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Abstract.

The Sleeping Beauty problem has attracted considerable attention in the litera-

ture as a paradigmatic example of how self-locating uncertainty creates problems

for the Bayesian principles of Conditionalization and Reflection. Furthermore, it

is also thought to raise serious issues for diachronic Dutch Book arguments. I

show that, contrary to what is commonly accepted, it is possible to represent the

Sleeping Beauty problem within a standard Bayesian framework. Once the prob-

lem is correctly represented, the ‘thirder’ solution satisfies standard rationality

principles, vindicating why it is not vulnerable to diachronic Dutch Book argu-

ments. Moreover, the diachronic Dutch Books against the ‘halfer’ solutions fail to

undermine the standard arguments for Conditionalization. The main upshot that

emerges from my discussion is that the disagreement between different solutions

does not challenge the applicability of Bayesian reasoning to centered settings, nor

the commitment to Conditionalization, but is instead an instance of the familiar

problem of choosing the priors.

1. Introduction

Adam Elga (2000) introduced to the philosophical literature what has come to

be known as the Sleeping Beauty problem:

Some researchers are going to put you to sleep. During the two days

that your sleep will last, they will briefly wake you up either once or

twice, depending on the toss of a fair coin (Heads: once; Tails: twice).

After each waking, they will put you back to sleep with a drug that

makes you forget that waking. When you are first awakened, to what

degree ought you believe that the outcome of the coin toss is Heads?

(Elga, 2000, p. 143).

Since then, the Sleeping Beauty problem has attracted considerable attention in
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the literature as a paradigmatic example of how self-locating uncertainty creates

problems for the principles of Conditionalization and Reflection. The current con-

sensus is that self-locating uncertainty puts pressure on the standard Bayesian

framework (Titelbaum, 2016, 2013; Spohn, 2017; Schwarz, 2011). While there

is no general agreement on a solution, those that have been proposed all raise

some tension between different Bayesian commitments. The ‘thirder’ solutions

(see §3.1 below) appear to violate standard Conditionalization and Reflection,

and yet are not vulnerable to diachronic Dutch Books (see e.g. Bradley and Leit-

geb, 2006; Bovens and Rabinowicz, 2011). This is at odds with a well known

result (Teller (1973), who attributes the idea to D. Lewis. See also (Lewis, 2010;

Skyrms, 2009)), which establishes that an agent can avoid being vulnerable to

diachronic Dutch Books only by planning to update via Conditionalization. On

the other hand, it is often accepted that ‘halfers’ should not bet at the odds that

reflect their beliefs in cases like the Sleeping Beauty (Bradley and Leitgeb (2006);

Briggs (2009)). But this puts pressure on the idea that an agent’s credences can

generally be interpreted (or operationalised) as the betting odds that the same

agent would consider fair, undermining a standard argument for probabilism (de

Finetti, 1937).

The current state of the literature indicates that the issues raised by the Sleeping

Beauty problem constitute a serious threat to the Bayesian approach to subjective

probability. The puzzle is compounded by the fact that self-locating beliefs are

pervasive, and they are key to modelling ordinary evidence, which normally comes

in the form of indexical observations (e.g. ‘it is raining now’, ‘this coin toss landed

Tails’).

Given this background, this paper makes two contributions. Firstly, I give a

Bayesian representation of the Sleeping Beauty problem (§2), and show that the

different numerical solutions discussed in the literature can all be derived within

this framework, depending on the choice of priors (§3). Secondly, I show that,

despite the appearances, Sleeping Beauty does not call into question the Bayesian

commitment to Conditionalization. This is done in two steps. I first defend

the thirder solution and address the objection that it violates the principles of

Conditionalization and Reflection (§4). I then show that Diachronic Dutch book

arguments against the halfer solution do not provide a counterexample to the

results by Lewis and Skyrms (§5).

Before proceeding further, I should also be clear on the limitations of this paper.

I do not aim to give a comprehensive review of the vast literature on the Sleep-
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ing Beauty problem. Moreover, I will only be interested in solutions that aim

to preserve the validity of standard Bayesian commitments, and specifically the

principle of Conditionalization. I will not consider the merits of the (numerous)

other existing revisionary approaches that propose alternatives to Conditionaliza-

tion here,1 as well as those of solutions that do not rely on a Bayesian framework

(such as, for instance, the objectivist one in Oscar Seminar , 2008). Instead, my

goal is simply to show that it is possible to represent the Sleeping Beauty problem

within the Bayesian framework, and that this representation is consistent with

the Bayesian commitments to Conditionalisation and Reflection. Given that the

Bayesian framework is widely regarded as a powerful framework for reasoning

under uncertainty, and that there are independent reasons for accepting Condi-

tionalization and Reflection, the results I present shift the burden of proof to

those that want to argue for a departure from these principles.

2. The problem

Elga’s description of the Sleeping Beauty problem grants the following natural

assumptions:

1. The experiment lasts two full days, from the moment Beauty is put to sleep

at the end of day 0, to the moment when she is woken up and dismissed at

the beginning of day 3.

2. There are two possible outcomes to the experiment: either the coin toss

comes up Heads, and Beauty is woken up on day 1, but left to sleep on day

2; or the coin toss comes up Tails, and Beauty is woken up both on day 1

and on day 2. Each outcome has a prior probability that is equal to 1
2 .

3. When she wakes up during the experiment, Beauty does not know which

day it is.

From Beauty’s standpoint, the task is to determine the probability of Heads, after

she wakes up during the experiment.

On each day, Beauty could be in either of two states: she is either awake or she is

asleep. Representing an awakening by w and a sleep-through by s, we know from

1For an overview of some of these, see e.g. Titelbaum (2016).
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the outset that day 1 involves an awakening, while day 2 may involve either an

awakening or a sleep-through, depending on the result of the coin toss. A first

characterisation of the state space for the whole experiment is therefore:

Ω = {ws,ww}

Let H = {ws} be the event that the coin toss comes up Heads and T = {ww} be

the event that the coin toss comes up Tails. By assumption 2, the prior probability

of H is the same as the prior probability of T , that is, P (H) = P (T ) = 1
2 . In the

context of the experiment undergone by Sleeping Beauty, the probabilities of the

events H and T are given as priors, as they are fixed by the experimental setup.

During the course of the experiment, Beauty is allowed to make some observa-

tions that potentially provide her with side information about the outcome of the

experiment. Each observation consists in waking up on a given day, and noting

that ‘Beauty wakes up today’, where ‘today’ picks out a day i ∈ {1, 2}. (Recall

that, by assumption 3, Beauty does not know which day it is when she wakes up,

and that by assumption 1 each outcome spans over two days. So, Beauty believes

that ‘today’ could be either day 1 or day 2.) How does this observation affect the

probability of H? In order to answer this question, we need to represent the ob-

servation that ‘Beauty wakes up today’ (i.e., ‘Beauty wakes up on day i ∈ {1, 2}’)
as an event within the same state space as the event H. Let us call this event W .

A quick glance at Ω reveals that without some further elaborations, that space

is not sufficiently rich to express the event W . This is because, if the outcome

of the experiment is ws (if, that is, the result of the coin toss is Heads), it is

indeterminate whether Beauty wakes up on day i. To see this, consider how the

outcome ws consists of an awakening followed by a sleep-through, so for i = 1,

Beauty wakes up, but for i = 2, Beauty does not wake up.

The difficulty with modelling the event W that Beauty wakes up on day i (‘today’)

is due to the fact – expressed by assumption 3 – that Beauty does not know which

day it is when she wakes up. To represent her uncertainty, we need to refine the

outcome space, taking into account that the experiment spans over two days

(assumption 1), and that it could be either day 1 or day 2, since the experiment
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lasts two days regardless of the result of the coin toss.2 The resulting refined

state space is:

Ω′ = {ws1,ws2,ww1,ww2}

Here, the elements of the state space are indexical states, centred on differ-

ent times.3 Relative to Ω′ we can express the event W as the set of states

{ws1,ww1,ww2} – these are all the states in which Beauty is awake during the

experiment. W is false at ws2, which corresponds to the state where the result

of the coin toss is Heads, it is day 2, and Beauty is sleeping. The event corre-

sponding to a Heads result of the coin toss is H = {ws1,ws2}, while a Tails result

corresponds to T = {ww1,ww2}. The same prior constraints set by the experi-

mental setup should apply to the refined state space Ω′, as they did to the more

coarse-grained version of the state space Ω. In particular, by assumption 2, the

probabilities assigned to H and T relative to Ω′ should be equal.4 Table 1 sum-

marises the refined state space and the probabilities associated to each outcome,

subject to the constraint that P (H) = P (T ) = 1
2 .

The parameters α and β in table 1 both take values in the [0, 1] interval and

represent the conditional probability that it is day 1, given that the result of the

coin toss is either Heads or Tails; more precisely, P (D1|H) = α and P (D1|T ) =

2In a sense, speaking about refining the state space may seem suspicious: after all, ws1 and
ws2 both happen (sequentially) if the result of the coin toss is Heads. So, from an atemporal
point of view, they are not mutually exclusive. However, here we are not interested in the
atemporal viewpoint, but in the temporally located viewpoint that Beauty occupies at the time
that she considers the problem. From this temporally located perspective, ws1 and ws2 are
indeed mutually exclusive.

3The indexical states within the state space Ω′ can be interpreted as centred worlds. Using
centred worlds to capture the content of self-locating propositions is a standard move in the
philosophical literature Lewis (1979). However, the present model is also compatible with other
ways of interpreting indexical content, such as for instance as Fregean propositions (see, e.g.
Magidor, 2015). The limited space of this paper does not allow me to detail this discussion, but
I develop this point further elsewhere.

4A possible objection that could be moved against this step is the following: assumption
2 constrains the probabilities of the uncentred events Heads and Tails, which are perfectly
captured in the state space Ω. But once we move to the centred state space Ω′, it is unclear
why the same constraint should apply. In other words, assumption 2 constrains prior uncentred
probabilities, but not necessarily the centred probability of the events once we move to the
(centred) space Ω′. I do not find this objection convincing, for at least two reasons. First,
distinguishing between ‘uncentred’ and ‘centred’ reasoning about events such as H and T would
make it unclear what are the agent’s true prior probabilities, when they could differ. Second, it is
not at all clear why we should interpret assumption 2 as applying preferentially to events defined
in Ω. Reading it as applying to the events in Ω′ is at least as natural, and supports my argument
that Ω′ is the right state space to capture the relevant events in the Sleeping Beauty case. In
light of these, we should preserve correspondence between the prior probabilities assigned to
uncentred events relative to both state spaces, as breaking it would have higher costs and is not
warranted by anything in the problem description.
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Outcomes
(Heads) (Tails)

ws1 ws2 ww1 ww2

Probabilities 1
2α

1
2 (1− α) 1

2β
1
2 (1− β)

Table 1: The Sleeping Beauty problem

β. Expressing the probabilities assigned to the elements of the state space in

terms of these two parameters is not necessary, as we could instead just focus on

the probability that is assigned to each element of the state space in isolation.

However, introducing the parameters α and β is convenient simply because it

preserves the equal probability ratio between the hypotheses H and T , making

sure that their respective prior probabilities remain fixed however we distribute

probabilities to the events within this partition.

The conditional probabilities expressed by α and β are not fixed by the experi-

mental setup, so the description of the problem leaves us free, in principle, to set

them however seems best. One might worry, however, that the state ws2 could

never be experienced by Sleeping Beauty, and so should not be part of the space

of possibilities. I will address this worry in the next subsection, but note for now

that as long as we accept that all the states in Ω′ represent logical possibilities, the

description of the experimental setup does not give explicit information regarding

how Beauty should apportion these probabilities, and therefore we should, at this

stage of representing the problem, leave open how she sets the values of both α

and β. A discussion of which are the correct or the most plausible values for these

parameters is left until later (see §3 below).

We are now in a position to formally state the problem (which we originally

formulated as: What probability should Beauty assign to Heads, given that she

wakes up today? ) in terms of computing the posterior probability of H, given

that W is observed, or P (H|W ). By Bayes’ theorem, we immediately have:

P (H|W ) =
P (W |H)P (H)

P (W )

Since H and T partition the outcome space Ω′, by the law of total probability we

have that:

P (W ) = P (W |H)P (H) + P (W |T )P (T )
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Moreover, we know that P (H) = P (T ) = 1
2 , P (W |T ) = 1 (since Beauty wakes

up every day if T ) and P (W |H) = α (since the probability that Beauty wakes

up, given that the coin toss comes up Heads, is equal to the probability that it is

day 1 given H). The previous equation simplifies to:

P (W ) =
1 + α

2
(1)

The solution to the Sleeping Beauty problem is therefore given by the equation:

P (H|W ) =
α

1 + α
(2)

Answering Sleeping Beauty’s original question therefore depends solely on the

value that we assign to parameter α.5

2.1. Further Questions

The original Sleeping Beauty problem involves computing the value of H given

that W is observed. But once this is done, there are many questions we can still

ask. For example, what credence should Beauty assign to the coin toss having

come up Heads, if after waking up she were informed that it is day 1? Or, similarly,

what would her credence in Heads be if the experimenters told her, after waking

her up, that today is the last time she wakes up during the experiment?

Another advantage of the refined state space Ω′ is it allows us to model these

further questions. The first question (What is the probability of Heads, if today

is day 1? ) can be answered by computing the posterior probability of H, given

D1 ∩W (which coincides with D1):

P (H|D1) =
α

α+ β
(3)

5Baratgin and Walliser (2010) propose a solution to the Sleeping Beauty problem that is
formally similar to equation 2. A difference between their approach and the one presented here
is that they assume that the probabilities of {ww1} and {ww1} are both equal to 1

4
by the

Restricted Principle of Indifference (an assumption that, as I argue, we should dispense with).
Because they do not consider parameter β, their approach is also not able to rationalise the
double halfer solution (Hawley, 2013), which is possible within my approach (see note 12 in §3.2
below).
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Let L = {ws1,ww2} be the event that Sleeping Beauty wakes up for the last time.

To answer the second question (what is the probability of H, if today is the last

time you wake up? ), we just need to compute the probability of H, given the

information that L is the case, which is:

P (H|L) =
α

1 + α− β
(4)

Another question that will be interesting to consider might be posed to Beauty

before the experiment actually begins: Suppose that it is either day 1 or day 2.

What is the probability that you wake up? In order to answer this question, Beauty

should effectively state what is the prior probability of W , on the supposition that

it is either the first or the second day (that is, given D1∪D2). Since D1∪D2 = Ω′,

the conditional probability of W given D1 ∪ D2 is equal to its unconditional

probability:

P (W |D1 ∪D2) = P (W ) (5)

Things are a bit different if the question specifies which particular day is to be

supposed, e.g. Suppose it is day 1 (day 2). What is the probability that you are

awake? In this case, since we know that P (D1) = α+β
2 and P (D2) = 2−α−β

2 , by

a simple calculation we have:

P (W |D1) = 1 P (W |D2)=
1− β

2− α− β
(6)

Equation 6 states an interesting result. The probability that Beauty wakes up,

given that it is day 1, is equal to 1 – just as we would expect, since the exper-

imental setup specifies that Beauty always wakes up on day 1. However, the

probability that Beauty wakes up on day 2 does not necessarily equal 1
2 , as this

depends on what values α and β take.
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2.2. Prior perspectives

Before we move on, I want to consider two worries that might arise in relation to

my construction of the state space Ω′ to represent the Sleeping Beauty problem.

One worry is that one of the elements of Ω′, namely ws2, is not compatible with

Beauty’s evidence at any point in time. Since Beauty is asleep in ws2, she could

never consciously experience being in that state. In other words, we could say

that ws2 is a ‘blind’ state: Beauty could never learn that this is her current state,

and any evidence that she might have while she is awake automatically rules out

ws2. But, then, maybe we should not consider ws2 to be a genuine epistemic

possibility for Beauty, and it should not be included in the state space Ω′ at

all. Another, perhaps related, worry is that the state space Ω′ is only available

to Beauty when she wakes up, but not before, as none of the states in Ω′ are

compatible with Beauty’s evidence before being put to sleep, when she is certain

about the current time. This is a serious worry because, if Ω′ is not always

available to Beauty, then it would be unclear in what sense we can speak of her

having prior probabilities relative to Ω′, upon which she may conditionalize after

learning new evidence during the course of the experiment.

Let us start by addressing the first worry, that ws2 may not be a genuine epis-

temic possibility for Beauty, since she could never learn that she is in that state.

First of all, there are some prima facie objections to the claim that we could not

assign positive probability to ‘blind’ states that are logically possible. Consider

the following case. Suppose you are preparing to leave for a journey, and buying

travel insurance brings you to mind the possibility that your flight will crash.

Given what you believe about the chances of an accident, you assign a positive

probability to the possibility of your own death. This, however, is not a proposi-

tion that you are in a position to ever learn. So, in some cases at least, it seems

plausible to assign a positive probability to ‘blind’ states.

Further to this, whether we should include ‘blind’ states such as ws2 in the state

space and whether they should be assigned a positive probability are two issues

that can be kept separate. In the construction of Ω′, and in what follows, I assume

that the state space contains all the logically possible states, including those that

(like ws2) may never represent live epistemic possibilities for Beauty. This still

leaves open the option of assigning zero probability to these states. Doing this in

the Sleeping Beauty case would support Lewis’s solution to the problem, as we

will see in §3.2 below.
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The second objection – that the state space Ω′ is not available to Beauty before

being put to sleep – raises a more general worry for my approach. In one sense,

this worry reflects a common intuition: namely, that the experience of being in

one of the states in Ω′ is only available to Beauty when the state occurs, and

it is not available to her at earlier (or later) times. In other words, Beauty

could not make the observation that ‘today is day 1’ before being put to sleep.

This observation is not compatible with her circumstances before the experiment

starts, when she is certain that the current time is not day 1. But the idea that

observations may not be available at all points in time should not be particularly

surprising. Suppose that you are considering whether to pack a warm sweater

for an upcoming trip: you may look up the weather forecast at your destination,

and decide to pack it on the basis of the probability that you come to assign to

the proposition that it will be chilly in Vienna at the time of your visit. In other

words, you make a decision now, based on the expectation (formed on the basis

of the weather forecast) that you will experience a chilly day when you travel to

Vienna. The observation ‘it is chilly today in Vienna’ is not available to you now.

But what is relevant for you now is the expectation of experiencing this state

in the future. This can be modelled by your assigning a conditional probability

to the proposition ‘it is chilly’, conditional on it being the day when you visit

Vienna. If this conditional probability is sufficiently high, based on your current

estimates, then you will pack a warm sweater. Similarly for Sleeping Beauty, the

observation ‘I am awake and today is day 1’ would only be available to her on

the first day of the experiment – she could not experience these circumstances at

any other times. But the expectation of making this experience is available (and

relevant) to her at other times, specifically before being put to sleep, and it is

equal to the conditional probability that she assigns to being awake, given day 1,

or P (W |D1).

A natural objection to what I just said will be that Beauty is certain that it is not

day 1 on (what we will call) day 0, before being put to sleep. So, the conditional

probability of W , given D1, is simply undefined, since on day 0 P (D1) = 0. Of

course, I do not want to deny that, on day 0, Beauty should be certain that it is

not day 1.6 But notice that, by the same reasoning, it would also seem that we

6To be precise, to model Beauty’s beliefs on day 0 we should expand the state space
to include a time point relative to day 0. Consider the resulting expanded state space
Ω′′ = {ws0, ws1, ws2, ww0, ww1, ww2}: since P (D0|D0) = 1, and since D0 and D1 are mutu-
ally exclusive events, P (D1|D0) has to be equal to 0. The expanded state space Ω′′ can be used
to more accurately model Beauty’s credences before being put to sleep, but since the proposi-
tions that we are interested in are those relative to her states during the experiment (that is,
conditional on it being either day 1 or day 2), there is no loss in using Ω′ to solve the equations
in §§2-2.1.
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have an argument for the claim that, in the sweater case, the probability that it

is chilly in Vienna when I am there is undefined. The way in which we should

solve the issue, I propose, is to allow Beauty’s prior probabilities to be defined

as a conditional probability structure, assigning probabilities to each logically

possible state, conditional on different times, as is implicit in my construction

of the sample space Ω′. This proposal, versions of which have been discussed in

the literature on self-locating beliefs (see Moss, 2012; Stalnaker, 2008; Meacham,

2016; Schwarz, 2017; Wenmackers, 2017), 7 has the advantage of allowing for a

unified and straightforward treatment of both cases like ‘sweater’ and Sleeping

Beauty.8

Having clarified the nature of Beauty’s priors, in the next section I turn to the

task of deriving a numerical solution within the framework I have presented.

3. Solution

As we’ve seen in the previous section, the solution to the Sleeping Beauty problem

comes down to computing the value of P (H|W ) in equation 2. To do this, we need

to specify what is the value of α, which is not explicitly fixed by the description of

the experimental setup. Is there a correct or most plausible assignment of value

to α? Moreover, does the value assigned to α match the value assigned to β, or

do they differ? (Although the value of β does not matter to the solution of the

original Sleeping Beauty problem, it affects the solution to the further questions

I described in the previous section.)

There are, I think, two possible ways to go from here. One possibility would be

to say that we simply cannot assign any value to α and β, since these are left

unspecified by the description of the experimental setup. This would leave us

unable to compute the posterior probability of Heads given that Beauty wakes

7See also Horgan (2004) and Neal (2006) for related discussions. The ‘generalised Condition-
alization’ principle defended by Horgan differs from standard Conditionalization by its reliance
on what Horgan calls ‘preliminary probabilities’, which are distinct from prior probabilities.
Horgan defends the thirder position, but as I show the halfer position is also consistent with
Conditionalization.

8This proposal generalises the one defended by Moss (2012) (who, in turn, expands the anal-
ysis of the Sleeping Beauty problem presented in Stalnaker, 2008), by giving up the assumption
of reducibility of de se to de dicto beliefs. Due to space constraints, I do not address here some
further concerns related to the choice of priors discussed by Meacham (2016), though I pursue
these further elsewhere. In any case, these issues do not affect the main point of this paper,
that is providing a Bayesian formulation of the Sleeping Beauty problem. This issue is separate
from that of the choice of priors.
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up.9 Although theoretically coherent, this solution is not very attractive.

A second way to go is to proceed and assign a value to α (and to β, if we have any

interest in answering the further questions that Sleeping Beauty might consider,

described in §2.1). If we take this route, it remains to be decided which values

are the most appropriate. The most natural assignment – in my view – is α = 1
2

and β = 1
2 . The rationale for this assignment is the following. Since Beauty is

uncertain about what day it is, we should conceptualise the day i that she observes

as if it had been selected through some sort of randomising mechanism. We don’t

need to be very specific about the nature of the sampling mechanism that we

imagine.10 The point is simply that, in order to represent Beauty’s uncertainty

about what day it is, the way in which we model the problem must respect the

intuition that both day 1 and day 2 are possible. The parameter α (respectively,

β) represents the prior probability that a day randomly selected through this

hypothetical mechanism is day 1, given that the result of the coin toss is Heads

(respectively, Tails). In other words, α = P (D1|H) and β = P (D1|T ).

Since the experiment is expected to run over two days, regardless of the result

of the coin toss, it makes sense to assume a uniform prior distribution over the

two days in both scenarios (whether the coin toss comes up Heads or Tails).

On this view, when considering what values to set for α and β, Beauty employs

the Principle of Indifference (PI, for short): since she has no reason to believe,

assuming that the result of the coin toss is Heads (respectively, Tails) and before

anything else is learned, that any one of the two experimental days is more likely

to be selected than the other, she should assign them an equal probability, and

therefore set α = 1
2 (respectively, β = 1

2 ).

PI is a notoriously controversial principle, and I will not attempt to defend it

here, although a consideration that might favour it in this particular instance

is the fact points in time are linearly ordered, so each day should intuitively

have the same weight. But it is important to note that my application of PI

is conceptually distinct from a related line of reasoning that is often applied to

the Sleeping Beauty problem, which is known in the literature as the Restricted

9An additional possibility, that I will not explore here (but that would constitute a possible
extension of the representation that I give in this paper), would be to introduce imprecise
probabilities and allow a set or an interval of possible values for the posterior (I thank an
anonymous referee for drawing my attention to this possibility). See Bovens and Ferreira (2010)
for a related discussion, though they do not apply it specifically to the Sleeping Beauty case.

10In the terminology of Bovens and Ferreira (2010), this would corresponds to different
protocols through which Beauty could learn the relevant pieces of information. I resist using
this terminology here, as the parameters α and β do not, in themselves, constitute protocols,
but they could be seen as consistent with different choices of protocols.
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Principle of Indifference (RPI, for short). According to RPI, any two events that

take place within the same history (such as the awakenings on day 1 and day 2,

in the event of the coin toss coming up Tails) and which would be subjectively

indistinguishable for an agent experiencing them given some evidence E, should

receive equal posterior probability after learning that E. This principle places

a substantive restriction on the posterior probabilities that an agent may come

to have upon a learning event, and has come under independent criticism (see

Marcoci (2018), Weatherson (2005)). In contrast, PI – as I have employed it –

gives us a way to set Beauty’s prior probabilities, which I take to be more in line

with the general commitments of Bayesian reasoning (I also consider alternative

ways to fix the prior parameters in §3.2).

3.1. A numerical answer

To represent Beauty’s uncertainty about which day it is when she wakes up within

a probabilistic framework (on the assumption that Beauty reasons as a Bayesian

agent) we have refined the simple state space Ω, and then we employed the Prin-

ciple of Indifference to generate Beauty’s prior probabilities for the events that

we defined relative to the refined state space Ω′.

If we now plug in the chosen values for α and β to equations 1 and 2 from §3, we

are finally able to compute the desired probabilities:

P (W ) =
1 + 1

2

2
=

3

4
(7)

P (H|W ) =
1
2

1 + 1
2

=
1

3
(8)

And moreover, answering the further questions in §2.1:

P (H|D1) =
1

2
(9)
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P (H|L) =
1

2
(10)

P (W |D1) = 1 P (W |D2) =
1

2
(11)

None of the above answers seems particularly surprising. If Beauty is told that

it is day 1, she intuitively is in the same situation as someone who doesn’t (yet)

know the result of a fair coin toss, and this explains why we have a strong intuition

that she should assign a probability of 1
2 to Heads. Similarly, if Beauty learns

that this is the last time she wakes up, but does not know if it is day 1 or day 2,

she knows that it is Heads if and only if it is day 1, and Tails if and only if it is

day 2. This means that P (H|L) = P (D1|L), and it is very plausible that both

should equal 1
2 . Finally, the probabilities in equation 11 are simply in line with

the description of the experimental setup.

3.2. Tweaking the parameters

Although the motivations I gave to support it in §3 are different, my numerical

solution to the Sleeping Beauty problem agrees with the one put forward by Elga

(2000),11 and which is known in the literature as the ‘thirder’ solution. However,

Elga’s original paper did not settle the answer to the Sleeping Beauty problem,

as attested by a literature growing around it to this day. In this section, I review

another prominent alternative solution to the Sleeping Beauty problem, Lewisian

halfing. I show how this solution too can be derived within the framework that I

gave in §1, and then critically examine a possible rationale for it.

An early reply to Elga by David Lewis (2001) advocated a different solution to

the original problem, which has come to be known as ‘halfing’. According to

Lewis, Beauty’s credence in Heads should not change between the time before

she is put to sleep and when she wakes up on day 1, but should stay equal to

11Dorr (2002) also gives an argument in favour of Elga’s solution based on a variation of the
problem where Sleeping Beauty is awakened every day with her memory temporarily erased,
but remembers the Monday awakening after a little while on Tuesday if Heads. Due to space
constraints, I do not elaborate on this variation here, but note that Dorr’s argument is different
from the one presented here, as different solutions cannot be rationalised in his approach.
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1
2 . In other words, for Lewis, both P (H) = 1

2 and P (H|W ) = 1
2 . The rationale

given by Lewis to defend this ‘halfer’ solution is that, upon waking up, Beauty

does not learn anything new. She was aware all along that she would wake up at

least once during the experiment, and therefore an awakening does not give her

additional clues about the outcome of the coin toss. Given this consideration,

halfers argue that Beauty should not change her credence in Heads upon waking

up. Since she knows the coin to be fair, she should maintain a credence of 1
2 in

Heads.

Lewis’s solution, like Elga’s, can be derived within the refined state space Ω′

that I have given in §1 (see table 1). This is because both Lewis and Elga agree

that we need to model Beauty’s uncertainty regarding what day it is, since this

information is relevant to the probability of Heads. They also agree that, if the

coin lands Tails, Beauty is equally likely to wake up on day 1 as she is on day

2, that is β = 1
2 . However, in order to get Lewis’s solution, the conditional

probability of day 1 given Heads should be set equal to 1, that is, α = 1.12 When

we set the parameters in this way, the prior probability of the event W is:

P (W ) =
1 + 1

2
= 1 (12)

And the resulting numerical solution to the Sleeping Beauty problem is therefore:

P (H|W ) =
1

1 + 1
=

1

2
(13)

The halfer solution is known to generate some counter intuitive answers when

it comes to the further questions I formulated in §2.1. These can all be easily

derived in the formal model I have given in §1. One problem for the Lewisian

halfers is that the probability that Beauty assigns to Heads appears to increase

if, upon awakening, she is informed that it is day 1, as (by equation 3):

P (H|D1) =
1

1 + 1
2

=
2

3

12Another popular solution, that I will not review here, is ‘double halfing’ (see e.g. Meacham,
2008; Cozic, 2011). This solution, too, can be derived within my framework by setting α = 1
and β = 1, but has the drawback of violating the third assumption from §2 (though see Hawley
(2013) for an argument in favour of this option). It can also be subjected to a similar DDB
argument as the one for the Lewisian halfer that I discuss in §5 below.
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This result is clearly puzzling, since Beauty’s awakening on day 1 happens inde-

pendently of the result of the coin toss. Lewis himself acknowledged the puzzling

nature of this result, arguing that it constitutes an interesting case of getting

evidence ‘about the future’ (Lewis, 2001, p. 175).

In spite of the puzzling result it generates, Lewisian halfing remains a relatively

popular solution. This is because it makes a basic appeal to an intuition that

is shared by many people, regarding what is the content of Beauty’s evidence

upon waking up. The idea behind Lewisian halfing is the following: if the coin

toss comes up Heads, Beauty can only wake up on day 1. Moreover, Beauty only

observes a day if she gets to wake up on that day. Therefore, if Heads, day 1 is

experienced with certainty. There is no possible scenario in which Beauty gets

to observe day 2, if Heads, and so the prior probability assigned to day 2 given

Heads should be 0.

Although it appears intuitive, this motivation for the halfer solution may rest on

a misunderstanding of what is the observable event W in the Sleeping Beauty

problem. As I explained in §1, W contains all the outcomes of the refined state

space Ω′ in which Beauty is awake. When she is put to sleep, Beauty considers

it possible that she will not wake up on every day during the experiment. This

is because she knows that it is possible that she will sleep through day 2, namely

if the result of the coin toss is Heads. So, even though she knows that she will

not be consciously aware of it if and when it happens, day 2 given Heads is a live

possibility at the outset, to which she intuitively should assign a positive prior

probability. If the halfer solution were correct, however, then Beauty would be

certain that the prior probability of W is equal to 1, since (plugging in α = 1 in

equation 1) P (W ) = 1+1
2 = 1. Moreover, puzzlingly, she would also be certain

to wake up, conditional on it being day 2, as we can see by solving equation 6:

P (W |D2) =
1− 1

2

2−1− 1
2

= 1. In other words, according to Lewisian halfing, Beauty

would be certain that she wakes up on every day during the experiment – even

though this clearly is contrary to the description of the experimental setup, which

specifies that the prior probability that she wakes up on day 2 is equal to the

probability that the coin toss comes up Tails – which, the coin being fair, is in

turn equal to 1
2 .

Another reason to believe that the halfer intuition may rest on a misunderstanding

is that halfers often justify the value of β = 1
2 on the basis of the same Restricted

Principle of Indifference advocated by Elga (but which is not necessary to derive

the thirder solution, as I have shown). This means that (at least in the case



17

where the coin toss comes up Tails) Lewisian halfers allow for the possibility that

we should think of the day Beauty observes as if it were randomly selected from

the set of possible days within a Tails run. But why should this same reasoning

not apply to the Heads run, as well? After all, the indifference should reflect the

ignorance of which day it is according to Beauty’s priors, and not be taken as a

way to set her posterior probabilities.

4. Matters of Principle

In this section, I examine how the proposed representation and solution tally with

two principles, Conditionalization and Reflection, which concern the relationship

between an agent’s credences at different times. The fact that the thirder solution

seems to violate Conditionalization and Reflection could be taken as indication

that these principles are not necessary conditions for diachronic rationality. How-

ever, I show that the thirder solution derived within my framework upholds both

Conditionalization and Reflection, when appropriately construed.

4.1. Conditionalization

The Sleeping Beauty problem is generally taken to present a challenge to the

principle of Conditionalization.13 Conditionalization is the way in which Bayesian

reasoners are expected to update their credences over time, upon learning new

pieces of information. It works like this: suppose that at time t1, you learn a new

piece of evidence E (and nothing else). For any event A, the probability that

you assign to A at t1 after learning that E should be equal to the conditional

probability you used to assign to (A|E) at the time t0 just before learning E.

More formally, denoting by Pt0 and Pt1 your credences at t0 and t1, respectively,

Conditionalization places the following constraint on how your credences should

change between t0 and t1, when the only thing that you learn in the interval

between these two times is E:

Definition 1 (Conditionalization). Pt1(A) = Pt1(A|E) = Pt0(A|E)

The question now is: Does Beauty update her credences via Conditionalization

13See (Titelbaum, 2016, p. 667): ‘The current consensus in the self-locating credence lit-
erature is that obtaining a general updating scheme for degrees of belief in both centered and
uncentred propositions requires us to alter (or at least supplement) conditionalization in some
way.’
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upon waking up on day 1? It is often argued that if Beauty is a thirder, then

the way her credence in Heads is updated when she wakes up on day 1 is not

compatible with Conditionalization. Elga himself makes this point:

Before being put to sleep, your credence in H was 1/2. [. . . ] when

you are awakened on [day 1], that credence ought to change to 1/3.

This belief change is unusual. It is not the result of your receiving new

information – you were already certain that you would be awakened

on [day 1]. (Elga, 2000, p. 146)

The upshot, for Elga, is that Conditionalization does not always apply. In cases

where an agent receives only centered evidence, his or her credences may change

in ways that conflict with Conditionalization.

In light of the analysis I have offered in §2, we can see how Elga’s argument here

cannot be right. To say that the change in Beauty’s credence in Heads ‘is not a

result of [her] receiving new information’ implies that Beauty is certain that she

will receive evidence W , or – more precisely – it implies that the prior probability

P (W ) equals 1. But, as we have seen, relative to the assignment of values to α

and β consistent with the thirder solution, this is not true, because for α = 1
2 we

have that P (W ) = 3
4 6= 1. In other words, if she is a thirder, Beauty is not certain

that she always learns W . Moreover, as I argued in §3, learning W is relevant to

the probability of H.

The last sentence from Elga’s quote indicates where the problem lies. When

Elga says that Beauty does not receive new information, that is because she is

certain of waking up on day 1. This explains why, intuitively, on day 0 she is

certain that she will receive evidence W at least once in the future – namely, on

day 1. Conditional on her being awake and it being day 1, Beauty’s credence

in Heads should indeed remain unchanged (as I also argued in §3), since P (H)

is independent of P (W ∩ D1) – that is, P (H|W ∩ D1) = 1
2 = P (H). However,

upon waking up, Beauty does not learn that W ∩ D1. Instead, her evidence is

just W , and since P (H) is not independent of P (W ), this is relevant information

upon which she should update her credences via Conditionalization. My solution

allows this, and thus vindicates Conditionalization.

Lewis’s halfer solution – contrary to Elga’s – does not entail a violation of Con-

ditionalization. Lewis simply starts from the assumption that the evidence W is

irrelevant to H, and as we have seen this can be achieved within the represen-
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tation I have given by setting α = 1 and β = 1
2 . Given this setting, the prior

probability P (W ) = 1, and so Beauty is indeed certain that she will receive evi-

dence W , which then gives us P (H|W ) = 1
2 = P (H), without any violations of

Conditionalization.

Based on this discussion, we can now see that the key difference between the halfer

and thirder solutions is the characterisation of the event W . For halfers, W is

certain, and so learning W does not affect the probability of Heads. For thirders,

on the contrary, W is not always certain, and therefore learning it affects the

probability of Heads, via Conditionalization. Given these results, we can see that

once the problem is correctly represented, the solution to the Sleeping Beauty

problem does not challenge the validity of Conditionalization as a principle for

updating one’s credences in the face of newly acquired evidence.

4.2. Reflection

Another rationality principle that appears to be violated in the Sleeping Beauty

case is van Fraassen’s Reflection principle (Van Fraassen, 1984). Suppose that

you are a rational Bayesian agent, that you always plan to update your credences

via Conditionalization, and you do not expect to suffer any cognitive mishap that

would lose you some of your previous evidence. Then let, as before, Pti denote

your credences at a time ti, and Ptj denote your credences at some later time tj>i.

If you know, at ti, that your later credence Ptj (A) in some event A will be equal

to some real number 0 ≤ p ≤ 1, then, intuitively, your credence at Pt0(A) should

match that same value. That is, stated somewhat more formally (see Schervish

et al. (2004)):

Definition 2 (Reflection). Pti(A|Ptj (A) = p) = p.

Clearly, you do not typically know what probability you will assign to an uncer-

tain event in the future. This is because you do not generally know in advance

which possible pieces of evidence you will learn in the future, and so you do not

know what posterior probability you will assign to A by the time tj . However,

if you were certain that you will receive a particular piece of evidence E (and

nothing more) by tj , which would lead you to update your credence in A (via

Conditionalization) to Ptj (A) = Pti(A|E) = p, then it seems reasonable to sup-

pose that you should already have the same credence Pti(A) = p at the earlier

time ti. This is indeed confirmed by the probability calculus: to be certain, at
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ti, that you will receive evidence E just means that Pti(E) = 1, and so naturally

Pti(A) = Pti(A|E) = p.

Despite this natural reading, the principle of Reflection has come under con-

siderable critical scrutiny (Mahtani, 2016). The Sleeping Beauty problem, in

particular, provides one instance where the principle of Reflection appears to be

violated. If Beauty is a thirder, and assigns a probability of 1
3 to Heads upon

waking up on day 1, it seems that her prior credences on day 0, before the ex-

periment begins, violate Reflection. This is because she knows, at t0 = day 0,

that she will receive the evidence W at t1 = day 1. By Reflection, then, it seems

that her earlier credence in H at t0 should be Pt0(H|Pt1(H) = 1
3 ) = 1

3 . Beauty’s

credence in Heads on day 0, however, is not equal to 1
3 but to 1

2 , in accordance

with what she knows about the experimental setup, which explicitly sets the prior

P (H) = 1
2 . So, it seems that either the initial probability of Heads is not 1

2 , or

Beauty’s credences do not satisfy Reflection. Both alternatives seem very bad:

the former flatly contradicts the setup of the problem, while the latter is inconsis-

tent with the probability calculus, under the assumption that Beauty is a rational

agent who updates her credences via Conditionalization. What can possibly have

gone wrong?

The puzzle, I think, derives from the rather informal statement of Reflection,

which has led us to a subtle mis-interpretation. To find the solution to the puzzle,

we need only look more closely into the conditions under which Beauty expects

to learn W . This is because it is well-known (see Mahtani, 2016; Briggs, 2009;

Schervish et al., 2004) that a rational agent’s credences at t0 should not reflect

her credences at a successive time t1 when the agent at t0 should not ‘trust’ her

later self at t1 because either:

1. the agent expects to suffer memory loss between t0 and t1, losing some

relevant evidence; or

2. it is the case that both a) at t1, the agent does not know that it is t1;14 and

b) learning that t1 has arrived would give her new evidence, which would

change her credences at t1.

We can easily verify that conditions 2.a and 2.b are both satisfied in the Sleeping

Beauty case, hence why her credence at t0 is not required by Reflection to match

14That is, in Schervish et al. (2004)’s terms, t1 is not a stopping time.
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her expected credence at t1. Given what she knows about the experimental setup,

Beauty expects to receive evidence W on day 1, since she is certain that the ex-

perimenters wake her up on day 1 irrespective of the coin toss. This consideration

is reflected in the prior probability P (W |D1) = 1, as can be easily verified (see

§3). So, when we say that Beauty is certain to learn W (and, as a consequence,

to update the probability of Heads to P (H|W ) = 1
3 ), what we really mean is that

Beauty is certain to experience an awakening on day 1. But, clearly, t1 is not a

stopping time for Beauty, since upon waking up she does not know what day it is.

If at t1 she was in a position to conditionalize on learning W ∩D1, then indeed

Reflection would be satisfied, as expected: Pt0(H|W ∩D1) = Pt1(H|W ∩D1) = 1
2 .

However, Beauty does not learn W ∩ D1 at t1, but only W . This explains why

her credence at t0 does not reflect her credence at t1: that is not because she

is irrational, or violates Conditionalization in the way she updates her credences

between these two times, but because at t0 she can only be certain that she learns

W given D1, but the latter event is not part of her evidence at t1. It would be

incorrect to say that Pt0(W ) = 1, since Pt0(W ) = 3
4 . Therefore, Beauty is not

certain of W at the earlier time, and she can’t reflect on it.

Notice that the same argument for why Reflection does not hold in the Sleeping

Beauty case also applies to the halfer solution, since it is also true under this

solution that day 1 is not a stopping time for Beauty and, moreover, learning

that it is day 1 would lead the halfer to increase her credence in H from 1
2 to 2

3 .

This indicates that the fact that the halfer does not change her credence in H

between t0 and t1 is not due to an application Reflection.

5. Bets and Odds

As I showed in the previous sections, both the thirder and the halfer solutions

can be represented within a Bayesian framework, in a way that is compatible

with the principles of Conditionalization and Reflection. A well known result by

Lewis, reported by Teller (1973)15 (and generalised by Skyrms, 2009) shows that

a Bayesian agent can avoid falling victim to a Diachronic Dutch Book (DDB, for

short) only if she plans to update her credences via Conditionalization. A DDB,

in this context, is a series of bets offered to the agent before and after she learns

a given piece of evidence, such that each individual bet is fair, but when taken in

combination they guarantee her a sure loss. For illustration, imagine that Betty

15See also Lewis (2010).
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is a Bayesian who plans to update her credences via Conditionalization. Before

a fair die is rolled, we can assume that she might accept a bet X that pays £5

if the die shows a 3, and loses £1 otherwise. The expected value of this bet for

Betty now is 0, as she expects to lose £1 with a probability of 5
6 , and win £5

with a probability of 1
6 . She also currently estimates that the probability that she

wins the bet, conditional on the die showing an odd number, is equal to 1
3 , which

is higher than her current unconditional probability of winning. So, Betty would

also be prepared now to accept a conditional bet Y that pays £9 if the die shows

a 3, and loses £3 otherwise, all conditional on the die showing an odd number

(that is, the bet is void if the die shows an even number, but gives 1:2 odds on 3,

conditional on an odd number). Suppose that later, the die is rolled and Betty

receives the information that it shows an odd number. At that point, given that

she plans to update her credences via Conditionalization, she will be prepared

to accept an unconditional bet Z on the die showing a 3, at the same odds as

the conditional bet Y . The expected value of Z, later, is the same for Betty as

the expected value of Y now – so, if the expected value of Y is non-negative, the

same must be true for Z.

Regardless of whether she is a halfer or a thirder, on the solution I have given in §3
Beauty does not violate Conditionalization. So, by Lewis’s result, she should not

be Dutch bookable, just as Betty would not be in the example I just gave. Indeed,

this solves one side of the puzzle that I identified in §1: since, on the solution

that I have proposed, thirders do not violate Conditionalization (see §4.1), this

vindicates the fact that no genuine DDB against thirders has been found in the

literature.16

What is, however, surprising is that the halfer solution should be vulnerable to

a DDB – completing the puzzle that I identified in §1. As I have shown in §3.2,

the halfer solution can be derived within my framework with a choice of prior

probabilities that assigns a value of 1 to the parameter α. Moreover, since under

this prior probability assignment Beauty is certain to learn the evidence W , her

credences do not change upon waking up during the experiment, and she does

not violate Conditionalization. So, since they satisfy Conditionalization, we would

not expect halfers to be vulnerable to DDBs. But consider the following set of

bets: On day 0, the bookie offers Beauty a bet on H at even odds, that pays £15

if the result of the coin toss is Tails, and loses £15 if Heads. Since Beauty assigns

equal probability to Heads vs Tails, she can accept the bet. Then, every time that

Beauty wakes up during the experiment, the bookie offers her another bet, also at

16See Hitchcock (2004), Bradley and Leitgeb (2006), Bovens and Rabinowicz (2011).
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even odds, but which pays £10 if Heads, and loses £10 if Tails. Again, assuming

that Beauty is a halfer (and so her probability for Heads does not change upon

waking up) she can accept these bets as well. But accepting all the bets that

she is offered amounts to buying a Dutch Book: no matter what the result of

the coin toss, by the end of the experiment she is certain to lose £5.17 Notice

that the bookie does not need to have any more information than Beauty does

on each awakening to be able to offer her these bets – in fact, we can imagine

that the bookie undergoes the same series of awakenings as Beauty. How can we

explain this? Is the existence of DDBs against the halfer proof that this solution

is incoherent, or does it provide a counterexample to Lewis’s result, undermining

a standard argument for Conditionalization?

Given that the halfer solution can be derived within the framework I put forward

in §2, we know that this solution is probabilistically coherent, so we can dismiss

the first worry. Meanwhile, the second worry merits closer consideration. A

crucial feature of the DDB against halfers is that it requires the possibility of an

additional bet, that is placed on day 2 only if the result of the coin toss is Tails.

What this means is that, in the event of Tails, the book purchased by Beauty

contains three bets, which, as we have seen, taken together have a negative value.

But the DDB considered in Lewis/Teller (1973) only takes into account an agent’s

probability assignments at two distinct points in time, before and after learning

a new piece of evidence E. In other words, let P−(A) be the probability that

the agent assigns to an event A at t0, and P+(A) be the probability that the

agent assigns to A at ti, after learning a piece of evidence E. Lewis shows that,

unless P+(A) = P−(A|E), there is a DDB that can be formulated against the

agent by offering her some bets at t0 and at ti. But even if the agent updates

via Conditionalization between t0 and ti, Lewis’s result does not say anything

about bets that the agent could take at some additional time tj , j 6= i. So,

technically, the DDB against the halfer does not constitute a counterexample

to Lewis’s Dutch Book argument for Conditionalization. Is this enough to get

standard Conditionalization off the hook?

Maybe not quite. While this vindicates Lewis’s and Skyrms’s results, the problem

remains that planning to update via Conditionalization is not sufficient to ensure

that the agent does not commit to a series of bets that guarantee a sure loss. A

way out of the impasse, discussed by Briggs (2010), may be to argue that halfers

17If Heads, Beauty loses £15 on the first bet on day 0, and wins £10 on the second bet she
takes on day 1, amounting to an overall loss of £5. If Tails, Beauty wins £15 with the bet taken
on day 0, but then accepts the second bet both on day 1 and on day 2, each time losing £10,
again amounting to an overall loss of £5.
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should adopt evidential decision theory. But this option has several drawbacks,

among others the fact that it would generate a DDB against the thirder solution

(also discussed in Briggs, 2010), and that it would give unstable recommendations

to the halfer under slight variants of the problem (Conitzer, 2015). Perhaps, then,

one should bite the bullet and try to argue that only pairwise DDBs are significant

means of eliciting an agent’s epistemic attitudes, while allowing DDBs to vary

in length introduces strategic considerations that can influence Beauty’s betting

odds, as she needs to coordinate the choice she makes on the bet she is offered

with the choices she would make on bets that might be offered to her at other

times. Ultimately, the most plausible lesson to draw from the DDB against the

halfer may be that satisfying Conditionalization is a necessary, but not sufficient,

condition to ensure invulnerability from DDBs of varying length.

6. Conclusion

The Sleeping Beauty problem has generated a great deal of controversy, as all

the main attempts to solve it in the literature appear to violate some or other

rationality constraint (Titelbaum, 2016). This creates a puzzling state of affairs,

as thirder solutions are usually thought to violate the principles of Condition-

alization and Reflection, while halfer solutions seem vulnerable to a diachronic

Dutch Book.

I have shown that it is possible to model a range of possible solutions to the

Sleeping Beauty problem in a Bayesian framework. All the solutions that can

be derived within this framework, including the thirder solution that I have de-

fended, respect Conditionalization, thus explaining why they are not subject to

Lewis-style DDBs. Moreover, DDBs against the halfer solution do not provide a

counterexample to the claim that Conditionalization is a necessary condition for

diachronic rationality.

I take the main lessons that can be drawn from my discussion to be the following:

1. Bayesian reasoning can be naturally applied to self-locating uncertainty.

The locus of disagreement between different solution concerns only the

choice of priors.

2. In order to avoid puzzling conclusions, we should be careful to model what

is the prior probability of receiving different pieces of evidence.
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3. The case of Sleeping Beauty does not present a counterexample to the princi-

ples of Conditionalization and Reflection. It does, however, raise interesting

questions with respect to whether Conditionalization is sufficient to ensure

invulnerability to certain types of DDBs.
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