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LOWER SEMILATTICE-ORDERED RESIDUATED

SEMIGROUPS AND SUBSTRUCTURAL LOGICS

SZABOLCS MIKULÁS

Abstract. We look at lower semilattice-ordered residuated semigroups
and, in particular, the representable ones, i.e., those that are isomorphic
to algebras of binary relations. We will evaluate expressions (terms, se-
quents, equations, quasi-equations) in representable algebras and give
finite axiomatizations for several notions of validity. These results will
be applied in the context of substructural logics.
Keywords: finite axiomatization, relation algebras, residuation, Lam-
bek calculus, relevance logics

1. Introduction

We will look at algebras of signature consisting of meet · , (relation) com-
position ;, and its right and left residuals, \ and /. We will provide finite
axiomatizations for various classes of algebras and obtain completeness re-
sults about the corresponding notions of standard validity and semantical
consequence. We will also look at alternative semantics, motivated by sub-
structural logics, and prove finite axiomatizations in this case as well.

1.1. The Algebras. We start with defining abstract, axiomatically given,
algebras. As usual with algebras with a (lower) semilattice reduct, we define
x ≤ y iff x · y = x.

Definition 1.1. A lower semilattice-ordered residuated semigroup is an al-
gebra A = (A, · , ;, \, /) such that (A, · ) is a semilattice, (A, ;, \, /) is a resid-
uated semigroup, i.e., the following equation

(1) x ; (y ; z) = (x ; y) ; z

and quasi-equations

(2) y ≤ x \ z iff x ; y ≤ z iff x ≤ z / y

are satisfied, and ; is monotonic, i.e., the following equation

(3) (x · x′) ; (y · y′) ≤ x ; y

is satisfied.

Date: This is the non-refereed version of a published paper and was uploaded here for
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2 SZABOLCS MIKULÁS

We denote the class of lower semilattice-ordered residuated semigroups
by LSORS.

Next we define a subclass of the abstract class by focusing on algebras of
binary relations.

Definition 1.2. Let A = (A, · , ;, \, /) ∈ LSORS. We say that A is repre-
sentable if A ⊆ ℘(U × U) for some set U , the base of A, and the operations
are interpreted as follows: meet is intersection and

x ; y = {(u, v) ∈ U × U : (u,w) ∈ x and (w, v) ∈ y for some w}
x \ y = {(u, v) ∈ U × U : for every w, (w, u) ∈ x implies (w, v) ∈ y}
x / y = {(u, v) ∈ U × U : for every w, (v, w) ∈ y implies (u,w) ∈ x}

for all x, y ∈ A.

Usually we will not distinguish between representable LSORS and its clo-
sure under isomorphic copies.

We can extend the notion of representability to other signatures by pro-
viding interpretations for additional operations. In particular, we will look
at the the identity constant interpreted as

1′ = {(u, v) ∈ U × U : u = v}
in an algebra with base U .

Given a signature Λ, we will denote the class of representable Λ-algebras
by R(Λ). Thus R(· , ;, \, /) stands for representable LSORS.

We will also consider subclasses of R(Λ). In particular, we define Rc(Λ)
by requiring that the commutativity axiom

(4) x ; y = y ; x

holds in every algebra, and Rcd(Λ) by the additional requirement

(5) x ≤ x ; x

of density.
We will characterize representable algebras. In particular, we prove that

Rc(· , ;, \, /) is a finitely axiomatizable variety, see Corollary 3.2. In the non-
commutative case, we show in Theorem 5.2 that the variety generated by
R(· , ;, \, /) is finitely axiomatizable, while we conjecture that the represen-
tation class R(· , ;, \, /) itself is a non-finitely axiomatizable quasi-variety.

1.2. State Semantics. Let Λ be a signature including meet, composition
and its (right) residual. An important feature of the (right) residual is the
following. We have x ≤ y iff x \ y contains the identity relation:

(6) C |= x ≤ y iff C |= 1′ ≤ x \ y
for every C ∈ R(Λ). Note that this makes sense even when 1′ is not in Λ, since
it is meaningful whether {(u, u) ∈ U × U} is a subset of the interpretation
of a Λ-term (with U the base of C).
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Let C ∈ R(Λ) for some signature Λ. We define

(7) C |=s t iff C |= 1′ ≤ t
for every Λ-term t. We say that t is state valid in R(Λ) (in symbols, |=s t)
iff C |=s t for every C ∈ R(Λ).1

We will prove the analogous results to the standard case. We show that
there is a strongly sound and complete calculus for the state semantics over
Rc(· , ;, \, /), see Corollary 6.3, while we have weak completeness in the non-
commutative case R(· , ;, \, /), see Corollary 6.2.

1.3. Connections to Sustructural Logics. The main motivation for con-
sidering state semantics originates in (substructural) logic. State semantics
restricted to the commutative and dense subclass Rcd(Λ) of R(Λ) provides
sound semantics for relevance logic [ABD92, RM73]. Relevance logic `R is
a Hilbert-style derivation system and has the logical connectives conjunc-
tion, implication and negation. The logical connectives are interpreted in
algebras of binary relations C ∈ Rcd(· , \,∼) as meet ·, (right) residual \ and
converse negation ∼ defined by

∼ x = {(u, v) ∈ U × U : (v, u) /∈ x}
respectively. State validity w.r.t. commutative and dense families of relations
will be denoted by |=cd

s . While this semantics is sound2

`R ϕ implies |=cd
s ϕ

completeness does not hold, since state validity for Rcd(· , \,∼) cannot be
finitely axiomatized [Mik09]. See also [BDM09, Ma10] for the connection
between relevance logic and state semantics.

We note that, using · , \ and ∼, additional connectives can be defined.
For instance, we can define x+ y as ∼ (∼ x· ∼ y) and x ; y as ∼ (y\ ∼ x).

It would be interesting to see for precisely which signatures Λ one can give
a complete calculus capturing state validity in Rcd(Λ), since that would show
(in)completeness of other fragments of relevance logic with respect to state
semantics. For instance, [HM11] shows that finite axiomatization of state
validities for Rcd(· ,+, \) is not possible, hence establishing incompleteness
of the positive fragment of relevance logic.3 The same non-finite axioma-
tizability results hold for Rcd(· ,+, ;, \) and R(· ,+, ;, \, /), see [HM11] and

1The terminology ‘state semantics’ refers to the fact that truth is restricted to pairs
of the form (u, u). Note that the concept of truth uses the more general concept of
interpretation, thus whether a term is true at (u, u) in general depends on whether pairs
of the form (v, w) are in the interpretations of some other terms. For instance, x \ y
is true at (u, u) iff, for every v, (v, u) is in the interpretation of y whenever it is in the
interpretation of x.

2For the sake of simplicity we will not distinguish between a relevance logic formula
and the corresponding algebraic term where the logical connectives are replaced by the
corresponding algebraic operations.

3Analogues of commutativity and density can be defined even when composition is not
in the similarity type.
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[Mik11]. In contrast, we will show finite axiomatizability for state semantics
over Rcd(· , ;, \), and Corollary 6.4 can be interpreted as a completeness result
for relevance logic of the language consisting of conjunction, composition (or
fusion) and implication.

We showed various completeness results for the (generalized) Lambek
calculus, LC, in [AM94]. We will expand the similarity type with meet,
and consider both standard and state semantics. We provide weakly com-
plete and sound axiomatizations using generalized sequents in both cases,
see Theorem 4.3. Equivalent axiomatizations without using generalized se-
quents will be given in Section 5 for standard semantics and in Section 6 for
state semantics.

1.4. Organization. The rest of the paper is organized as follows. In the
next section we prove the key Lemma 2.1 that will be in the heart of the
main results. In Section 3 we look at standard semantics and provide finite
axiomatization in the commutative case. Next we look at the completeness
of the Lambek calculus with meet (Section 4) and axiomatization for the
generated variety in the non-commutative case (Section 5). In Section 6 we
look at state semantics and obtain completeness results. We finish with a
concluding section where we look at possible extensions of our results and
state some open problems.

2. The Construction

Let A = (A, · , ;, \, /) ∈ LSORS. We describe a step-by-step construction
of a chain of labelled directed graphs: G0 ⊆ . . . ⊆ Gα ⊆ . . . and let GA =⋃
αGα. Each Gα has the form (Uα, `α) where Uα is the set of nodes and

`α : Uα × Uα → ℘(A) is the labelling function. The construction is similar
to that of [AM94, Theorem 3.2].

We extend the operations of A ∈ LSORS to subsets of elements:

X ; Y = {x ; y : x ∈ X, y ∈ Y }
X \ Y = {x \ y : x ∈ X, y ∈ Y }
X / Y = {x / y : x ∈ X, y ∈ Y }

for subsets X,Y . Given a subset X, we define the upward closure of X by

X↑ = {y : y ≥ x ∈ X}

and use the convention that if X = {x} is a singleton, then we write x↑ =
{x}↑ and x ;Y = {x} ;Y , etc. By a filter of A we mean a subset F ⊆ A that
is closed upward (i.e., F↑ = F) and under meet (i.e., x · y ∈ F whenever
x, y ∈ F). We denote the filter generated by X by F(X). Note that a
singleton-generated filter F(a) = a↑ is a principal filter. We will assume
that there is a distinguished filter

E ⊇ {a \ b, b / a : a, b ∈ A, a ≤ b}
of A that we will use for labelling reflexive edges.
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Initial step: In the 0th step we construct G0 = (U0, `0). We define
U0 by choosing distinct xa, ya for distinct elements a ∈ A, and let

`0(xa, xa) = `0(ya, ya) = E
`0(xa, ya) = F(a)

and we label all other edges by ∅ (e.g., `(xa, yb) = ∅ for a 6= b).
Successor steps: In the (α + 1)th step we have three substeps. To

deal with composition ;, for every b ; c ∈ `α(x, y) such that there is
no w ∈ Uα with b ∈ `α(x,w) and c ∈ `α(w, y), we choose a fresh
point z, and define

`α+1(z, z) = E
`α+1(x, z) = F(b)

`α+1(z, y) = F(c)

`α+1(r, z) = F(`α(r, x) ; b) r 6= x, z

`α+1(z, s) = F(c ; `α(y, s)) s 6= y, z

For all other edges (u, v), we let `α+1(u, v) = `α(u, v) if `α(u, v) has
been defined, and `α+1(u, v) = ∅ if `α(u, v) is undefined. See Figure 1
for the case when x 6= y and `α(y, x) 6= ∅.
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Figure 1. Step for composition

To deal with the residual \ we choose a fresh point z, for every
point x ∈ Uα and a ∈ A, and define

`α+1(z, z) = E
`α+1(z, x) = F(a)

`α+1(z, p) = F(a ; `α(x, p)) p 6= x, z
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For all other edges (u, v), we let `α+1(u, v) = `α(u, v) if `α(u, v)
has been defined, and `α+1(u, v) = ∅ if `α(u, v) is undefined. See
Figure 2.

z

E

��

F(a)

��

F(a;`α(x,p))

��????????????????

xE 99
`α(x,p)

// p Eee

Figure 2. Step for the right residual

Finally we have the symmetric case for /. We choose a fresh point
z, for every point x ∈ Uα and a ∈ A, and define

`α+1(z, z) = E
`α+1(y, z) = F(a)

`α+1(q, z) = F(`α(q, y) ; a) q 6= y, z

For all other edges (u, v), we let `α+1(u, v) = `α(u, v) if `α(u, v)
has been defined, and `α+1(u, v) = ∅ if `α(u, v) is undefined. See
Figure 3.
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Figure 3. Step for the left residual

Limit step: We take the union Gβ of the constructed graphs Gα (α <
β).

We define GA = (UA, `A) =
⋃
αGα. Observe that every label `A(x, y) with

x 6= y is in fact a principal filter. Furthermore, it is not difficult to see that
these steps can be scheduled so that GA satisfies the following saturation
conditions.
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Sat(;): For every x and y, if b ; c ∈ `A(x, y), then there is z such that
b ∈ `A(x, z) and c ∈ `A(z, y).

Sat(\): For every x, there is z such that `A(z, x) = F(a), and for every
p, we have `A(z, p) = F(a ; `A(z, p)).

Sat(/): For every y, there is z such that `A(y, z) = F(a) and for every
q, we have `A(q, z) = F(`A(q, y) ; a).

We define the coherence condition as follows.

Coh(;): If a ∈ `A(x, z) and b ∈ `A(z, y), then a ; b ∈ `A(x, y).

Note that coherence may not hold for an arbitrary A ∈ LSORS.
We are ready to formulate our key lemma.

Lemma 2.1. Let A ∈ LSORS and assume that GA is coherent. Then A is
representable: A ∈ R(· , ;, \, /).

Proof. We define

(8) rep(a) = {(u, v) ∈ UA × UA : a ∈ `A(u, v)}

for every a ∈ A. We claim that rep is an isomorphism from A into the full
algabra (℘(UA×UA), · , ;, \, /). Injectivity of rep is guaranteed by the initial
step (and the fact that we do not alter labels in later steps). Since we used
filters as labels, rep respects meet. Checking that rep preserves composition
is easy by using the conditions Coh(;) and Sat(;).

Finally we check the residuals. First assume that (u, v) ∈ rep(a) \ rep(b),
i.e., for all w, if (w, u) ∈ rep(a), then (w, v) ∈ rep(b). By Sat(\) there
is z ∈ UA such that `A(z, u) = F(a) = a↑ and `A(z, v) = F(a ; `A(u, v)).
First consider the case u = v. Then `A(z, v) = `A(z, u) = F(a) Since
b ∈ `A(z, v), we have a ≤ b, whence a \ b ∈ `A(u, u) = E . When u 6= v
we argue as follows. Since b ∈ `A(z, v), we have a ; x ≤ b for some x ∈
`A(u, v) (recall that F(a ; `A(u, v)) is a principal filter), whence x ≤ a \ b
by (2). Thus a \ b ∈ `A(u, v). On the other hand, if a \ b ∈ `A(u, v), then
`A(w, u) ; (a \ b) ⊆ `A(w, v) for all w ∈ UA by Coh(;). Hence (w, u) ∈ rep(a)
implies (w, v) ∈ rep(a ; (a \ b)) ⊆ rep(b), by (2) and that rep respects ≤.
Checking the other residual is completely analogous. �

3. Commutative Representable Algebras

We will apply the above construction to achieve finite axiomatizations for
various theories of R(· , ;, \, /).

First we note that, in the presence of meet, the quasi-equations (2) can
be formulated as equations. In fact, V. Pratt showed that the equations

x \ (y · y′) ≤ x \ y (x · x′) / y ≤ x / y(9)

x ; (x \ y) ≤ y (x / y) ; y ≤ x(10)

y ≤ x \ (x ; y) x ≤ (x ; y) / y(11)

imply (2), see [Pr90]. Thus LSORS is in fact a variety.
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But there are valid equations in R(· , ;, \, /) that are not derivable from
the axioms for LSORS. We will say that x is a residuated term if it has the
form y \ z or y / z, and a residuated term is reflexive if y = z (since terms
of the form y \ y and y / y include the identity relation in representable
algebras, hence their interpretations are reflexive). Then the following are
valid equations in R(· , ;, \, /).

“Reflexivity”:

(12) x ; y ≥ y ≤ y ; x

if x is a reflexive residuated term.
“Idempotency”:

(13) (x · y) \ (x · y) ≤ x · y ≥ (x · y) / (x · y)

if x, y are reflexive residuated terms.

It is easily checked that these axioms are indeed valid. We just note that the
interpretations of reflexive residuated elements x must include the identity
(they are reflexive) and they are transitive (x ; x ≤ x).

Let Ax(· , ;, \, /) be the collection of the following axioms: semilattice ax-
ioms for meet, semigroup axiom for composition (1), monotonicity (3), the
axioms for the residuals (9), (10) and (11), “reflexivity” (12) and “idempo-
tency” (13).

Lemma 3.1. Let A |= Ax(· , ;, \, /). Assume that A additionally satisfies
commutativity (4). Then A ∈ R(· , ;, \, /).

Proof. Let A = (A, · , ;, \, /) satisfy the conditions of the lemma. We show
that A ∈ R(· , ;, \, /) by applying Lemma 2.1.

First note that the collection {x \ x, x / x : x ∈ A} of reflexive residuated
elements of A is closed under meet by axiom (13). Thus the set E = {x \
x, x / x : x ∈ A}↑ is a filter. Also note that E is closed under composition
by axioms (3) and (12).

We claim that the graph GA yielded by the step-by-step construction
of Section 2 is coherent. It is easy to check that the initial graph G0 is
coherent. For instance, if x, y ∈ `A(ua, ua) = E , then x ; y ∈ E and also
a ≤ x ; a ; y, whence `0(ua, ua) ⊇ `0(ua, ua) ; `0(ua, ua) and `0(ua, va) ⊇
`0(ua, ua) ; `0(ua, va) ; `0(va, va).

Now assume, inductively, that Gα is coherent. We have to show that the
graph after the successor steps is coherent. Most instances of Coh(;) are easy
to check, we just work out the most complicated case. Consider the case of
composition when b ; c ∈ `α(x, y) and `α(y, x) 6= ∅, see Figure 4. We need
c ; d ; b ∈ `α+1(z, z) = E for every d ∈ `α(y, x). By induction, we have that
b ; c ;d ∈ `α(x, x) = E , i.e., e ≤ b ; c ;d for some e ∈ E . By commutativity (4),
we get e ≤ c ; d ; b, whence c ; d ; b ∈ E = `α+1(z, z), as desired.

Thus we can apply Lemma 2.1, whence A is representable. �

We are ready to formulate the finite axiomatizability of the commuta-
tive subclass of representable algebras. Recall that Rc(· , ;, \, /) denotes that
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Figure 4. Checking coherence

subclass of R(· , ;, \, /) where every algebra is commutative. Analogously let
Axc(· , ;, \, /) denote Ax(· , ;, \, /) plus commutativity (4). By a straightfor-
ward application of Lemma 3.1 we get the following.

Corollary 3.2. The class Rc(· , ;, \, /) is a finitely axiomatizable variety. In
fact,

A |= Axc(· , ;, \, /) iff A ∈ Rc(· , ;, \, /)
for every algebra A = (A, · , ;, \, /).

Remark 3.3. In commutative algebras the interpretations of the two resid-
uals coincide: x \ y = y / x. Thus we could drop one of the residuals, say, /,
and state Corollary 3.2 for Rc(· , ;, \). Then we would have the obvious sim-
plification in the axioms (drop those mentioning /) and in the construction
(we do not need the step dealing with /).

We will see that in the non-commutative case, Ax(· , ;, \, /) provides finite
axiomatization for the variety generated by the representable algebras. We
will establish this by showing that the free algebra of the variety defined
by Ax(· , ;, \, /) is representable. To this end first we give an axiomatization
using sequents.

4. Lambek Calculus with Meet

We will now define a sequent calculus that will be an extension of the (gen-
eralized) Lambek calculus [La58]. Let us recall that a sequent is x1, . . . , xn ⇒
x0 where every xi is a term. Sequences of terms will be denoted by capi-
tals T, U, V, . . . , and U, V denotes the juxtaposition of U and V with the
convention that it means U when V is empty, and it means V when U is
empty.

We will need the axioms and derivation rules of Figure 5, where lower
case letters denote non-empty terms and capital letters denote (possibly
empty) sequences of terms. The Lambek calculus LC has the single axiom
(I) and derivation rules (;L), (;R), (\L), (\R), (/L), (/R) and (Cut) with
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Axioms:

(I) x⇒ x

(Com) x ; y ⇒ y ; x

(Den) x⇒ x ; x

Derivation rules:

(;L)
U, x, y, V ⇒ z

U, x ; y, V ⇒ z
(;R)

P ⇒ x Q⇒ y

P,Q⇒ x ; y

(\L)
T ⇒ x U, y, V ⇒ z

U, T, x \ y, V ⇒ z
(\R)

x, T ⇒ y

T ⇒ x \ y

(/L)
T ⇒ x U, y, V ⇒ z

U, y / x, T, V ⇒ z
(/R)

T, x⇒ y

T ⇒ y / x

(·L1)
U, x, V ⇒ y

U, x · z, V ⇒ y
(·L2)

U, x, V ⇒ y

U, z · x, V ⇒ y

(·R)
T ⇒ x T ⇒ y

T ⇒ x · y

(Cut)
T ⇒ x U, x, V ⇒ y

U, T, V ⇒ y

Figure 5. Sequent formalism

the restriction that the sequences T , P and Q are not empty. We get a
generalization LC0 of the Lambek calculus by allowing sequents with the
empty term on the left of ⇒, i.e., the sequences T , P and Q are allowed to
be empty in this case — we will call these ‘empty-headed’ sequents.

The empty-headed version is more general in the sense that there are
more derivable sequents, an example is x⇒ x ; (y \ y), see [AM94]. On the
other hand, restricting derivability to empty-headed sequents does not lead
to the loss of expressive power. Indeed, we have

` x1, . . . , xn ⇒ x0 implies ` ⇒ (x1 ; . . . ; xn) \ x0

by applying (;L) n− 1 times and then applying (\R) (with empty T ).
We will extend the Lambek calculus with meet. Terms and sequents are

defined analogously to the meet-free case. We will need the derivation rules
(·L1), (·L2) and (·R), see Figure 5.

The semantics for sequents is defined as follows. Let C ∈ R(· , ;, \, /).
Then

(14) C |= x1, . . . , xn ⇒ x0 iff C |= x1 ; . . . ; xn ≤ x0
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for every sequent x1, . . . , xn ⇒ x0 including the empty-headed case n = 0
when

(15) C |= ⇒ x0 iff C |= 1′ ≤ x0

by convention.

4.1. The Non-commutative Case. The sequent calculus SC0 has the sin-
gle axiom (I) and derivation rules (;L), (;R), (\L), (\R), (/L), (/R), (Cut),
(·L1), (·L2) and (·R), see Figure 5. The subscript 0 in SC0 indicates that
sequents are allowed to be empty headed.

We will show that SC0 is weakly complete and sound w.r.t. R(· , ;, \, /).
We need the following technical lemma.

Lemma 4.1. Let `0 denote derivability in SC0. Assume `0 ⇒ x ; y. Then
`0 ⇒ x and `0 ⇒ y as well.

Proof. We will show that the cut rule can be eliminated from SC0. In the
proof of the cut elimination for SC0 we closely follow the “Proof of Gentzen’s
theorem” in [La58, Section 9], the cut elimination for the original Lambek
calculus. The proof is almost literally the same, we just have to consider
the case of terms with main connective · as well.

Let d(T ) be the number of separate occurrences of the operations in the
sequence of terms T . The degree of the cut rule

T ⇒ x U, x, V ⇒ y

U, T, V ⇒ y

is defined to be d(T ) + d(x) + d(U) + d(V ) + d(y). We will show that in
any application of cut, whose premises have been proved without using cut,
either the conclusion can be proved without cut, or else the cut can be
replaced by one or two cuts of smaller degree. There are the following (not
necessarily mutually exclusive) cases.

Case 1: T ⇒ x is an instance of the axiom (I). Then x = T , and the
other premise coincide with the conclusion.

Case 2: U, x, V ⇒ y is an instance of axiom (I). Then U and V are
empty, and the conclusion coincides with the other premise.

Case 3: The last step in the proof of T ⇒ x is a rule that does not
introduce the main operation of x. The proof is essentially the same as that
of Case 3 in [La58, pp.167–168].

Case 4: The last step in the proof of U, x, V ⇒ y is a rule that does not
introduce the main operation of x. The proof is essentially the same as that
of Case 4 in [La58, p.168].

Cases 5, 6, 7: The last steps in the proof of both premises introduce the
main operation of x = x1 ; x2 or x = x1 \ x2 or x = x1 / x2. The proof is the
same as that of Case 5, Case 6 or Case 7 in [La58, p.168–169], respectively.
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Case 8: The last step in the proofs of both premises is a rule that intro-
duces the main operation of x = x1 · x2. That is, we have

T ⇒ x1 T ⇒ x2

T ⇒ x1 · x2

and either
U, x1, V ⇒ y

U, x1 · x2, V ⇒ x
or

U, x2, V ⇒ y

U, x1 · x2, V ⇒ y
and then the application of the cut

T ⇒ x1 · x2 U, x1 · x2, V ⇒ y

U, T, V ⇒ y

Then we can apply one of the cut rules

T ⇒ x1 U, x1, V ⇒ y

U, T, V ⇒ y
or

T ⇒ x2 U, x2, V ⇒ y

U, T, V ⇒ y

both of which has a smaller degree.

Thus we have established the following.

Claim 4.2. The cut rule can be eliminated from SC0.

Now assume that ` ⇒ x ; y in SC0. By Claim 4.2, ⇒ x ; y has a cut-free
proof in SC0. Then the last step in the proof was an application of rule (;R)
with empty P and Q, since the empty-headed conclusion of all other rules
have a main operation different from ;. That is, ` ⇒ x and ` ⇒ y in SC0,
and we are done. �

Theorem 4.3. The derivation system SC0 is weakly complete and sound
w.r.t. both the standard and the state semantics for R(· , ;, \, /). That is, for
every non-empty term a and sequence of terms T ,

`0 T ⇒ a iff |= T ⇒ a

where `0 denotes derivability in SC0, and |= denotes standard validity in
R(· , ;, \, /). In particular, when T is the empty sequence, we get

`0 ⇒ a iff |=s a

where |=s denotes state validity in R(· , ;, \, /).

Proof. We take the Lindenbaum–Tarski algebra A of SC0, and show that
A ∈ R(· , ;, \, /) by applying Lemma 2.1.

We define the ordering ≤ of (· , ;, \, /)-terms by

a ≤ b iff `0 a⇒ b

and the equivalence ≡ by

a ≡ b iff a ≤ b and b ≤ a
for terms a, b. The elements of A are the ≡-equivalence classes of terms. It is
easy to show that ≡ is in fact a congruence relation, see [AM94, Lemma 2.1]
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for a similar proof. Then the operations on A can be defined in the usual
way. It is routine to check that A satisfies the LSORS-axioms.

We will need

E = {a : `0 ⇒ a}
Note that E is a filter, since it is closed upward by (Cut), and it is closed
under meet by (·R) (applied to empty T ). Furthermore, E is closed under
; because of the following. Assume that a, b ∈ E , i.e., ⇒ a and ⇒ b are
derivable. Then applying (;R) with empty P and Q gives us

⇒ a ⇒ b

⇒ a ; b

as desired. Also

E ⊇ {a \ b, b / a : a ≤ b}
since `0 ⇒ a \ b and `0 ⇒ b / a for a ≤ b, by (R\) and (R/).

In addition, for every a ∈ A and e ∈ E ,

(16) a ; e ≥ a ≤ e ; a

holds in A because of the following. We can apply (;R) with empty Q:

a⇒ a ⇒ e

a⇒ a ; e

whence a ≤ a ;e by the definition of ≤. The derivation of a⇒ e ;a is similar.
We claim that the constructed graph GA of Section 2 is coherent. The

initial graph G0 is easily seen to be coherent, since e, e′ ∈ E implies e ;
e′ ∈ E and e ; a ≥ a ≤ a ; e′ for every a ∈ A. For the successor steps,
observe that in the composition case of the construction, we can assume
that x 6= y: for if b ; c ∈ `α(x, x) = E , then we have b ∈ `α(x, x) = E and
c ∈ `α(x, x) = E , by Lemma 4.1. Hence we do not have to find witnesses for
labels on reflexive edges, and thus we can assume that `α(y, x) = ∅ when
b ; c ∈ `α(x, y), see Figure 1. Thus the set of edges of GA with non-empty
labels is antisymmetric:

`A(u, v) 6= ∅ 6= `A(v, u) implies u = v

for every u and v. Because of the simple structure of the labelled graph, it
is easy to check that coherence is preserved during the successor steps.

Thus we can apply Lemma 2.1, whence

rep(a) = {(u, v) ∈ UA × UA : a ∈ `A(u, v)}

is an isomorphism. Thus the rep-image B of A is in R(· , ;, \, /).
Now assume T = a1, . . . , an and `0 T ⇒ a. Then A |= a1 ; . . . ; an ≤ a,

whence B |= a1 ; . . . ; an ≤ a as desired.
For state semantics we argue as follows. Assume `0 ⇒ a. Since rep(a) ⊇

{(u, u) : u ∈ UA} whenever a ∈ E , we have that B |=s a. This finishes the
proof of Theorem 4.3. �
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The cut elimination also shows that the equational theory is decidable.
Since every other rule introduces a connective, it is enough to check a
bounded number of proof attempts whether at least one of them is suc-
cessful for a given sequent/equation.

Corollary 4.4. The equational theory of R(· , ;, \, /) is decidable.

4.2. With Commutativity. Let SCc0 be SC0 augmented with the commu-
tativity axiom (Com) of Figure 5.

Theorem 4.5. The derivation system SCc0 is strongly complete and sound
w.r.t. both the standard and the state semantics for Rc(· , ;, \, /). That is, for
any set of sequents Γ, non-empty term a and sequence of terms T ,

Γ `c0 T ⇒ a iff Γ |=c T ⇒ a

where `c0 denotes derivability in SCc0, and |=c denotes standard semantical
consequence in Rc(· , ;, \, /). In particular, when T is the empty sequence,
we get

Γ `c0 ⇒ a iff Γ |=c
s a

where |=c
s denotes semantical consequence in state semantics for Rc(· , ;, \, /).

Proof. The proof is similar to that of Theorem 4.3. We take the Lindenbaum–
Tarski algebra A = (A, · , ;, \, /) of SCc0 and show that A ∈ Rc(· , ;, \, /). Note
that A is commutative: x;y = y;x holds in A. Thus we can apply Lemma 3.1,
whence A is representable. �

5. Non-commutative Representable Algebras

Next we define a sequent calculus SC that is equivalent to SC0 and does
not use empty-headed sequents.

The sequent calculus SC has the derivation rules (;L), (;R), (\L), (\R),
(/L), (/R), (Cut), (·L1), (·L2), (·R) (see Figure 5) and the following axioms
in addition to axiom (I).

“Reflexivity”:

(Ref 1) y ⇒ x ; y (Ref 2) y ⇒ y ; x

if x is a reflexive residuated term.
“Idempotency”:

(Ide1) (x · y) \ (x · y)⇒ x · y (Ide2) (x · y) / (x · y)⇒ x · y
if x and y are reflexive residuated terms.

The same restriction applies as in the case of LC: the sequences T , U and
V are non-empty.

Lemma 5.1. The derivation systems SC and SC0 are equivalent: for any
term a and non-empty sequence of terms T ,

` T ⇒ a iff `0 T ⇒ a



RESIDUATED SEMIGROUPS WITH MEET 15

where ` denotes derivability in SC and `0 denotes derivability in SC0.

Proof. We showed in the proof of Theorem 4.3 that (Ref 1) and (Ref 2) are
derivable in SC0, see (16), since reflexive residuated terms are in E . Indeed,
⇒ x \ x and ⇒ x / x are derivable in SC0 from the axiom x ⇒ x by the

application of (\R) and (/R), respectively. Then so are ⇒ (x \ x) · (y / y)
and other meets of reflexive residuated terms, by (·R). Then we have

⇒ (x \ x) · (y / y) (x \ x) · (y / y)⇒ (x \ x) · (y / y)

[(x \ x) · (y / y)] \ [(x \ x) · (y / y)]⇒ (x \ x) · (y / y)

by (\L). Other instances of (Ide1) and (Ide2) are derived similarly. Thus
all the axioms of SC are derivable in SC0.

Now assume that `0 T ⇒ a. We need ` T ⇒ a. We will use induction on
the number of rules of the form

. . . ⇒ x . . .

U ⇒ y

(i.e., where one of the premises is an empty-headed sequent ⇒ x) applied
in the derivation of T ⇒ a in SC0.

If the derivation of T ⇒ a in SC0 does not use empty-headed sequents,
then the same derivation works in SC. Otherwise the derivation uses empty-
headed sequents ⇒ x. Such a sequent can be derived in four different ways:
from other empty-headed sequents ⇒ y and ⇒ z

• by (;R) in which case x = y ; z or
• by (·R) in which case x = y · z,

or from a sequent y ⇒ z

• by (\R) in which case x = y \ z or
• by (/R) in which case x = z / y,

for some terms y and z. Thus x is built up from terms x0, . . . , xn of the
form y \ z or z / y with y ⇒ z by using ; and · . Let x′i be y \ y if xi is y \ z
and z / z if xi is z / y. Note that x′i ⇒ xi, since \ is antimonotone in the
second and / is monotone in the first argument (derivable already in LC).
Define x′ = x′0 · . . . · x′n. Thus x′ is a meet of reflexive residuated elements.
Observe that x′ ⇒ x is derivable in SC. Indeed, this easily follows from
x′i · x′j ⇒ x′i ; x′j (by “reflexivity”) and x′i ⇒ xi. Also ⇒ x′ is derivable in

SC0 by simply exchanging every occurrence of (;R) by (·R) in the derivation
of ⇒ x from ⇒ xi (for 0 ≤ i ≤ n).

Consider a step in the derivation of T ⇒ a in SC0 that uses a premise
⇒ x. One option is that we apply (;R), say,

⇒ x Q⇒ y

Q⇒ x ; y

whence we have the derivation

⇒ x′ Q⇒ y

Q⇒ x′ ; y
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as well. By the induction hypothesis (IH), Q⇒ y is derivable in SC. Then
so is Q ⇒ (x′ \ x′) ; y by (Ref 1). Since x′ is a meet of reflexive residuated
terms, we can apply (Ide1), whence we get that Q⇒ x′ ; y is derivable. We
noted above that x′ ⇒ x is derivable in SC. Hence so is Q⇒ x ;y as desired.

Another option is that we apply (\L), say,

⇒ x U, y, V ⇒ z

U, x \ y, V ⇒ z

Then we have the derivation

⇒ x′ U, y, V ⇒ z

U, x′ \ y, V ⇒ z

as well. By IH, U, y, V ⇒ z is derivable in SC. Then so is U, (x′ \x′)\y, V ⇒
z, since (x′ \ x′) \ y ⇒ (x′ \ x′) ; [(x′ \ x′) \ y]⇒ y is derivable by (Ref 1) and
(\L). Since x′ \ x′ ⇒ x′ is derivable by (Ide1) and \ is antimonotone in the
first argument, we get that U, x′ \ y, V ⇒ z is derivable. We noted above
that x′ ⇒ x is derivable in SC. Hence so is U, x \ y, V ⇒ z, by applying the
antimonotonicity of \ in its first argument again. The case when we apply
(/L) is completely symmetric.

Thus we managed to “replace” the rule used in the derivation of T ⇒ a
in SC0 by a derivation in SC. It follows that the whole derivation of T ⇒ a
in SC0 can be “translated” to a derivation on SC. �

Theorem 5.2. The equational theory of R(· , ;, \, /) is finitely axiomatized
by Ax(· , ;, \, /).

Proof. By Theorem 4.3 and Lemma 5.1, SC is a weakly complete and sound
derivation system for R(· , ;, \, /)-validity. Similarly to the equivalence of the
algebraic and sequent formalizations of the Lambek calculus, see [La58, Sec-
tion 8], one can show that SC is equivalent to the LSORS-axioms augmented
with axioms (12) and (13), which is in turn equivalent to Ax(· , ;, \, /). �

Remark 5.3. The reader may wonder whether there is a finite axiomatiza-
tion for the quasi-variety of representable algebras R(· , ;, \, /). The problem
with representing an arbitrary algebra C satisfying the axioms is as follows.
Assume that a \ a ≤ b ; c in C and we are in a step-by-step construction
dealing with composition for a \ a ∈ `α(u, u). Then we need v such that
b ∈ `α+1(u, v) and c ∈ `α+1(v, u). These labels are not difficult to find, but
we need an appropriate label for (v, v) as well. The label `α+1(v, v) should
include c ;b and all reflexive residuated terms, and hence their meets as well.
There are valid quasi-equations that guarantee the existence of suitable la-
bels, see below, but we conjecture that there is no finite equational base for
all these quasi-equations.

Consider the following quasi-equations qn for n ∈ ω:

(17) a \ a ≤ b ; c implies d ≤ d ; (b ; [(c ; b) · (a \ a)]n ; c)
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We claim that for every n ≥ 1, R(· , ;, \) |= qn. Let C ∈ R(· , ;, \) be an
algebra represented on a base set U . Assume that (u, v) ∈ d. Since a \ a
contains the identity on U , we have (v, v) ∈ a \ a. By a \ a ≤ b ; c, we
get (v, w) ∈ b and (w, v) ∈ c for some w ∈ U . Also, (w,w) ∈ a \ a. Then
(w,w) ∈ [(c ;b) · (a\a)]n for every n ≥ 1. Hence (v, v) ∈ b ; [(c ;b) · (a\a)]n ;c,
whence (u, v) ∈ d ; (b ; [(c ; b) · (a \ a)]n ; c) as desired.

Conjecture 5.4.

(1) The set {qn : 1 ≤ n ∈ ω} is “independent”.
(2) The representation classes R(· , ;, \) and R(· , ;, \, /) are not finitely

axiomatizable.

6. State Semantics

Next we consider the state semantics for (· , ;, \, /)-expressions. Recall
that we defined this in (7) as

C |=s t iff C |= 1′ ≤ t

for every term t and algebra C.
Next we define term formalisms, see Figure 6. We use the convention that

x ; ε = ε ; x = x \ ε = ε \ x = x / ε = ε / x = x if ε is the empty term. The
idea, roughly, is that we replace every ⇒ in the sequent axioms and rules of
SC0 by \ in the term formalism. We do not need (;L) and (;R) but we have
to state associativity of ; explicitly as axioms.

6.1. Without Commutativity. The term derivation system TC is defined
by the axioms (I ′), (A1′) and (A2′) and derivation rules (\1′), (\2′), (/1′),
(/2′), (·L1′), (·L2′), (·R′) and (Cut ′) with the restriction that the terms on
the right of the main \ and x in (·L1′) and (·L2′) are not empty.

Similarly to the equivalence of the algebraic and sequent formalizations of
the Lambek calculus, see [La58, Section 8], one can establish the following.

Claim 6.1. The derivation systems TC and SC0 are equivalent:

` ⇒ x in SC0 iff ` x in TC

for every term x.

Then the following is a straightforward consequence of Theorem 4.3.

Corollary 6.2. The term calculus TC is weakly complete and sound w.r.t.
state semantics for R(· , ;, \, /): for every term t,

` t iff |=s t

where ` denotes derivability in TC and |=s denotes state validity in R(· , ;, \, /).
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Axioms:

(I ′) x \ x
(Com ′) (x ; y) \ (y ; x)

(Den ′) x \ (x ; x)

(A1′) ((x ; y) ; z) \ (x ; (y ; z))

(A2′) (x ; (y ; z)) \ ((x ; y) ; z)

Derivation rules:

(\L′)
y \ (x \ z)
(x ; y) \ z

(\R′)
(x ; y) \ z
y \ (x \ z)

(/L′)
x \ (z / y)

(x ; y) \ z
(/R′)

(x ; y) \ z
x \ (z / y)

(·L1′)
x \ z

(x · y) \ z
(·L2′)

x \ z
(y · x) \ z

(·R′)
x \ y x \ z
x \ (y · z)

(Cut ′)
x \ y y \ z

x \ z

Figure 6. Term formalism

6.2. The Commutative Case. We already noted that the interpretations
of the residuals coincide in commutative algebras. That is why we restrict
the language to (· , ;, \). The derivation system TCc is given by the axioms
(I ′), (A1′), (A2′) and (Com ′), and derivation rules (\L′), (\R′), (·L1′),
(·L2′), (·R′) and (Cut ′) with the restriction that x in (·L1′), (·L2′) and the
terms on the right of the main \ cannot be empty.

Similarly to the non-commutative case, we can apply the corresponding
completeness result for the sequent formalism, Theorem 4.5.

Corollary 6.3. The derivation system TCc is strongly sound and complete
w.r.t. state semantics for Rc(· , ;, \):

Γ `c t iff Γ |=c
s t

for any set Γ of terms and term t, where `c denotes derivability in TCc and
|=c
s denotes consequence in the state semantics for Rc(· , ;, \).

Let TCcd be the derivation system given by augmenting TCc with the
density axiom (Den ′), and Rcd(· , ;, \) be the dense subclass of Rc(· , ;, \).
The reader should not have any problem in establishing the following.
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Corollary 6.4. The derivation system TCcd is strongly sound and complete
w.r.t. state semantics for Rcd(· , ;, \).

7. Conclusions

We have seen that (state) validities are finitely axiomatizable for Rcd(· , ;, \)
and R(· , ;, \, /). The reader may wonder whether similar results could be
achieved with join + (interpreted as union) instead of meet. In this case no
finite axiomatization is possible. (Below 0, 1 and ^ denote the bottom and
top elements and relation converse, respectively.)

Theorem 7.1. Let {+, ;, \, /} ⊆ Λ ⊆ {+, ;, \, /,^, 0, 1′, 1}. Then state
validities for Rcd(Λ) and R(Λ) are not finitely axiomatizable (by axioms and
rules that are state valid).

Proof. The heart of the proof is the following [AMN12, Theorem 3.2].

Theorem 7.2. Let {+, ;, \, /} ⊆ Λ ⊆ {+, ;, \, /,^, 0, 1′, 1}. The equational
theory of R(Λ) is not finitely axiomatizable.

Moreover, there is no first-order logic formula valid in R(+, ;, \, /,^, 0, 1′, 1)
which implies all the equations valid in R(Λ).

In the proof of Theorem 7.2, for every n ∈ ω, we had a {+, ;, \, /,^, 0, 1′, 1}-
algebra An and {+, ;, \, /}-terms τn and σn such that

(1) An is not representable, i.e., it is not isomorphic to a family of rela-
tions,

(2) any non-trivial ultraproduct A of (An : n ∈ ω) is representable,
(3) τn ≤ σn fails in An,
(4) τn ≤ σn is valid in representable algebras.

From these facts Theorem 7.2 easily follows.4

Relation composition is defined so that commutativity and density hold
in An (hence the two residuals coincide), and A ∈ Rcd(+, ;, \, /,^, 0, 1′, 1).
Thus the equational theory of Rcd(Λ) is not finitely axiomatizable.

Finally, using the displayed formulas (6) and (7), for every C ∈ R(cd)(Λ),
we have C |= τn ≤ σn iff C |=s τn \ σn. Thus the theory

{ρ : |=(cd)
s ρ}

is not finitely axiomatizable, finishing the proof of Theorem 7.1. �

We conclude with the following problem.

Problem 7.3. Are the validities for Rcd(· , ;, \, 1′) and R(· , ;, \, /, 1′) finitely
axiomatizable?

4In passing we note that the sequence of algebras (An : n ∈ ω) were used in [AM11].
We proved that the quasi-variety R(+, ;) is not finitely axiomatizable by establishing items
(1)–(2) above and showing items (3)–(4) for quasi-equations instead of equations τn ≤ σn.
The novelty in [AMN12] is that the quasi-equations can be replaced by equations provided
that we include the residuals into the signature.
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Note that in this case we can have an explicit use of the identity constant
1′, while we only had an implicit use of 1′ via state semantics. But if we
have ordered monoids instead of semigroups, then additional problems arise
in the quest for axiomatization, see [HM07]. In the light of Conjecture 5.4,
the answer is probably negative.
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