

492

IS EVOLUTION ALGORITHMIC?

Marcin Miłkowski

Institute of Philosophy and Sociology

Polish Academy of Sciences

+48226351350

marcin.milkowski@ifispan.waw.pl

Abstract. In Darwin’s Dangerous Idea, Daniel Dennett claims that evolution is
algorithmic. On Dennett’s analysis, evolutionary processes are trivially algorithmic
because he assumes that all natural processes are algorithmic. I will argue that there
are more robust ways to understand algorithmic processes which make the claim
that evolution is algorithmic empirical and not conceptual. While laws of nature can
be seen as compression algorithms of information about the world, it does not
follow logically that they are implemented as algorithms by physical processes. For
that to be true, the processes have to be part of computational systems. The basic
difference between mere simulation and real computing is having proper causal
structure. I will show what kind of requirements this poses for natural evolutionary
processes if they are to be computational.

mailto:marcin.milkowski@ifispan.waw.pl
user
Pisanie tekstu
Preliminary draft. Final version available as: Miłkowski, Marcin. 2009. “Is Evolution Algorithmic?” Minds and Machines 19 (4): 465–475. doi:10.1007/s11023-009-9170-6. http://www.springerlink.com/index/10.1007/s11023-009-9170-6.

493

Daniel Dennett made a claim that evolution is algorithmic (Dennett 1995:
60). Several authors objected that on Dennett’s analysis, evolutionary
processes could be trivially algorithmic because he assumes that all
natural processes are algorithmic (Fodor 1996: 253, Ahouse 1998: 361-
363; cf. Dennett 1995: 59). This objection is misleading if all natural
processes aren’t algorithmic in the sense Dennett wants evolution to be
algorithmic. It isn’t at all trivial that evolution is algorithmic if all physical
processes aren’t computational. Pancomputationalism, or universal
computationalism is the claim that all physical processes are
computational but this, on my strict criteria of computing, will turn out
false (for other criticisms of universal computationalism, see Piccinini
2007). The question is how to understand “algorithmic”. What would
make the claim about the evolution true?
There are processes effectively describable by computations
(“algorithmic” in Gregory Chaitin’s sense of algorithmic information
theory, cf. Chaitin 1975), and processes that realize digital computations.
(I am ignoring analog computation here for two reasons. There is no
standard analog computation algorithm theory, and the claim I am trying
to evaluate is far more controversial when it refers to digital computation.)
In what sense are evolutionary processes algorithmic?
All natural processes are algorithmically describable. In this regard,
Dennett was right to say they are algorithmic. This is trivial, given the
standard algorithmic information theory, though die-hard materialists
would probably disagree (see Mahner and Bunge 1997). Yet it’s highly
controversial that any biological or evolutionary processes are
computational. While laws of nature can be seen as compression
algorithms of information about the world, it doesn’t follow logically that
they are implemented as algorithms by physical processes. For that to be
true, the processes have to be part of computational systems. The basic
difference between mere simulation and real computing is having proper
causal structure (Scheutz 2002). Dennett is probably right if he means
the weaker claim (evolution can be simulated), and there aren’t many
reasons to think he’s right if he means the stronger, computational claim.
That’s why Gould (1997) could be right but not because of the reasons
that he referred to, as I will show.
Dennett has to defend the specific claim about evolution independently
from any claims about all processes, if he didn’t mean the first one to be
a trivial consequence. However, Dennett’s definition of algorithmic
processes cannot account for the simulation/computing distinction.
Algorithmic processes, according to Dennett, have three features:

1. substrate neutrality
2. underlying mindlessness
3. guaranteed results

494

The problem is that all functionally describable processes share these
features. For example, the process of opening a can be realized using a
simple, hand-operated device or engine-driven device, so it’s substrate
neutral. Opening the can isn’t rocket science, either, and it has
guaranteed results (ceteris paribus). All computational processes are
functionally specifiable processes but they have more distinguishing
features. A hand-operated can opener isn’t a computer, after all. If we fail
to see that, we will follow Putnam-Searle fallacy of ascribing any
computation to any process: Nothing would disallow ascribing realization
of Wordstar program to Searle’s notorious wall (Searle 1992: 207-208).
Moreover, any disjunction of states of the processes can be thought to
realize a computational process, and using arbitrary disjunctions on
sufficiently complicated systems, we could ascribe them any possible
computation. These results aren’t only counterintuitive; they follow from a
definitional fiat that Searle and Putnam made: They understand
computation as a purely syntactic (or formal) object.
Searle argues “syntax is not intrinsic to physics” (Searle 1992: 210). If
Searle means that physics isn’t linguistics, he’s right. Nevertheless, he’s
wrong to treat algorithms as purely formal syntactic objects. This
formalism, if consistent, would make him deny the reality of all
mathematical properties ascribed by physicists. It isn’t the fact that all
mathematical properties ascribed in physics are observer-relative.
Properties of computer programs are just the same as the rest. They
should be ascribed in the same way science generally ascribes
mathematical values to objects.

Computational systems

Contrary to such broad realization concepts, stricter criteria have been
recently proposed (see Miłkowski 2006, Scheutz 2001). The list that I’ll
present is preliminary, and I’ll supplement it with a general requirement
connected with functional systems as such.
Computational systems are functional systems. There are at least three
ways to analyze these systems, according to the notion of function used.
First, there is Cummins’ notion of function as causal role of a part of the
system (Cummins 1975). Second, there are history-based notions, such
as defined by Wright (1973) or Millikan (1984). Third, there’s a design-
based notion of function, as defined by Ulrich Krohs (2004). Cummins’
notion is very broad, and makes any causal role a function – for example,
the function of the trash can lid is making noise in the middle of the night.
According to history-based notions, the function is the cause (a reason)
that a thing that has it exists, so prototypes have no functions. Krohs’
notion needs a little more explanation.

495

Krohs suggests that all functional systems have design that specifies
system parts in terms of part types. For example, if I want to assemble
my IKEA table, I read the manual (the design specs) that specifies the
screws, but not as individuals with proper names or located in space-
time, but as types. In case of biological systems, the genotype specifies
the design. Human-made functional artifacts have parts selected as types
by humans; other functional systems are selected by other mechanisms
(natural selection seems the most obvious one). This notion has an
obvious advantage: the design stance descriptions are literally
descriptions based on ascribing design ascriptions. For this very reason,
this notion seems appropriate for analyzing Dennett’s claims: The design
stance would turn out to be based on the notion of design. The task of re-
engineering of artifacts and biological systems could be then
reformulated as the task of rediscovering their design: their specification
in terms of part types and relation of these parts.
Based on these three kinds of notions, three types of functional systems
could be defined. The choice of the notion has deeper consequences –
probably anything would be a functional system in Cummins’ terms but
not according to other notions. Prototype systems won’t be functional in
Millikan’s terms, and systems without type-level specifiable parts won’t be
functional if we accept Krohs’ criteria. This means, for example, that
dissipative systems which are easily described as wholes in terms of
types aren’t functional: Their individual parts cannot be picked out using
any type-level description—there aren’t type-selection mechanisms that
would allow for functional ascriptions. Just because dissipative systems
are physical systems but not functional systems, they cannot be
computational systems, and universal computationalism is false. At the
same time, universal computationalism goes hand in hand with Cummins’
like functions because parts of dissipative systems could be ascribed
causal roles.
The computational description should offer new predictions or
explanations. If it isn’t the case, the computational description of a given
system is redundant, and it’s safe to say that the system isn’t
computational. For example, working of a can opener can be described
without stipulating any computation; the can opener doesn’t need to
process any information about the can to open it (at least that’s how
today’s can openers work). This is just a general rule of stipulating
higher-level properties; if lower-level properties are sufficient to predict or
explain the behavior and innards of a system, it makes little sense to
ascribe higher-lever properties (e.g., it’s just as useless to ascribe
intentional properties to a lawn). The rule can be spelled out more
precisely in terms of Chaitin’s algorithmic information theory: the
computational description must be simpler than the lower-lever
description (a general causal-role level description) and offer epistemic
advantages such as new predictions and explanations. The simplicity

496

boils down to the length of the description (it’s equivalent to the
compression ratio of the new description compared to the old one). This
requirement conflicts with trivial versions of universal computationalism. If
universal computationalism could offer new insights for every single
physical object, then it would be compatible with the requirement.
The description must be applied consistently for all events in the physical
system. We can easily imagine “cheating”: devising ascription rules that
are far more complex than the system being described, picking out
arbitrary disjunctions of states, and so on. This requirement is obvious
but notorious “proofs” that any system can perform any computation
(Putnam 1987) are so widespread that we should be explicit about the
ascription rules. Anyway, that’s how natural sciences ascribe
mathematical properties, so it shouldn’t be controversial.
Ascriptions of sequences of computational states to the system must
reflect its causal history. This is just an extension of the consistency
requirement into causality. Arbitrary disjunctions of states won’t count as
causal history so they cannot be described as real computation. This also
disallows universal computationalism based only on formal tricks.
The system realizing computations is relatively isolated from the
environment. Only functional systems are computational systems, and a
system is functional only when it has identifiable boundaries. The
boundaries could be blurry but they must delineate the system from the
environment. I would define system boundaries in terms of causal relation
frequency: causal relations are more frequent inside the system than
outside. Even input-output causal relations with a computational system
don’t make inputs automatically inner values: input relations can obtain
with many different objects, which mean that they will be less frequent
than real inner relations. If input relations are always connected with the
same object or process, this process is a part of the system. This way my
delineation criteria help to understand why the notion of extended mind
seems intuitive in some cases: it’s intuitive only when a remote part of the
cognitive system is in fact its subsystem.
It could be argued that some other physical property (other than causal
relation relative frequency) should be used to define system boundaries.
For example, those who oppose extended mind theories could claim that
system boundaries should be spelled out in functional type-level terms of
system organization. This kind of system boundary definition is
acceptable, as well. What is important is the fact that system boundaries
should be definable not only on a computational level of description. Note
that arbitrary process state disjunctions nor Searle’s wall cannot be
clearly delineated on any other level than computational. This poses also
another difficulty for universal computationalists because it requires them
to show that all physical objects are parts of relatively isolated physical
systems.

497

As I already mentioned, computational systems normally have input
states. On the one hand, input data can be internal part of the algorithm
the system is implementing. The output data, on the other hand, must be
always present. Input and output states should be specifiable, as before,
not only on a computational level of description. Note that Searle’s wall
has no clear input states: there is no wall equivalent of the keyboard nor
of the display. Searle hasn’t shown any clear way to pick output states
nor input states from the set of all states of his wall. There is no
computation without output states. Any object can be ascribed a trivially
simple output value: Any property could be said to encode it. But this
property must be causally related to the input value. So while most
objects could be assigned trivial identity transformation (the output
property is the input property), non-trivial computations are harder to
show.
The input/output requirement is a result of the standard computation
definition in terms of recursive functions (as normally Church-Turing
thesis is understood). The whole computational process in the system
must have a description in terms of recursive function (or any other
equivalent model of computation, like Markov strings, Turing machines,
register machines etc.). Computational ascription is a real ascription only
on the condition that we know what computation we are ascribing. The
computation should be spelled out precisely as code or—at least—as
pseudo-code.
To sum up, there are several criteria of computational ascriptions:

1. computational description simplicity, predictive and explanatory value
2. description consistency for all processes in the system; causal

determination of ascriptions
3. relative system isolation and non-computational boundaries
4. availability of output states connected causally with input states (if

any)
5. specification of code-level description

The concept of function realization, which subsumes the realization of
computations, depends on how broadly we understand functions. On the
design-based notion, pancomputationalism is false. Is Dennett’s
computational claim false as well?

Evolution as computation

The above top-down analysis of computational systems shows that if
there’s a real computational level of description of natural evolutionary
processes, this cannot be the only level of their description. Could a

498

computational description of evolutionary processes fulfill the
abovementioned criteria?
The computational description will be simpler than the lower-level
physical description. Its explanatory value remains, however, at best
controversial: It isn’t at all clear what it would explain. Origin of biological
information as selected from the chaos? Or the way natural selection
works? The predictive value isn’t clear neither. Whereas the general
algorithm of evolution could predict the way natural selection works in
every case, it would probably be highly dependent on the complete
knowledge of environmental constraints and details of evolution units
being selected. It isn’t clear that these predictions wouldn’t be available in
the modern neo-Darwinian Synthesis. For the sake of argument, let us
suppose that we would gain an insight into how evolution, or Mother
Nature in Dennett’s terms, processes information about replicators and
interactors (Brandon 1998).
We would apply the description consistently, based on causal relations.
Therefore, we assume that consistency requirement would be fulfilled.
Evolutionary processes are probably relatively easy to single out from
other processes (say, geological) but it isn’t obvious whether the most
relevant elements of these processes have any function in the
evolutionary computational systems. Are evolutionary processes like
dissipative processes? According to the more robust, design-based
notion of function, physical processes can implement algorithms but not
all kinds of physical processes are computational: Those that form non-
linear and non-aggregative systems that strongly depend on token-only
properties like space-time localization cannot have functional elements. If
it could be shown that the way evolutionary processes run depends only
on their localization (or any purely token-level property), Dennett’s claim
would be false. At the first glance, this is what Gould wants us to believe:

Crank your algorithm of natural selection to your heart's content, and you
cannot grind out the contingent patterns built during the earth's geological
history. You will get predictable pieces here and there (convergent
evolution of wings in flying creatures), but you will also encounter too
much randomness from a plethora of sources, too many additional
principles from within biological theory, and too many unpredictable
impacts from environmental histories beyond biology (including those
occasional meteors)—all showing that the theory of natural selection must
work in concert with several other principles of change to explain the
observed pattern of evolution (Gould 1997).

Gould thinks that contingency – responsible for all variability of the
population – plays such an important role in natural selection that its
algorithm cannot be realistic without considering this contingency.
However, contingencies, or initial state of the environment fed into the
computational evolutionary process can be treated in two ways: first, they
can be described using lossy compression, and second, simply be input
into the more complex computational system. Both ways are compatible

499

with a notion of algorithm realization. What Gould hasn’t shown is that
these contingencies would make the natural selection algorithm
computationally intractable because of the combinatorial explosion.
To answer the question whether it would be computationally tractable, we
need the code. What should this code compute? A general natural
selection problem or a specific selection problem? According to Gould,
we could produce an algorithm for convergent evolution, so this could be
a third possibility.
Let’s start with the first possibility: a general natural selection algorithm.
The fitness of units being selected naturally shows that the solution of the
problem of adapting to environment was effectively solved. I would
propose that the evolutionary algorithm solves the problem of adaptation,
and this fitness or the adapted population could be thought of as output
value of the computation. Maybe the interaction with environment could
produce the input of this algorithm.
Some hints about what evolutionary computational systems are and what
kind of computations they realize can be found in computer science.
Research on artificial life or evolutionary algorithms seems to suggest
that though there are emergent properties and strong context-
dependence of properties, at the same time objects are computational
(Crutchfield and Mitchell 1995). It’s an empirical question whether natural
evolutionary processes are like dissipative systems or rather like Artificial
Life.
Evolutionary algorithms are heuristic search algorithms modeled after
natural processes (Michalewicz 1996). They involve generating and
mutating a population of artificial organisms, and testing them according
to a fitness function. The fitness is assessed based on how well the given
organism finds a solution to a problem. There are various types of
evolutionary algorithms, and not all properties and types of evolutionary
algorithms are now known. Most likely, existing evolutionary algorithms
are only a small subclass of all possible evolutionary algorithms.
Compared to natural processes, artificial ones are less complex but can
serve as a starting point for evaluating Dennett’s claim.
The problem with the code inspired by the research on evolutionary
algorithms is that it cannot be adopted directly. The overall structure of
evolutionary algorithms is as follows:

procedure evolution
begin

t=0
determine_starting_P(t)
(* P(t) – Population P at time t *)
final t)
while not (final_condition) do

_condition=(evaluate P(>threshold)

begin
t=t+1
select P(t) (* from P(t-1) *)
modify P(t)
final_condition=(evaluate P(t) >threshold)

500

e
end

nd

The problem is that this algorithm is based on the evaluate() function.
This function is however encoded by the programmer, not discovered by
the algorithm itself. No general algorithm of fitness assessment seems
viable, though here various flavors of adaptationism could have their say.
In nature, the encoding of the fitness function is unknown. The fitness
landscape is not represented numerically in reality. Therefore, the
straightforward application of such algorithms results in a very
unsatisfactory code:

procedure evolution
begin
t=0
fix starting P(t)
while not (the_end_of_the_world) do
 begin
 t=t+1
 select_naturally_in_environment P(t)
 modify P(t)
 end
end

This code cannot possibly fulfill the requirement of explanatory value. It
isn’t giving any new predictions, and seems only a trivial and redundant
reformulation of known causal mechanisms of natural selection.
Replacing the explicit fitness function representation with ways of
discovering the environmental constraints might be one of the ways out of
this problem. Natural evolutionary computation cannot represent fitness
functions that merely make it easier to humans to simulate the causal
relations between populations and their environment.
However, it might be argued that general code structure is, in principle,
always sketchy and trivial. What we need to find is a specific code for
specific evolutionary processes. It might be inspired by current research
on evolutionary algorithms or not. In other ways, we should use the
bottom-up method to try to find the code.
So I turn to the second possibility, namely to the code computing a
specific natural selection process. The arms race between bacteria and
antibiotics has been simulated “in silico” by various researches. It’s even
possible to use “in silico” models to discover new drugs (Gray and Keck
1999). These models start with bacteria genome sequences and proteins
expressed by genomes, and knowledge about genes that are crucial for
the survival of the bacteria. Such massive data can be then used to
predict if certain bacteria or their mutation can survive at all. The general
structure of the first algorithm could be used, with appropriate
substitutions. The evaluate function would test if the bacteria survives
when certain proteins are destroyed; it wouldn’t require a separate
representation.

501

Does it allow us to say that computational simulation of bacteria vs.
antibiotics is really algorithm realization? Not at all. Current “in silico”
methods often use data gathered from parallel in vivo experiments
because scientists still don’t know what’s being ignored in the simulation.
The simulation doesn’t include all the causal-functional details, and some
of them probably should be disregarded for the sake of simplicity in many
cases. Nevertheless, the detailed “in silico” experiment could, in principle,
fulfill all criteria of computation realization.
What about convergent evolution? Gould clearly sees that there is a
regular pattern in the evolution of the wing in many species. The
evolution of the wing could be regarded as an engineering problem,
requiring optimization methods. Evolutionary algorithms are used for
airplane wing optimization (Keane and Petruzzelli 2000), and a
recombination of the existing wing optimization with special organic wing
requirements would give us an algorithm for selecting the wing in many
different species. The fitness function would be based on aerodynamic
features and general engineering principles.
Specific algorithms aren’t prone to the problem of how to evaluate the
fitness generally. Yet all three sketched algorithms share another
disadvantage. They are simulation algorithms rather than algorithms of
natural information processing. It cannot be proved that there isn’t any
other algorithm for natural selection in play, as the problem of existence
of any algorithm for something is itself not decidable in general: the only
way to prove that there is an algorithm for something is to show it.
Biologists, even computational biologists, generally don’t seek for
computational structure in natural selection. They either build artificial
computational systems with biological parts or simulate biological
processes. This could mean that, after all, Dennett was right that there
are algorithmic processes in vivo. But only in Chaitin’s sense of the term.
Dennett’s definition of algorithmic process is redundant then, and reduces
easily to the Chaitin’s technical term. That’s why it doesn’t account for
simulation/computation distinction. Simulation can sometimes produce a
genuine article, for example in a simulated theorem prover. However, in
case of evolutionary algorithms it’s only a description of evolutionary
processes that they produce, and not adapted populations. Moreover, a
description shouldn’t be confused with what it describes.

Algorithm, natural law, real pattern?

So maybe Dennett’s claim isn’t about computational powers of evolution
but rather about real, multiple-realizable patterns of evolution. These
patterns are algorithmic in Chaitin’s sense: they aren’t stochastic, and
there is a way to see regularity in them. After all, the biological data is not
all but noise.

502

A vague usage of “algorithm” is often found in biological papers. Manfred
Eigen writes “Our task is to find an algorithm, a natural law that leads to
the origin of information” (Eigen 1992, 12). As Mayr notes, biologists
often use “models”, “algorithms”, “theories”, “conjectures” interchangeably
(Mayr 1997). The problem with this usage, which is roughly compatible
with Chaitin’s notion of the algorithmic, is that nature doesn’t realize
algorithms for describing the natural processes, and Chaitin’s algorithms
are algorithms for describing sequences of information. Therefore, while
a process could be algorithmic in Chaitin’s sense, there could be no
algorithm that it implements. The implementation could be found
somewhere else, for example in a human observer. In other words,
evolutionary processes are algorithmic in this sense but aren’t
necessarily doing any computations whatsoever.
This notion of the algorithmic is completely compatible with multiple
realizability and substrate neutrality. In short, all functionally specifiable
processes are algorithmic in Chaitin’s sense, and algorithmic descriptions
could be re-used (as non-token level descriptions) to refer to potentially
many objects, also made of some other stuff. This leads to a conclusion
that multiple realizability of natural selection could be still maintained but
natural selection would be no algorithm, only a process in functional
systems. But would anyone try to argue with it?
The weaker reading of Dennett’s claim would still face resistance. In
principle, functional systems could include cultural processes – as
suggested by memetics – or various units of natural selection. There are
materialists who claim that it is stuff that matters, and they would object
that natural selection isn’t multiple realizable nor functional (Mahner and
Bunge 2001). However, this notion of algorithmic processes doesn’t
involve any implementation of formal properties or “syntax” by natural
selection and this is the premise on which their objection depends, just
like in the case of Searle.
Yes, natural selection processes are lawful and not stochastic. They are
real patterns. Yes, this is trivial. And it’s much more interesting to see
their functional structure in specific cases rather than to say they’re
generally algorithmic.

References

Ahouse, J. C., 1998, “The Tragedy of a priori Selectionism: Dennett and Gould on Adaptationism,”
Biology & Philosophy, 13, 359-391.

Brandon, R., 1998, “The Levels of Selection: A Hierarchy of Interactors,” in: Hull D. and M. Ruse,
The Philosophy of Biology, Oxford University Press, p. 176-197.

Chaitin, G. J., 1975, “Randomness and Mathematical Proof,” Scientific American, 232, No. 5, 47-52.
Crutchfield, J. P. and M. Mitchell, "The Evolution of Emergent Computation", Proceedings of the

National Academy of Sciences, USA 92:23 (1995), 10742-10746.
Cummins, R., 1975, “Functional Analysis,” The Journal of Philosophy, 72, No. 20, 741-765.

503

Dennett, D., 1995, “Darwin’s Dangerous Idea: Evolution and the Meanings of Life,” Simon &
Schuster, Nowy Jork.

Eigen, M., 1992. Steps toward Life: A Perspective on Evolution. Oxford: Oxford University Press.
Fodor, J., 1996, “Deconstructing Dennett’s Darwin,” Mind & Language, 11, No. 3, 246-262.
Gould, S. J., 1997, "Evolution: The Pleasures of Pluralism," The New York Review of Books, June 26,

1997, 47-52.
Grey, C.P. and W. Keck, “Bacterial targets and antibiotics: genome-based drug discovery,”, Cellular

and Molecular Life Sciences, 56 (1999), 779-787.
Keane, A. J. and N. Petruzzelli, "Aircraft wing design using GA-based multi-level strategies", pp.

A00-40171 AIAA-2000-4937 in Proceedings of the 8th AIAA/USAF/NASSA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, A.I.A.A., Long Beach (2000).

Krohs, U., 2004, Eine Theorie biologischer Theorien, Springer Verlag, Berlin.
Mahner, M. and M. Bunge, 2001, “Function and Functionalism: A Synthetic Perspective,”

Philosophy of Science, Vol. 68, No. 1, 75-94.
Mayr, E., 1997, “This is Biology. The Science of the Living World,” Belknap Press.
Michalewicz, Z., 1996, Genetic Algorithms + Data Structures = Evolution Programs, Springer

Verlag.
Miłkowski, M., 2006, “Is computationalism trivial?,” In Gordana Dodig Crnkovic and Susan Stuart

(eds.), Computing, Philosophy, and Cognitive Science, Cambridge Scholars Press (forthcoming).
Millikan, R.G., 1984, Language, Thought, and Other Biological Categories. New Foundations for

Realism, Cambridge. MA: MIT Press.
Piccinini, G., 2007 “Computational Modelling vs. Computational Explanation”, The Australasian

Journal of Philosophy (forthcoming).
Putnam, H., 1987, Representation and Reality. Cambridge, MA: MIT Press.
Scheutz, M., 2001, “Computational versus Causal Complexity,” Minds And Machines, 11, 543-566.
Scheutz, M., 2002, “Philosophical Issues about Computation”. In Encyclopedia of Cognitive Science,

London, UK. MacMillan Publishers.
Searle, J., 1992, “Rediscovery of Mind,” MIT Press, Cambridge (Mass).
Wright, L., 1973, “Functions,” The Philosophical Review, 82, No. 2, 139-168.

