blocks that perform simple operations, which, taken together, 
contribute to a complex behavior. This was part of the first computational model of 
the nervous system, which modeled the system as a large collection of logic gates 
(McCulloch and Pitts 1943). It has remained a part of the connectionist research 
program, which underlined the point that the connections between (computational) 
neurons count the most, not individual neurons.

However, it is not a conceptual truth that individual neurons may perform only 
simple computations. Some argue that single neurons may be suited to efficient 
computation of tree-like data structures (Fitch 2014). If this is true, it does not mean 
that computationalism came to a grinding halt. It just shows that it is not only con‑
nections between neurons that count in neural computation. Therefore, we need to 
revise this part of the analogy as well.

2.5 � From Analogy to Strict Algorithms

The notion that mere analogy is not enough was a major methodological break‑
through in computational neuroscience—the function to be modeled should be 
described in a strict fashion. This influential methodological advice for the computa‑
tional study of cognition was formulated by David Marr (1982) in his three-leveled4 
account of computational explanation.

At the first level, called computational, the explanations deal with operations per‑
formed by the system, and the reason it performs them. In other words, one assumes 
that the system in question is flexibly adapted to some environment (see Sect 2.1), 
in which some kind of input–output transformations are useful (see Sect 2.2). At the 

4  Marr’s levels of explanation are not literally levels because they are not hierarchically ordered by any 
clear relationship, be it composition, constitution, realization, implementation or abstraction. Notice, for 
example, that the computational level includes the consideration of the issue of why certain computation 
is executed in a certain environment, but neither the adaptation to the environment nor the environment 
itself is implemented by algorithms and representations. Marr’s levels are, rather, aspects of all computa‑
tional systems that Marr considers to be jointly necessary and sufficient, in order to explain their compu‑
tational processes.
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second level, one specifies the representation for the input and output, and the algo‑
rithm for the transformation of the input into the output. Although Marr’s approach 
to representation may be interpreted variously, it clearly mirrors the assumption 
that cognitive computational systems model their worlds (Sect. 2.3), and that they 
perform certain basic operations (Sect 2.4). These basic operations and representa‑
tions must be shown to be biologically realized at the last Marrian level, the level of 
implementation. Only then is the explanation complete.

The popularity of Marr’s approach should be no surprise, given that it makes use 
of the basic aspects of the general analogy involving the computer and the brain. 
By following Marr strictly, one can pursue the goal of the computational research 
tradition, and offer detailed computational models for cognitive phenomena. Marr’s 
methodology, quite obviously, is theoretically almost vacuous as it comes to cogni‑
tion, and remains very abstract. Almost any of the competing computational models 
in cognitive science can be cast in terms of the three levels. This methodology offers 
only a check on whether all the important questions have been asked. But there are 
no preferred answers.

In spite of the popularity of Marr’s methodology, it is rarely observed that Marr 
could not make sense of some computational approaches. For example, he criticized 
the heuristic approach taken by Simon and Newell as mere gimmickry (Marr 1982, 
pp. 347–348). According to Marr, when people do mental arithmetic, they actually 
do something more basic. Here, Marr seems to be committed to a version of the 
basic operations assumption which states that modeling should refer to the really 
basic building blocks. But his own account of levels cannot justify this commitment; 
nowhere does he justify the claim that one should specify mental arithmetic in terms 
of the operations of neural ensembles, or of individual neurons, for example. This 
is not a coincidence, his account of the implementation level remains awkwardly 
abstract, which makes it the Achilles heel of his methodology.

To summarize this section, the early statements of basic theoretical assumptions 
are faulty in several ways. They unpack the analogy between nervous systems and 
computational devices in an outdated way. Marr’s level-based methodology was a 
serious improvement, but suffered from the problem of how to include the evidence 
about the work of the nervous system. In the next section, I show that the analogy 
can be motivated better from the contemporary mechanistic point of view. In par‑
ticular, the mechanistic solution sheds light on the role of neural evidence.

3 � Mechanistic Computationalism

In this section, I defend the claim that the basic metaphysical assumptions of the 
computationalist research tradition are best understood from the mechanistic point of 
view. The mechanistic computationalism is compatible with a variety of approaches 
to computational modelling without deciding contentious matters of fact a priori, 
such as whether there are genuine representations in all computational systems or 
not. All it requires is that explanatory factors be actually explanatorily relevant and 
in line with empirical evidence. This is what drives the development of methodol‑
ogy in computational neuroscience. After briefly elucidating the notion that nervous 
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systems are computers from the mechanistic perspective, I rephrase the basic meta‑
physical and methodological assumptions reviewed in the previous section. Then, 
in Sect. 4, I illustrate the development of methodology by showing that empirical 
validation of models is guided by the mechanistic norms of explanation.

The mechanistic account of physical computation holds that computers are 
physically organized systems, whose component parts and operations jointly pro‑
duce computational phenomena as a result of containing information vehicles5 
(Miłkowski 2013; Piccinini 2015). These vehicles need not carry digital informa‑
tion; at least conceptually, there may also be information vehicles that require an 
infinite number of degrees of freedom in order to be specified precisely.6 All physi‑
cally implemented computation requires transformation of information vehicles (in 
the extreme case, the transformation at issue may be identity). Piccinini (2015, p. 
121) requires that this transformation occurs according to rules sensitive only to 
properties of vehicles of information, while rules are understood as mappings from 
input vehicle properties (and possibly some internal states) to output vehicle states. 
In extreme cases, the inputs of a computer are empty.

At least some operations of the nervous system necessarily involve information 
processing in this sense. The hypothesis that nervous signals, both electrical (such 
as spikes) and chemical (the release and uptake of neurotransmitters) are informa‑
tional, is at the core of current neuroscience. This is how the mechanistic account 
restates the second part of the analogy from the previous section, which was the 
least problematic.

3.1 � Bottoming Out

The operations and component parts of computational mechanisms have to be 
explained, at some point, in a purely causal manner, or to bottom out in non-com‑
putational elements (cf. Machamer et  al. 2000; Miłkowski 2012). In a sense, the 
mechanistic view treats the term physical as used in the expression physical symbol 
system hypothesis somewhat more seriously than Newell and Simon. But it does not 
force bottoming out at the level of elementary physics. The level is decided prag‑
matically by the research community.

It follows that there may be some features of cognition that cannot be explained 
by reference exclusively to their computational structure. But this is not a surprise. 
For example, standard laptop computers generate heat, but this cannot be explained 
solely by appealing to the software that runs on them. The physical properties of 
electronic parts, in particular CPUs, are responsible for heat dispersion when elec‑
tricity runs through them. Similarly, cognitive processing is studied by observing 

5  To be exact, Piccinini eschews the notion of information and talks of medium-independent digits, but 
then concedes that they need not be digital. This is a purely verbal difference.
6  The caveat “at least conceptually” is intended to make it clear that it may be impossible for physical 
reasons. Some might argue that any measurement operation on physical information vehicles has finite 
resolution, and some error is involved. Or one could deny that there are actual infinities out there. This 
paper remains neutral in this regard.
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response times of experimental subjects (Meyer et al. 1988; Posner 2005). Response 
times cannot be fully analyzed without considering the inherent hardware speed 
(usually assumed to be a constant multiplier). Thus, the speed of the nervous pro‑
cessing is not a solely computational fact. It is a feature of the physical implementa‑
tion of computation (Miłkowski 2011).

The bottoming-out principle is related also to the basic operations stressed by 
Marr. Basic operations are important, because they are part of testing the validity 
of computational models. Validation of implemented computational models with 
experimental data has become indispensable when publishing serious work in cog‑
nitive science journals.

One early important requirement was formulated by Jerry Fodor in his first book 
on psychological explanation (Fodor 1968). He distinguished two kinds of rela‑
tionships between computational simulations and experimental data. First, models 
can be weakly equivalent, as long as they produce the same output, given the same 
input. These models, however, as Fodor stressed, are not satisfactory. Only the sec‑
ond equivalence class, of strong equivalence, offers a full explanation. A model is 
strongly equivalent when it is not only weakly equivalent, but also when “the pro‑
cesses upon which the behavior of the machine is contingent are of the same type as 
the processes upon which the behavior of the organism are contingent” (Fodor 1968, 
p. 138).

But how does one establish that the types of processes are the same as each other? 
Without sophisticated measuring instruments, computational models can never be 
shown to be strongly equivalent. In spite of the precision with which we can state 
these models, the differences between them could never be resolved empirically.

This became even more pressing when proponents of computationalism also 
embraced the claim that psychological explanations are autonomous from neurosci‑
entific evidence (Fodor 1974). Such autonomy comes at the price of empirical inde‑
terminacy. John Anderson argued that the debates between various approaches to 
mental imagery, for example, could not be decided by recourse to behavioral data. In 
addition, physiological evidence was rather indirect and too theoretically mediated 
to be of any use (Anderson 1978). His argument also relied on the observation that 
the debate failed to specify the processes for handling diverging formats of mental 
representation. This, he stressed, might deliver the constraints required in order to 
go beyond behavioral data. The subsequent research, rather unsurprisingly, included 
neuropsychological data (Farah 1988).

Today, various kinds of neuroscientific evidence are significant for computational 
models, from brain imaging (e.g., Anderson et al. 2008), experimental interventions 
such as transcranial magnetic stimulation (Pascual-Leone et  al. 2000) and natural 
brain damage, to patch clamps, which are used to record electric signals from neu‑
rons directly, and optogenetic methods in model animals (Deng et al. 2017). All in 
all, although a single piece of neuroscientific evidence is usually not univocal, it 
helps to constrain the space of plausible computational models of cognition (Bechtel 
2008), because validation usually uses multiple pieces of evidence to further con‑
strain this space. For example, in the case of computational psychiatry, a wide range 
of various kinds of evidence is already used for model validation (cf. Bhattacharya 
and Chowdhury 2015).
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One particularly important requirement has been identified in a recent discussion 
(Coltheart 2013; Mole and Klein 2010). It was noted that a large number of cogni‑
tive models were supposed to be valid owing to their consistency with neural data. 
But this is not enough to establish validity. Validation should always be contrastive; 
not only should a model be shown to be better than alternative models, but it should 
also have predictions about neural data that could be used to disconfirm the model 
(or to refine it).

3.2 � General‑Purpose Computational Mechanisms

Let us now turn to the idea of general-purpose devices as underlying cognitive flexi‑
bility. At least in some areas of comparative psychology, flexibility is indeed thought 
to be an important distinctive feature of cognitive processing (Buckner 2015). But 
flexibility can be explained by appealing to non-universal computation. What is 
more important for behavioral flexibility is to see whether computational mecha‑
nisms may solve behavioral problems to allow the agent to deal with its environ‑
ment effectively. To be a behaviorally flexible organism, it’s sufficient to respond to 
a large class of inputs by producing a large class of behaviors. For example, it seems 
biologically plausible that evolutionarily early nervous systems, or their predeces‑
sors, are computationally weaker than universal Turing machines, even if one could 
argue that human brains are helpfully idealized as universal Turing machines. Thus, 
what is more crucial to flexibility is the kind of cognitive architecture rather than the 
ability to implement universal computation.

Non-universal computation is still computation. Therefore, the mechanistic inter‑
pretation of the basic computationalist assumption makes room for non-universal 
computation. To be general-purpose, computational mechanisms need not be uni‑
versal machines.

The mechanistic perspective makes it possible to consider also non-Turing com‑
putation as part of the computationalist research tradition. The account does not 
decide which mathematical model of computation is viable and which is physically 
possible. In other words, it does not quickly presuppose the Church-Turing thesis, 
which states that the class of computable functions is equivalent with what a univer‑
sal Turing machine may compute [the relation of this thesis to physical computabil‑
ity is analyzed further by Piccinini (2011)]. Simply speaking, philosophers cannot 
decide, in the confines of their armchairs, which mathematical notions of compu‑
tation are acceptable. The question of whether these notions are also physically 
possible or actual may require extensive empirical inquiry in the realm of physics 
(and maybe also computer engineering). Therefore, the issue of what is contained 
in the class of (physically) computable function is left open, or transparent (Chrisley 
2000). Philosophical accounts should not presuppose what may happen in the course 
of the future development of mathematics and computer science, they should remain 
as open as possible. In other words, there may still be some room for development 
in the notion of computation; it may still have some open texture (Shapiro 2006). 
At the same time, the accounts of physical computation should be able to spell out 
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precisely what is required to implement, say, digital computers, or some type of 
analog computation.

This is all the more important because it is plausible that biological brains are 
not necessarily digital computers—some of their computation may be analog, or 
even partially digital and partially analog (Maley 2017; Piccinini and Bahar 2013). 
Analog computation, as well as hypercomputation, is computation at least in the 
sense that they are both the focus of mathematical and engineering theories of com‑
putation. Nobody would be fired from a computer science department for axiomatiz‑
ing analog computation or hypercomputation. Both are still in purview of computer 
science.

Therefore, according to the mechanistic perspective, computation is informa‑
tion-processing in the non-semantic sense, and general-purposiveness is not to be 
equated with universal Turing computation. Moreover, elementary processing com‑
ponents may be also fairly complex in computational terms; thus, if Fitch is right 
that neurons are particularly optimized to perform computations on tree data struc‑
tures, computationalism does not fail.

3.3 � Neural Representations

The most difficult problem with traditional assumptions of computationalism is how 
to precisely understand that both brains and computers “incorporate models.” How 
are these models related to symbols cited in the physical symbol system hypothesis, 
or to internal models assumed by GOFAI?

Remember that computationalism is a broad research tradition, so one should 
expect controversy around important issues. However, there need not be one com‑
putational way of thinking about representations. Overall, the issue of what makes a 
cognitive representation is complex. The ideas of structural representations (or mod‑
els) and interpreted symbols are not the only ones in the game. Others relied on 
the notion of indication (Dretske 1986; Fodor 1984), and some consider representa‑
tional talk a mere gloss on computational explanations (Chomsky 1995; Egan 2010). 
From a mere gloss, it’s just a short stretch to instrumentalism (Dennett 1971, but 
see his 1991 for a more realist position), fictionalism (Sprevak 2013), eliminativism 
(Downey 2017), or general anti-realism about mental content (Garzon 2008; Hutto 
and Myin 2013).

Thus, it would be a mistake to think that there is one approach to representation 
defended by all the proponents of computationalism. One of the advantages of com‑
putationalism is that it can fruitfully explicate some features of representation and 
fits diverse approaches to the aboutness of representations.

First, computationalism can make content causally relevant, thus helping 
to solve one of the facets of the mind–body problem. Because physical vehi‑
cles are causally relevant in computation, mental representations can be caus‑
ally efficacious, too (Newell 1980). However, only the syntactical features, many 
people are quick to add, are causally relevant. According to Dennett, semantic 
engines are, strictly speaking, impossible, while what is at stake are syntac‑
tic engines (Dennett 1987). This argument is embraced by many proponents of 
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anti-representationalism. However, as Gładziejewski and Miłkowski (2017) 
recently argued, in the case of structural representations, it’s not the structure of 
the vehicle alone that is causally relevant for the explanation of behavior. What is 
relevant in this case is rather the similarity relationship between the vehicle and 
the target of the representation. Therefore, semantic engines are not only logically 
possible, but, as they show by appealing to cognitive maps in rodents, also actual. 
To sum up, by assuming both computationalism and representationalism, one 
can explain how representational processes are causally responsible for behavior. 
There is currently no other naturalistic alternative for explaining how the contents 
of thoughts might cause action.

Second, by treating brain mechanisms as representational, we can fruitfully 
account for cognitive processes (Shagrir 2010a). At the most abstract level, repre‑
sentational explanations make it clear how cognitive systems may flexibly adapt to 
their changing environment; they are able to learn and predict it simply by build‑
ing representations of it. While one could describe learning and adaptation in non-
representational terms, the efficacy of control systems, in general, depends on their 
ability to represent the controlled domain (Conant and Ashby 1970). The attempt to 
re-describe them is mere wordplay.

To sum up, computationalism need not imply any particular version of represen‑
tationalism, but it is a natural counterpart of the latter. Similarly, the mechanistic 
approach to physical computation states that computation is not necessarily seman‑
tic (Fresco 2010; Miłkowski 2013; Piccinini 2008). Thus, mechanistic computa‑
tionalism is compatible with virtually all naturalistic approaches to mental content, 
including anti-representational computationalism (Villalobos and Dewhurst 2017).

All in all, the mechanistic proposal is to understand computationalism in a more 
open fashion. The argument that philosophers should not decide empirical issues 
applies to all parts of the analogy between nervous systems and computers: in trans‑
parent computationalism; in arguing that flexible action of agents need not rely on 
universal computation; in making the notion of information purely structural; and 
in openness toward various approaches to mental representation. Similarly, just like 
Newell and Simon, who did not propose any substantial theory of what cognition 
is, operationalizing it only in terms of general intelligent action, the mechanistic 
approach does not have a theory of what constitutes the mark of the cognitive (cf. 
Adams and Aizawa 2008; Rowlands 2009). This is a separate issue and it remains 
open (Akagi 2017). All that the mechanistic approach says is that computation is 
necessary for cognition, because cognition does not occur without processing infor‑
mation (in the minimal structural sense). Instead of claiming that it is just “further 
organization” of computation that would be sufficient to make a computational 
mechanism cognitive, mechanists also leave this question open to be decided by 
particular theorists. Moreover, the mechanistic approach admits that there could be 
facts about the mind or the brain that cannot be explained computationally.

Thus, in the mechanistic rendering of computationalism, its foundational assump‑
tions may be shared by a variety of conflicting approaches. It does not conflate these 
foundational assumptions with any particular computational approach.



529

1 3

From Computer Metaphor to Computational Modeling: The Evolution…

It is instructive to compare the mechanistic view of computation with the seman‑
tic approach (see Fig. 1), its greatest contender.7 According to the semantic view, a 
spatiotemporal system is a computer if, and only if, some states of the system can 
be described as transforming some entities whose role is to model, or represent 
something (Fodor 1975; Shagrir 2010b). The semantic view is usually expressed 
in terms that seem to make computation a matter of ascriptions of representa‑
tion (Dresner 2010). In contrast, the defenders of the mechanistic view claim that 
computation is an objective feature of mechanisms. Moreover, they differentiate 
between generic information-processing mechanisms, and mechanisms whose func‑
tion is computation (Miłkowski 2013). For example, physicists may inquire about 

Fig. 1   Semantic versus mecha‑
nistic approach to physical 
computation. Both approaches 
agree as to the computational 
nature of functional computa‑
tional mechanisms (marked by 
a checkmark), but the semantic 
account denies that generic 
information-processing mecha‑
nisms are computational (hence 
the X mark)

7  This is not to say that these are the only accounts ever proposed in the current debate (cf. Miłkowski 
2013; for a review, see Piccinini 2015). One influential contribution is David Chalmers’s (2011) causal 
account of physical computation (I thank the anonymous reviewer for flagging this omission in the previ‑
ous version of this paper). However, because Chalmers does not rely on any particular account of cau‑
sation nor causal explanation, his account suffers from a number of weaknesses from the mechanistic 
point of view. In particular, it does not appreciate the role of non-entirely computational features, such as 
response times, in the study of cognition (Miłkowski 2011). Other prominent views rely on the idea that 
a computer is just any physical system on whose states one can map computational states but suffer from 
indeterminacy problems (Putnam 1991; Searle 1992); cf. Sect. 5.2 below.
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the ultimate computational limitations of the whole universe (Lloyd 2002), and this 
kind of question is not in any way unscientific. In contrast to generic information-
processing mechanisms, computers, in the proper sense, are only those mecha‑
nisms whose function is to compute (Piccinini 2015). However, even these comput‑
ers may not feature any genuine cognitive representations. Therefore, the class of 
representational computers is a subclass of functional computational mechanisms. 
Note: for the semantic view, all functional computational mechanisms are seman‑
tic in a certain minimal sense; specifically, they can be interpreted as such. So, the 
crucial difference between the semantic and mechanistic view, as the check mark 
on Fig. 1 shows, boils down to the class of non-functional information-processing 
mechanisms.

Importantly, however, the mechanistic view relies on a mature theory of explana‑
tion (Craver 2007; Glennan 2017; Machamer et al. 2000), while the semantic view 
is noncommittal as to the theory of explanation. It does not offer, by itself, methodo‑
logical advice that is as rich the mechanistic approach. At the same time, the mecha‑
nistic approach can the insight of the semantic view that an important function of 
the nervous system is to model reality. Thus, the claim that the semantic and mecha‑
nistic view are mutually exclusive would be a false dichotomy (Miłkowski 2017b).

3.4 � Computationalism and its Falsifiable Metaphysical Assumptions

Even if this mechanistic rendering of computationalism is relatively weak, that does 
not mean it could not be shown to be false. Simply, were information-processing 
causally irrelevant to cognitive phenomena, this approach would be bankrupt. It is 
unlikely this will ever happen. Computationalism has become the basis of a fruitful 
research tradition. In this section, the theoretical and metaphysical assumptions of 
the tradition were analyzed.

Research traditions evolve over time. That includes their methodological assump‑
tions, in particular, the testing of models. In the next section, a historical and con‑
temporary model of working memory is reviewed. I argue that the mechanistic 
approach to explanation vindicates contemporary computational neuroscience as 
offering genuine explanations. Computational neuroscience is no longer satisfied 
with metaphors. Its results are becoming more and more testable empirically.

4 � How Neuroscience Studies Brain Computation

Early work in computational neuroscience consisted mostly of exploratory models, 
whose purpose was to show that, in principle, computational simulations suffice to 
produce interesting cognitive phenomena. The problem was how to build models 
that could be validated using available evidence. This can be illustrated in the work 
of J.Z. Young (1907–1997), one of the most influential biologists of the twenti‑
eth century (Boycott 1998). In the 1930s, one of Young’s influential achievements 
was the development of study methods for spikes in giant nerve fibers of the squid, 
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which later led to groundbreaking results in modeling the electrical activity of the 
nervous system.

4.1 � Memory Units in Cephalopods

Young’s work was heavily influenced by cybernetics. His A Model of the Brain 
(1964) was one of the first attempts to bring together computational modeling and 
experimental work in neurobiology. Most computational psychology at the time 
remained silent about the nervous system. Young described the brain as the home‑
ostatic computer involved in the control of behavior. He also discussed a number 
of experiments, which led him to distinguish two separate memory systems in the 
octopus: visual and tactile (Young 1965). One function of memory systems is to 
control behavior, or to change the animal’s readiness to act in a certain way. While 
Young’s hypotheses about the function and structure of learning mechanisms in the 
optic lobe of the octopus are heavily influenced by computer terminology, there are 
merely box and arrow diagrams of plausible mechanisms, with no accompanying 
computer simulations (see Fig. 2 for an example). Indeed, Young does not go into 
any detail of brain computation, merely pointing to simulations of analog computa‑
tion used for pattern recognition (Taylor 1964).

Therefore, Young’s work in the 1960s is indeed a prime example of what a com‑
puter metaphor might be, in biological research into the nervous system. He simply 
uses analogies from computer technology as his heuristics of discovery. Nonethe‑
less, he does not defend any detailed computational model of the octopus’s opti‑
cal lobe. This drives his research on functional anatomy. For these purposes, analo‑
gies seem sufficient. However, a critic of computationalism might plausibly say that 
Young’s functional anatomy has not led to mature computational neuroscience mod‑
els, and rests upon loose talk.

Over the years, however, Young’s model progressed. In the 1970s, in particular 
in his Gifford Lectures (Young 1978), instead of framing memory in terms of static 

classifying
cell

tastememory
cells

retreat

pain

attack

Fig. 2   Young’s model of memory units in the octopus: Feature detectors cause changes in memory cells, 
which are coupled with taste receptors and attack effectors, as well as pain receptors and escape effec‑
tors. The arrows on the diagram are not fully interpreted, and their operation is merely localized in some 
structures of the nervous system. From Young (1965), by permission of Royal Society Publishing
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models or representations, he uses the term “program.” He stresses at the same time 
that it is not meant literally, but expresses a concept of hierarchical and dynamical 
control. Overall, his use of computer models is best summarized as follows:

Computers are in a sense artificial brains. Can we frame the descriptions that 
we want of brain function in the language used for computers? Computers are 
as it were a sort of new experimental animal that we can use for our studies, 
just as we use Escherichia coli or the giant nerve fibres of a squid. Clearly we 
are not made of transistors and it is the principles of computer software that 
we should consider. The analogy of computer programs can indeed be help‑
ful—but only in the most general sense. Since we do not know how informa‑
tion is stored in the brain we cannot expect to use the detailed analogies of 
addressing and storing information, which is probably not done on the same 
principles in brains and computers (…). What can be used is the concept of 
hierarchy of controls (Young 1978, p. 62).

In the Gifford Lectures, “programs of the brain” are related to cyclical operations 
of the nervous system, as driven by physiological rhythms. They are hypothesized 
to be a result of the selection (trimming) of nervous connections, and they play the 
role of selecting behaviors, as based, for example, on emotional processing and 
learning. However, Young’s efforts at explaining how learning occurs in terms of 
rewards (Young 1978, pp. 88–89) fall far behind mathematical models of reinforce‑
ment learning (Rescorla and Wagner 1972), such as the temporal difference algo‑
rithm (Sutton 1988). At the same time, Young’s account of basic memory units—
mnemons in his terminology—is not entirely loose, as the mnemon is supposed to 
“record one bit of information” (Young 1978, p. 87).

Once again, in the 1990s, Young returned to mnemons and framed the computa‑
tional principles of two memory systems of the octopus in terms of distributed pro‑
cessing in “serial networks, with recurrent circuits” (Young 1991, p. 200). In spite 
of significant theoretical progress, the criticism against this kind of work may be 
repeated: the use of computation remains largely heuristic and does not yield precise 
experimental predictions. Moreover, neuroscientific evidence is not used explicitly 
to reject computational hypotheses. Indeed, these models of nervous mechanisms 
are largely schematic. Computational detail is lacking.

4.2 � Semantic Pointer Architecture and Serial Working Memory

To make the contrast with J. Z. Young’s model of memory dramatic, I focus here on 
the Semantic Pointer Architecture (SPA) recently proposed by Chris Eliasmith and 
his collaborators (Eliasmith 2013; Eliasmith et al. 2012). This model explains serial 
working memory. It goes beyond recurrently connected networks (to which Young 
also gestured in the 1990s). The SPA is modeled using spiking neuron networks. It 
has become the basis of the largest cognitive model of the brain to date. This is the 
feature of Eliasmith’s approach to modeling that relies both on behavioral and physi‑
ological data—in this case, on psychological experiments related to serial recall 
(Baddeley 1998) and animal studies (although these are rare). Two fundamental 
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features of serial working memory are observed: primacy and recency; first and last 
items are best recalled, which leads to a U-shaped curve of recall (see Fig. 3).

The model of ordinal serial encoding of memory proposed by Xuan Choo of 
Chris Eliasmith’s lab is mapped onto cortical and hippocampal memory systems. 
It is implemented in an idealizing fashion. The input of the model is a semantic 
pointer (or a structure that compresses information from another part of the neural 
network in a lossy fashion) representing the item, and another pointer that represents 
its position. These are processed and added to memory. The “overall representation 
of the sequence is the sum of the output of the two memories” (Eliasmith 2013, 
p. 214). Consequently, this model has become part of the larger brain simulation, 
Spaun (SPA Unified Network), and underlies its performance in several cognitive 
tasks. Not only does it exhibit primacy and recency effects, but also matches aver‑
aged human data “from a rapid serial-memory task using digits and short presenta‑
tion times (…) is also evident, with 17 of 22 human mean values within the 95% 
confidence interval of 40 instances of the model” (Eliasmith et al. 2012, p. 1204).

However, mere consistency is not enough. Other models can reproduce recency 
and primacy effects. In contrast, Spaun reproduces the psychophysical regularity 
known as Weber’s law, which states that the variance in response time increases 
with the mean response time, as well as producing a behavioral prediction that a cer‑
tain type of question posed to human subjects will not affect their accuracy in recall. 
More interestingly, Spaun also yields a neurophysiological prediction about the 
expected change of similarity in neural firing, in the dorsolateral prefrontal cortex 
during a serial working memory task. The dorsolateral prefrontal cortex is assumed 
to be the temporary storage and manipulation of higher level data related to cogni‑
tive control.

One striking feature of the working memory model in SPA is that its performance 
could only be assessed by analyzing a working computational simulation. The equa‑
tions describing the model specification cannot reproduce the recency and primacy 
effects (Eliasmith 2013, p. 218). Only in the implemented model was it evident that 
“the individual neurons themselves saturate when participating in the represen‑
tation of large vectors” (Eliasmith 2013, p. 219). As Eliasmith stresses, this dem‑
onstrates the theoretical significance of “constructing a neural implementation for 
explaining high-level psychological behavior,” and goes against the received view 

Fig. 3   Primacy and recency 
effects in serial recall of words. 
Source: From English language 
Wikipedia, CC BY-SA 3.0, https​
://commo​ns.wikim​edia.org/w/
index​.php?curid​=61092​398

https://commons.wikimedia.org/w/index.php?curid=61092398
https://commons.wikimedia.org/w/index.php?curid=61092398
https://commons.wikimedia.org/w/index.php?curid=61092398
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that psychological and neuroscientific theories are independent. Hence neural imple‑
mentation is relevant to the explanation of behavioral data. This is exactly what was 
missing in J. Z. Young’s work—no computer implementation was ever produced, 
which, from the mechanistic point of view, shows that this work is not as valuable as 
Eliasmith’s (Miłkowski 2013, p. 133).

Moreover, Eliasmith’s approach, in contrast to many connectionist strategies, is 
to build models directly by relying on theoretical considerations, instead of using 
machine learning techniques to set connection weights in artificial neural networks. 
To use Marrian terminology, one could say that algorithms and representation are 
not made obsolete by relying on the computer implementation. From the mecha‑
nistic point of view, the dynamic model of brain computation used by Eliasmith is 
indispensable in assessing whether the explanation is satisfactory. Simply, without 
it, one could not see whether the causal connections in the brain are reflected in the 
computation (Kaplan 2011). In other words, the mechanistic perspective does not 
obviate the need to understand the algorithmic principles of brain computation.

The case of the working memory model shows that the field of computational 
neuroscience has progressed from proposing simple “proof-of-concept” models, 
which were supposed to prove that a certain cognitive capacity might be realized 
computationally, as evident in Young’s theorizing, to models with at least partial 
biological plausibility. The implicit assumption of this development is that biologi‑
cal plausibility or realism is explanatorily crucial. This, it may be argued, is how 
this research tradition has responded to various criticisms which stated, in a nut‑
shell, that computational modeling is unbearably easy. One can create a plethora 
of very precise models without being able to say which one is approximately true. 
By providing appropriate evidence about brain operations and structures, one can 
substantiate the claim that the computational model is sufficiently developed at the 
level of implementation, as Marr would call it. Instead of ignoring the evidence as 
non-essential—which is indeed inessential when producing mere proof-of-concept 
models—modelers are busy validating their models with empirical data. Of course, 
models are usually strategically idealized, but this does not mean that they are 
unbearably metaphorical anymore.

4.3 � Interim Summary: Research Tradition in Full Swing

Computational neuroscience is no longer driven by loose analogies or metaphors. Its 
practice reveals that the main aspects of the analogy between the computer and the 
brain are used for methodological purposes. In particular, Marr’s approach to com‑
putational explanation, along with a mechanistic stress on the discovery of underly‑
ing operations, and the relevance of all neuronal detail for the phenomenon at hand, 
have made it a successful research tradition.

The unity of computational neuroscience can be seen mostly on the methodologi‑
cal level. Theoretically, computational neuroscientists are divided, defending many 
competing approaches. They all have their own preferred phenomena of interest and 
favorite modeling paradigms. They also share principles of computationalism, as 
rephrased mechanistically in Sect.  3, but their work goes beyond mere principles. 
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This is also why the loose speculations of the 1940s or 1950s have gradually evolved 
into biologically constrained modeling techniques that continue to deliver insight 
into the neurocognitive mechanisms.

5 � Possible Objections

In this section, I enumerate several objections against the claim defended here. I 
claim that computationalism is a progressive research tradition that has led to a 
remarkable development in computational neuroscience. The conceptual connec‑
tions between computation and cognition, understood in line with the mechanistic 
approach to physical computation, provide important research insights within empir‑
ical research into the computational modeling of nervous systems. All these claims 
could be undermined by saying that computational neuroscience is not mechanistic, 
is empirically vacuous, or is immature.

5.1 � Not All Computational Neuroscience is Mechanistic

Some researchers claim that there are examples of computational models in neuro‑
science that remain at odds with the mechanistic approach to explanation. For exam‑
ple, Chirimuuta (2014) claimed that so-called canonical computations are under‑
stood in a heavily idealized and non-mechanistic fashion.

But this paper does not aim to establish that all research in computational neuro‑
science proceeds in the mechanistic fashion. The claim is, rather, that mechanistic 
research makes the most sense of theoretical and methodological conundrums faced 
by modelers and takes the issue of connecting the neural evidence with computa‑
tional modeling most seriously. Of course, not all modeling is currently up to the 
task, because empirical evidence is either not there, or remains merely consistent 
with it. However, the defenders of the mechanistic approach claim that modelers 
should strive to fulfill mechanistic norms of explanation, even if most research will 
fail to do so for a long time to come. J. Z. Young repeatedly stressed that crucial 
detail is missing, and more experimental data is needed. He was well aware that he 
did not establish, for example, that the distributed connectionist model of recurrent 
networks sustains working memory in the octopus. At the same time, his functional 
anatomy has features typical of mechanistic explanations. It describes biological 
mechanisms responsible for phenomena of his interest, and these mechanisms are 
explained in terms of their component entities and operations. The missing part in 
his work on memory is a complete description of the computational machinery, as 
well as mapping this description onto biological mechanisms, which is a require‑
ment of adequate explanatory models in computational neuroscience (Kaplan 2011). 
This requirement is fulfilled, to a much larger extent, by Eliasmith’s Spaun (cf. 
Miłkowski 2016b).

Note that the semantic view on physical computation by itself has no stance on 
whether the models proposed by Young are satisfactory or worse than Eliasmith’s. It 
simply has no resources to deal with this issue.
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5.2 � Indeterminacy Problems are Still Not Solved

Another objection to computational neuroscience, sometimes voiced by other cogni‑
tive scientists, is that modeling is empirically unconstrained and, at least to some 
extent, arbitrary, because there are too many ways to relate it to evidence. One could 
even go so far as to claim that anything might make any computational model true, 
because one could describe anything as a computer (Putnam 1991; Searle 1992).

However, current practice shows that the validation of models is much more con‑
strained, as Sect. 4 above shows. It is simply an unacceptable practice to change the 
target of the model ad hoc when building a computational simulation. A paper that 
starts with a task of simulating, say, a single dendrite and ends up only simulating 
the dynamics of water flowing in a pipe (and not a dendrite), would be rejected in 
any respectable journal. Moreover, if this model described not only a single den‑
drite, but also some other phenomena, this coincidence would not be detrimental. 
The only detrimental situation would be one in which all possible targets fitted the 
model. In other words, it would be a real disaster if all possible algorithms simulta‑
neously could be truly ascribed to any physical system. But, as many theorists have 
pointed out (Chalmers 2011; Miłkowski 2013; Piccinini 2015), the arguments to that 
conclusion are all unsound, because they assume that all there is to physical compu‑
tation is a simple mapping between a mathematical description of computation, and 
some physical state of affairs. That issue, however, goes beyond the scope of this 
paper.

5.3 � Computational Neuroscience is Not Mature Enough

In Sect. 4.4, it was admitted that computational neuroscience remains theoretically 
fragmented. This, one could contend, means that it is not a mature science in the 
sense of Thomas Kuhn (1962). It is still full of anomalies. So, as a matter of actual 
fact, computational neuroscience has not progressed much.

This objection assumes that the notion of mature science can be properly used to 
assess scientific disciplines. But this is not at all clear. Any lively scientific field of 
research includes a fair amount of controversy, and this is not a sign of degeneracy. 
Moreover, as Laudan (1977, p. 151) has noticed, Kuhn was unable to point to any 
major science in which paradigm monopoly has been the rule, or in which the foun‑
dational debate was absent. Science has no disdain for anomalies.

6 � Conclusion

In this paper, I argued that the computationalism is a research tradition that should 
not be conflated with one of the component approaches or theories in this tradition. 
The term the computational theory of mind is a misnomer. It is not a single theory, 
rather a series of metaphysical and methodological assumptions that are shared by 
particular, sometimes conflicting, computational theories (note the plural). These 
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assumptions have formed the core of computational cognitive science and early 
cybernetic efforts to model the brain, which have then transformed slowly into what 
we now know as computational neuroscience. This can be seen in the development 
of J. Z. Young’s work on memory units in the octopus, which still does not fulfill the 
methodological standards that are met by contemporary models, such as the model 
of working memory using SPA that relates behavioral, neuroscientific, and computa‑
tional data. Even if the short sketch of this transformation remains somewhat a sim‑
plified caricature, it retains, or so I would claim, the most important features of this 
research tradition. For all we can say right now, it has turned out to be fruitful, and 
will be useful in formulating future theories of the brain and cognition.

The metaphysical assumptions of the tradition can be defended in two ways: by 
appealing to conceptual analogy arguments, and by showing how these analogy 
arguments have fostered the development of a progressive research tradition, which 
has already gone far beyond mere handwaving and speculation. Loose analogies 
between some brain and some type of computer are no longer deemed to be cog‑
nitively satisfactory. Even if analogies have to be understood in broader terms than 
were presupposed in the 1970s or 1980s, so as not to exclude a priori any of the pos‑
sible computational theories of brain computation, understanding these assumptions 
more broadly does not lead to methodological flimsiness. Computational modeling 
is required to be explanatory, and to provide further insight into phenomena of inter‑
est. And it does. It shows, for example, that some yet-unobserved behavioral features 
are to be expected, which can then be experimentally tested.

Moreover, best practices in computational neuroscience already aim at fulfilling 
the norms of mechanistic explanation, which requires that all and only causally rel‑
evant factors should be included in the models, as well as the complete mapping 
between computational descriptions and mechanism components. All this vindicates 
the claim that computationalism is not only here to stay, it becomes stronger every 
year.
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