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Abstract

We use the Low Basis Theorem of Jockusch and Soare to show
that all computable algebraic fields are d-computably categorical for
a particular Turing degree d with d′ = 0′′, but that not all such
fields are 0′-computably categorical. We also prove related results
about algebraic fields with splitting algorithms, and fields of finite
transcendence degree over Q.

1 Introduction

Fields were the first mathematical structures for which the notion of com-
putable categoricity arose. In [11], Frohlich and Shepherdson gave an ex-
ample of (in their terminology; see their Corollary 5.51) two isomorphic,
explicitly presented fields with no explicit isomorphism between them. This
idea eventually grew into the following definition.

Definition 1.1 Let d be any Turing degree. A computable structure A is
d-computably categorical if for every computable structure B isomorphic to
A, there exists a d-computable isomorphism from A onto B. If d = 0, we
say that A is computably categorical.
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Much research has been devoted to characterizing the computably cat-
egorical models of various theories, including work by Dzgoev, Goncharov,
Lempp, McCoy, Miller, Remmel, and Solomon. Some results are readily
stated: we know that a computable linear order is computably categori-
cal iff it has only finitely many pairs of consecutive elements, for example,
and that a computable Boolean algebra is computably categorical iff it has
finitely many atoms. On the other hand, the known structural characteriza-
tion of computably categorical trees requires a description by recursion on
the heights of finite trees. The question has been studied for a number of
other theories as well, and results along these lines may be found in [12], [13],
[14], [15], [16], [21], [24], [27], [30], and [31].

However, the original problem of computable categoricity for fields has
defied all attempts at structural characterization. The most obvious conjec-
ture would be that the transcendence degree of a field over its prime subfield
should determine computable categoricity. For algebraically closed fields,
this is indeed the case, as shown by Ershov in [7]: an ACF is computably
categorical iff it has finite transcendence degree over its prime subfield. How-
ever, in the same work, Ershov built a field, algebraic over its prime subfield
but not algebraically closed, which was not computably categorical. More-
over, recent work by Miller and Schoutens [28], and independent unpublished
work by Kudinov and Lvov, has shown there to be a computably categori-
cal field of infinite transcendence degree over the rationals Q. Thus, neither
implication in the naive first guess actually holds.

In this paper we restrict ourselves to the case of an algebraic field, by
which we mean any subfield of any of the algebraically closed fields Q and
Zp. We want the field to be computably presented, and so we refer to such
an object as a CAF : a computable algebraic field. (Sections 6 and 7 consider
the cases of positive characteristic and finite transcendence degree.) More-
over, instead of trying directly to get an algebraic characterization of the
computably categorical CAFs, we will ask instead how close to computable
categoricity they come. Definition 1.1 generalizes the notion to arbitrary
oracles. A computable structure which is 0′-computably categorical, for in-
stance, may not be computably categorical, but it is not too far from being so:
the relatively low-powered oracle ∅′ would allow us to compute isomorphisms
between any two computable copies. It was shown in [24], for example, that
for every n there is a computable tree (of height just (n+3), in fact) which is
not 0(n)-computably categorical. Intuitively, this means that it can be hard
to compute isomorphisms even for relatively short trees. On the other hand,
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the simple linear orders (ω,<) and (Z, <), while not computably categorical,
are both 0′-computably categorical.

We will show that there exists a computable algebraic field which is not
0′-computably categorical. From experience, one is led to suspect that some
CAF will therefore require at least a 0′′-oracle, if not more, to compute
isomorphisms. Surprisingly, though, this is not the case. The Low Basis
Theorem, first proven by Jockusch and Soare in [19], allows us to show that
any two isomorphic CAFs have an isomorphism f between them such that
f ′ ≤T ∅′′. That is, the isomorphism is at least one jump below the degree
0′′, although not necessarily computable in 0′. Indeed, a strong version of
the Low Basis Theorem yields a Turing degree d such that d′ = 0′′ and all
computable CAFs are d-computably categorical. Thus, the complexity of
categoricity for CAFs lies in a nebulous region strictly between 0′ and 0′′,
closer to 0′ but not equal to either. To demonstrate that this region is indeed
nebulous, we show that there is no least degree d such that all computable
CAFs are d-computably categorical, and likewise that many individual CAFs
have no least degree d relative to which they are computably categorical.

Fields are also of interest because they remain an unknown in the context
of the theorem of Hirschfeldt, Khoussainov, Shore, and Slinko, who showed
in [17] that many theories are complete in a number of computable-model-
theoretic respects. The theory of directed graphs, for example, is very much
complete: for every nontrivial computable structure A, there is a computable
graph G which has the same spectrum and the same computable dimension
as A, has relations realizing all degree spectra realized by relations on A, and
behaves just like A for persistence of computable categoricity under expansion
by constants. Intuitively, this says that anything which can happen in any
computable structure can happen in a computable directed graph. Although
[17] did not remark it, the construction there also preserves the properties
with which we are concerned here: A is d-computably categorical iff G is,
for each Turing degree d.

In [17], many theories besides directed graphs were shown to have these
properties, including symmetric irreflexive graphs, partial orders, rings, do-
mains, and groups. On the other hand, certain theories have been shown not
to be complete in various respects. For example, Boolean algebras cannot re-
alize certain spectra, and neither can linear orders, by results in [5], [20], [26],
and [32]. Similarly, [24] and [27] together show that trees can only realize the
computable dimensions 1 and ω. Fields remain a significant unknown in all
of this study. It was recently shown in [2] that the spectrum of a algebraic
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field can be precisely the upper cone of Turing degrees above any given de-
gree d; this sets fields apart from linear orders, Boolean algebras, and trees,
for which Richter showed such a spectrum to be impossible whenever d >T 0
(see [32]). However, we do not know whether every possible spectrum can be
realized by a field, nor whether fields can have finite computable dimension,
nor much about the possible degrees of categoricity of fields (see Definition
5.7 below), and so on.

Of course, this paper only addresses algebraic fields, and thus will not
give full answers to questions about fields in general, but it takes a step
in the direction of such questions. The computable trees built in [24] and
discussed above can have any degree 0(n) as the least degree in which they
are categorical, and current work by Fokina, Kalimullin, and Miller in [9]
has shown that for directed graphs, many other degrees d can be the least
degree in which the graph is categorical. However, for algebraic fields, this
paper will rule out that role for all degrees except the ∆0

2 degrees, and for
the specific case of algebraic fields with splitting algorithms, the only possible
least degree is 0. Likewise, when the algebraic field has a splitting algorithm,
we will show that its computable dimension must be either 1 or ω, so that such
fields fail to be complete in that respect. Far more work than this remains to
be done, of course, and the case of fields with infinite transcendence degree
promises to be a good deal more complicated than that of algebraic fields.
Nevertheless, the results in this paper do hold relevance for these questions,
not least because they demonstrate that even when we restrict from fields
to the (apparently) simpler situation of an algebraic field F , questions about
categoricity of F in various Turing degrees already have nontrivial solutions,
which will turn out to be related to questions about degrees of members of Π0

1-
classes. If nothing else, this paper gives computable model theorists a good
excuse for not yet having figured out a criterion for computable categoricity
for fields.

We describe our principal conventions for this paper. A computable field is
a structure in the signature with addition and multiplication, whose domain
is an initial segment of ω, and for which those two operations are computable.
It follows that subtraction and division (when defined) are also computable,
and that one can effectively pick out the two identity elements in the domain.
Of course, it can cause confusion when we refer to the identity elements of
the field by their usual names 0 and 1. However, every computable field is
computably isomorphic to a field in which the domain element 0 ∈ ω really is
the additive identity and 1 really is the multiplicative identity. We therefore
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adopt this convention for our computable fields: the domain elements 0 and
1 are the identity elements for the field. At certain times we may refer to
“prime numbers” p in our fields. By this we will mean the sum (1 + · · ·+ 1)
taken p times in the field, and will trust the reader not to confuse this element
with the domain element p.

Given a computable field F , we will often refer to its polynomial ring
F [X]. This may be viewed just as the set F ∗ of finite tuples of elements of F ,
with 〈a0, . . . , ad〉 identified with

∑
aiX

i. (For a perfect identification, ensure
that if ad = 0, then d = 0.) Likewise one builds the ring F [X1, . . . , Xn+1] by
taking finite tuples from F [X1, . . . , Xn]. Thus all these polynomial rings are
presented uniformly in F and n.

If g : F → E is any field homomorphism, and p(X) =
∑

i aiX
i ∈ F [X],

we will write pg(X) for the polynomial
∑

i g(ai)X
i ∈ E[X], the image of p(X)

under the map g on the coefficients. When g and the fields are computable,
so is the map p 7→ pg.

Also, given a computable field F , we will treat any field extension F (x)
as a computable field as well. To compute it, we will need to know whether
x is algebraic over F or not, and if it is, we will need its minimal polyno-
mial p(X) over F . In the latter case, one views elements of F (x) as F -linear
combinations over the set {1, x, x2, . . . , xd−1}, where d = deg(p), with the ob-
vious addition and multiplication (which requires knowledge of p, of course).
In the former case, F (x) is just the quotient field of the domain F [X] given
above; computable presentability of the quotient field is simple as long as
the field F has a splitting algorithm, as described in Section 2, and in this
paper we will not be taking transcendental extensions of any fields without
splitting algorithms. We can iterate these extensions, even over infinitely
many generators, as long as the minimal polynomial (or lack thereof) for
each generator over the preceding ones is given effectively. Notice that the
base field F is a computable subfield of each extension built this way.

Computability-theoretic notation is standard and can be found in [33];
we do offer a quick review here of standard algebraic definitions, since the
anticipated audience is mostly logicians. The field Q is known to be com-
putably categorical, and so we will often just write Q to denote a computable
presentation of that field; similarly for Zp, the field of p elements, when we
consider positive characteristic. A field has characteristic p if the sum of the
multiplicative identity 1 with itself p times equals 0, the additive identity,
and if p is the smallest positive integer for which this happens. Such a p
must be prime. If there is no such p, we say that the field has characteristic
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0. The prime subfield of a field F is the intersection of all subfields of F ;
this is also a subfield, and is isomorphic to Zp if F has characteristic p > 0,
and to Q otherwise. Uniformly in any computable field, the prime subfield is
computably enumerable. Indeed, in any computable algebraic field, we will
see that the prime subfield must be computable.

A finite field extension F ⊆ E is an extension such that there exist finitely
many elements x1, . . . , xn ∈ E for which E = F (x1, . . . , xn); an extension
F ⊆ E is called infinite iff it is not finite. If F ⊆ E is a field extension,
then an element x ∈ E is algebraic over F if x is the root of some nonzero
polynomial f(X) ∈ F [X]. For each such x, there is a polynomial of least
degree in F [X] for which x is a root; this is called the minimal polynomial
of x over F , and is unique if we require the leading coefficient to be 1. This
polynomial will also be irreducible in F [X]: apart from constants, it will have
no factorization there.

Finite algebraic extensions of Q or of Zp are a means for us, not an end.
All such fields are quickly seen to be computably categorical. However, infi-
nite algebraic extensions are readily viewed as infinite iterations of extensions
by single elements, and so finite algebraic extensions will indeed be of im-
portance as we study algebraic fields. Since the second part of the following
definition is not standard, we state it here:

Definition 1.2 If F ⊆ E are fields, then E is algebraic over F if every x ∈ E
is algebraic over F . When F is the prime subfield of E, we simply call E an
algebraic field.

Thus the algebraic fields are precisely the subfields of the algebraically closed
fields Q and Zp. Elements of Q are traditionally called algebraic numbers,
but, by a longstanding and widely used definition, an algebraic number field
is a finite algebraic extension of Q, not an infinite one. Thus Q itself is a
field of algebraic numbers, but not an algebraic number field. We reiterate
here that for us, every algebraic extension of either Q or Zp, whether finite
or infinite, will be called an algebraic field.

An x ∈ E is transcendental over F if it is not algebraic over F . A
transcendence basis for an extension F ⊆ E is a minimal set B ⊂ E such
that E is an algebraic extension of the subfield F (b : b ∈ B). The size
of a transcendence basis is an invariant of the extension, and is called the
transcendence degree of E over F .

F ⊆ E is a normal extension if every irreducible polynomial f(X) ∈ F [X]
either has no roots in E, or has its full complement of deg(f)-many roots
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in E, counted by multiplicity. An irreducible polynomial f(X) ∈ F [X] is
separable if f(X) has deg(f) distinct roots in some field extension of F . An
algebraic extension F ⊆ E is separable if for every x ∈ E, the minimal
polynomial f(X) of x over F is separable. Over a field of characteristic 0, all
irreducible polynomials are separable, but in positive characteristic this can
fail. A Galois extension is a finite normal algebraic separable extension. The
Galois group Gal(E/F ) of an extension F ⊆ E is the group of automorphisms
of E which fix F pointwise; for finite algebraic extensions, it is a finite group.
For further algebraic preliminaries, many sources are useful, including [18]
and [35]. In general the author does not claim any originality for the purely
algebraic results in this paper; if any of them are original, it is due to their
obscurity, not their difficulty.

2 Background and Results on Fields

Any discussion of computable fields of characteristic 0 should begin with the
question of a splitting algorithm for Q.

Definition 2.1 The splitting set for a field F is the set of reducible polyno-
mials in F [X]. The root set of F is {p(X) ∈ F [X] : (∃a ∈ F )p(a) = 0}.

With the splitting set as oracle, one can decompose any polynomial in F [X]
into its irreducible components in F [X]. Throughout the literature on com-
putable fields, the phrase “F has a splitting algorithm” is used to mean that
F has a computable splitting set. In this paper we will be concerned with
the Turing degree of the splitting set, not just with its computability, so we
introduce the new term to avoid conflict with the existing one. Likewise, F
has a root algorithm if its root set is computable.

It is not obvious that Q must have a splitting algorithm, but Kronecker
provided one. It works for every computable presentation of Q, since Q is
a computably categorical field. In fact, Kronecker showed that every finite
extension of Q has a splitting algorithm, using the following theorem. Since
the original paper dates to 1882, the reader may prefer to see the more
recent version in [6], or Lemmas 17.3 and 17.5 of [10]. Part (c) is an obvious
relativization of the argument.

Theorem 2.2 (Kronecker [23]) (a) The splitting set of the field Q is
computable.
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(b) Let L be a c.e. subfield of a computable field K. If L has a splitting
algorithm, then for any x ∈ K transcendental over L, L(x) also has a
splitting algorithm. When x ∈ K is algebraic over L, again L(x) has a
splitting algorithm, which requires knowledge of the minimal polynomial
of x over L.

(c) More generally, for any c.e. subfield L of a computable field K and
any x ∈ K transcendental over L, the splitting set of L(x) is Turing-
equivalent to the splitting set for L, via reductions uniform in x. Also, if
x ∈ K is algebraic over L, L(x) and L have Turing-equivalent splitting
sets, uniformly in x and the minimal polynomial of x over L.

The algorithms for algebraic and transcendental extensions are different, so it
is essential to know whether x is algebraic. If it is, then from the splitting set
for L one can determine its minimal polynomial. This yields the following.

Lemma 2.3 For every computable field F algebraic over its prime subfield
P , the splitting set for each finitely generated subfield P [~x] is computable
uniformly in the finite tuple ~x of elements of F .

Proof. Clearly there are splitting algorithms for all finite fields, just by check-
ing all possible factorizations. (So in fact there is a single algorithm which
works in all positive characteristics.) In characteristic 0, the prime subfield of
F is c.e. within F , hence computably isomorphic to a computable presenta-
tion. Kronecker’s splitting algorithm works for any computable presentation
of Q, since the field Q is uniformly computably categorical. The lemma then
follows by induction on the size of the tuple ~x, using part (b) of Theorem
2.2. Since our F is algebraic over P , we may simply search for a polynomial
p(X) with root xn and coefficients in P [x0, . . . , xn−1], and then split it, using
the splitting algorithm for P [x0, . . . , xn−1] (by inductive hypothesis), until
we have found the minimal polynomial of xn over P [x0, . . . , xn−1].

These splitting algorithms also allow us to compute the Galois groups of
the corresponding fields.

Lemma 2.4 Let Q be any computable presentation of the algebraic closure
of the field of rational numbers. For every finite tuple 〈x0, . . . , xn〉 of elements
of Q, we may compute the automorphism group of the field F = Q[~x] – that
is, the Galois group of F over Q – uniformly in ~x. (Here we present an
automorphism σ by giving the values σ(x0), . . . , σ(xn).)
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Indeed, even if we are only given the minimal polynomial of each xi over
Q[x0, . . . , xi−1], we can still compute Gal(F/Q) uniformly in those polynomi-
als, without knowing the elements xi themselves.

Of course, the Galois group of F over any subfield Q[~y] can then be computed
uniformly in the finite tuple ~y, since it contains just those σ ∈ Gal(F/Q)
which fix ~y pointwise. This lemma should be compared to Lemma 17.13 on
p. 235 of [10]. The statement there only considers Galois extensions, i.e. finite
normal separable algebraic extensions (equivalently, splitting fields of single
polynomials). However, we will need the result also for extensions which are
not normal.

Proof. We can give a computable presentation of F just from the minimal
polynomials described, and Lemma 2.3 provides splitting algorithms for all
subfields of F . Therefore, in the following, we can find the minimal polyno-
mial of any element of F over any subfield of F . For instance, to find the
minimal polynomial of x3 over Q[x1, x5], we simply search in Q[X] for any
polynomial p(X) such that p(x3) = 0 in F , then apply the splitting algorithm
of Q[x1, x5] to p(X) to find its irreducible component there with root x3.

Now let σ be any function with domain ~x and range contained in the
set S of all conjugates in F over Q of each element xi. (S is finite and
computable uniformly in ~x, and so is the size of S, so we have restricted
ourselves here to a known finite set of σ’s.) Test first whether x0 and
σ(x0) have the same minimal polynomial over Q. If not, then of course
σ /∈ Gal(F/Q). If so, then Q[x0] ∼= Q[σ(x0)] via σ (extended to Q[x0]), and
we continue by recursion. Assuming inductively that σ maps Q[x0, . . . , xi]
isomorphically onto Q[σ(x0), . . . , σ(xi)], find the minimal polynomials p(X)
of xi+1 over Q[x0, . . . , xi] and q(X) of σ(xi+1) over Q[σ(x0), . . . , σ(xi)]. If
q(X) = pσ(X), we have Q[x0, . . . , xi+1] ∼= Q[σ(x0), . . . , σ(xi+1)] via σ and we
continue; if not, then σ /∈ Gal(F/Q). If we eventually reach Q[x0, . . . , xn] ∼=
Q[σ(x0), . . . , σ(xn)] via σ, then σ ∈ Gal(F/Q).

We will also require Rabin’s Theorem. To begin with, we give his name
to the type of field embedding he considered.

Definition 2.5 Let F and E be computable fields. A function g : F → E
is a Rabin embedding if:

• g is a homomorphism of fields; and
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• E is both algebraically closed and algebraic over the image of g; and

• g is a computable function.

Theorem 2.6 (Rabin [29]) Let F be any computable field.

1. There exists a computable algebraically closed field F with a Rabin em-
bedding of F into F .

2. For every Rabin embedding g of F (into any computable ACF E), the
image of g is a computable subset of E iff F has a splitting algorithm.

Corollary 2.7 For any computable field F , the following are Turing equiv-
alent:

(i.) the image g(F ) of F under any Rabin embedding g;

(ii.) the splitting set of F ;

(iii.) the root set of F ;

(iv.) the root function of F , i.e. the function with domain F [X] which com-
putes the number of distinct roots in F of any p(X) ∈ F [X];

(v.) the root multiplicity function of F , i.e. the function with domain F [X]
which computes the number of roots in F , counted by multiplicity, of
any p(X) ∈ F [X].

Proof. (i) and (ii) are Turing equivalent by Rabin’s Theorem, the proof of
which easily relativizes to the splitting set, or to the image g(F ), when either
is not computable. With an oracle for the splitting set, we can find all
irreducible factors of a given p(X) and check whether any of them is linear,
thereby computing the root set. (In our presentation of F [X] described in
Section 1,

∑
i≤d aiX

i is represented by 〈a0, . . . , ad〉, so we can compute the
degree d of any element.) From the root set, we may determine whether
a given p(X) has a root and, if so, find such a root r ∈ F and repeat the

process for p(X)
X−r until there are no more roots, thereby computing the root

function. The root function and the root multiplicity function are quickly
seen to compute each other. It is possible to compute the splitting set from
the root function using symmetric polynomials, as shown in [11], but we give
a direct computation of g(F ) instead, based on Rabin’s proof of his theorem.
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Given a Rabin embedding g : F ↪→ E and any x ∈ E, find any polynomial
p(X) ∈ F [X] such that pg(x) = 0. (Recall that pg ∈ E[X] is the image of
p under the map g on its coefficients.) With a root function for F , we may
find all the roots r0, . . . , rn of p in F . Then x ∈ g(F ) iff (∃i ≤ n)x = g(ri).

When the field in question is an algebraic field, we have a stronger result.

Corollary 2.8 Any two isomorphic computable algebraic fields F and F̃
must have Turing-equivalent splitting sets. Hence the Turing degree of each
item in Corollary 2.7 is an invariant of the isomorphism type of a CAF.
Moreover, the Turing reductions are uniform in F and F̃ .

If F and F̃ are isomorphic computable fields of characteristic 0 with finite
transcendence degree over their prime subfields, then they still have Turing-
equivalent splitting sets, but the uniformity need no longer hold.

Proof. We prove that the images of F and F̃ under Rabin embeddings
g : F ↪→ E and g̃ : F̃ ↪→ Ẽ are Turing-equivalent, and then appeal to
Corollary 2.7. Rabin’s Theorem proves that some such g and g̃ must exist,
of course. Since F and F̃ are algebraic fields, each of E and Ẽ is algebraic
over its prime subfield P and P̃ . Therefore, given any x ∈ E, we may find
a polynomial q(X) ∈ P [X], say of degree d, such that q(x) = 0. We find all
roots r1, . . . , rd ∈ Ẽ of the corresponding q̃ ∈ P̃ [X], and check how many are
in g̃(F̃ ), using our g̃(F̃ )-oracle. Then we enumerate g(F ) until that many
roots of q have appeared in g(F ). Now x ∈ g(F ) iff x is one of those roots.

This process was uniform in F and F̃ , since the Rabin embeddings g and
g̃ may be built uniformly in F and F̃ . For the case of fields in general, to
make the same argument work, we must take P to be not the prime subfield
of E, but rather a purely transcendental extension of the prime subfield by
a transcendence basis for E. Likewise P̃ must be the corresponding subfield
of Ẽ under an isomorphism (E,F ) → (Ẽ, F̃ ). If this transcendence basis
is finite, then knowing it (for a single F and F̃ ) constitutes finitely much
information, and so the same argument still succeeds, but not uniformly. For
a field of infinite transcendence degree, the theorem would not in general be
true.

It is possible to prove this corollary without appealing to Rabin’s The-
orem. Given q(X) =

∑
aiX

i ∈ F [X], the root function for F̃ will give
the number of roots in F̃ of polynomials of the form

∑
b̃iX

i with each b̃i
P -conjugate to ai. Then one finds an equal number of roots of such polyno-
mials in F [X], and checks how many are roots of q, thus computing the root
function on q.
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Of course, finite extensions of the prime field are not the only algebraic
extensions with splitting algorithms; Q itself is an infinite extension of the
prime field which nevertheless has a (very simple!) splitting algorithm. We
also give a more interesting example, which will be used in Theorem 3.4.

Lemma 2.9 Let F be the quadratic closure of Q, i.e. the field we get by
starting with Q and repeatedly closing under square roots (equivalently, under
roots of quadratic polynomials). Then F is computably presentable and has
a splitting algorithm.

Proof. F is easily enumerated as a subfield of Q, hence is computably pre-
sentable. For the splitting algorithm, we appeal to Rabin’s Theorem. To
compute whether an arbitrary x ∈ Q lies in F , find the minimal polynomial
p(X) of x over Q, and let K ⊂ Q be its splitting field, with Galois group G,
which we determine using Lemma 2.4. The subfields between Q and K are
precisely the fixed fields of subgroups of G, so we may determine all of them,
find generators for each, and determine the degree of each over each of its
own subfields. But x lies in the quadratic closure iff there is a sequence of
subfields Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K such that [Ki+1 : Ki] = 2 for all
i < n.

Next we consider some field-theoretic facts which will be needed for our
constructions.

Lemma 2.10 For a field F algebraic over its prime subfield P , every endo-
morphism (i.e. every homomorphism from F into itself) is an automorphism.

Proof. Since fields have no nontrivial ideals, every endomorphism g is one-
to-one. So for any y ∈ F , the set of the finitely many P -conjugates of y in
F must be mapped one-to-one into itself by g, forcing y ∈ range(g).

Lemma 2.11 If F ⊆ E ⊆ K are finite field extensions, then their indices
satisfy [K : F ] = [K : E] · [E : F ]. Hence if E1 and E2 are finite extensions
of F within a larger field, and [E1 : F ] is relatively prime to [E2 : F ], then
E1 ∩ E2 = F .

Lemma 2.12 In a finite normal algebraic extension F ⊆ L, each root in L
of an irreducible p(X) ∈ F [X] can be mapped to each other root of p(X) in
L by an element of Gal(L/F ). In fact, p(X) is irreducible in F [X] iff the
Galois group of the splitting field of p(X) over F acts transitively on the roots
of p(X).
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Proof. These are standard results; see for instance [18], p. 215, Thm. 4.2 and
Lemma 4.14.

The next results lead up to Proposition 2.15, which will be the key to
our theorems in Sections 3 and 4 about fields which are not computably
categorical.

Lemma 2.13 Fix any prime p. In the ring Z[
√
p], an element a+ b

√
p is a

unit (i.e. has a multiplicative inverse) iff a2 − pb2 = ±1.

Proof. The norm mapN(a+b
√
p) = |a2−pb2| is multiplicative on Z[

√
p], with

values in ω. Since 1 is the only unit in ω, all units have norm 1. Conversely,
if a2 − pb2 = 1, then (a + b

√
p) · (a − b√p) = 1, and if a2 − pb2 = −1, then

(a+ b
√
p) · (−a+ b

√
p) = 1.

It follows that the element
√
p itself is irreducible in Z[

√
p], i.e. has no fac-

torization there except by units. In unique factorization domains, irreducible
elements are always prime, but this is not true for domains in general. Nev-
ertheless, we do have at least one prime in this ring.

Lemma 2.14 In the ring Z[
√
p] (for p a prime in Z), the element

√
p itself

is always prime. That is, if x, y ∈ Z[
√
p] and

√
p divides the product (xy),

then
√
p must divide either x or y in Z[

√
p].

Proof. Suppose that
√
p divides the product (xy) in Z[

√
p], and use the norm

map N defined above. The norm p = N(
√
p) divides N(x)N(y) in ω, and

since p is prime there, it must (without loss of generality) divide N(x). Say
x = a + b

√
p with a, b ∈ Z. Then p divides |a2 − pb2|, so p divides a2, so p

divides a, say a = pc, with c ∈ Z. But then x =
√
p · (b+ c

√
p), so

√
p divides

x in Z[
√
p].

For any nonzero element x ∈ Q[
√
p], we define the content of x to be

the greatest power k ∈ Z of
√
p such that x√

pk = y
n

for some y ∈ Z and

some n ∈ N such that p - n. (Intuitively, this is the number of powers of
√
p

dividing x.) We regard 0 as having (positive) infinite content. The content
is nonnegative when x ∈ Z[

√
p], but may be negative when x ∈ Q[

√
p]. For

a polynomial, the content is the minimum of the contents of its coefficients,
as suggested by the intuitive definition.
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When h(X) is a polynomial with coefficients in Q[
√
p], we will write

h−(X) to denote the image of this polynomial when
√
p is mapped to −√p.

That is, coefficients of the form (a + b
√
p) in h become (a − b√p) in h−. If

h(X) ∈ Q[X], then of course h− = h.

Proposition 2.15 For any fixed prime p, let F be the field Q[
√
p]. Then for

every odd prime number d, there exists a polynomial h(X) ∈ F [X] of degree
d with the following properties.

• h and h− are both irreducible in the polynomial ring F [X].

• The splitting field of h over F has Galois group isomorphic to Sd, the
symmetric group on the d roots of h, and the same holds for h−. (Since
Sd acts transitively on the roots, this implies the preceding condition.)

• The splitting field of h(X) over the splitting field of h−(X) also has
Galois group isomorphic to Sd (and vice versa). In particular, each of
h(X) and h−(X) is irreducible over the splitting field of the other.

Moreover, uniformly in p, d, and any computable presentation of F , it is
computable whether an arbitrary h(X) ∈ F [X] satisfies these properties.

Proof. The final remark about computability follows readily from Lemma
2.4, along with basic facts which allow one to determine the number of real
roots. So we only need prove existence of some such polynomial h(X). In
fact, though, we give a moderately detailed description of one such h(X). To
begin, fix p and d, and let

h0(X) = d! ·
d−1
2∑

k=0

(−1)k ·X2k+1

(2k + 1)!

be the monic scalar multiple of the Taylor polynomial of degree d for the
sine function. The relevant facts are that h0 is monic of degree d in Q[X]
with d distinct real roots, one of which is 0, and with distinct y-coordinates
at its critical points; any polynomial with these properties would suffice. For
this h0, the distinctness of y-coordinates at critical points follows from the
increasing error margin between h0(x) and sinx as x moves further from 0.

Write h0(X) =
∑

i≤d ciX
i. Now for each ε > 0 there exists a δ > 0

such that for every h1(X) ∈ R[X] of degree d with each coefficient within
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δ of the corresponding coefficient ci, the roots of h1(X) are within ε of the
corresponding roots of h0, and the y-coordinates of critical points of h1 are
within ε of those of the corresponding critical points of h0. We choose our
particular h1(X) ∈ Q[

√
p][X] to be monic with constant term 0 and such that

all its other coefficients have content 2, as defined above, and lie within δ of
the corresponding ci, where δ corresponds to an ε less than half the difference
between any two roots of h0, and less than half the difference between any
y-coordinates of critical points of h0. Therefore h1 also has d distinct real
roots, and there is a unique critical point of h1 whose y-coordinate y0 lies
closest to 0. (Since h1 has no repeated roots, no critical point can have y-
coordinate equal to 0.) Also, h−1 (X) = h1(X), since all nonzero coefficients
have even content.

Finally, to get the polynomial h(X) from h1(X), we just add ±b√p, where
b is a rational number with content 0 such that |y0| < b

√
p, but b

√
p is less

than all other absolute values of y-coordinates of critical points of h1. If
y0 > 0, let h(X) = h1(X) + b

√
p, so that h−(X) = h1(X)− b√p; whereas if

y0 < 0, we do the opposite: h(X) = h1(X)−b√p and h−(X) = h1(X)+b
√
p.

Thus h(X) has the same number of real roots as h1(X), namely d, since no
critical point of h1 crossed the x-axis when we added the constant term.
However, the one critical point of h−1 (X) closest to the x-axis does cross that
axis when we create h−(X), and so h−(X) has exactly two fewer real roots
than h−1 (X) = h1(X). We let r1, . . . , rd ∈ R be all roots of h, and r−1 , . . . , r

−
d

all roots of h−, ordered so that r−1 , . . . , r
−
d−2 are real.

We now wish to appeal to Gauss’s Lemma and Eisenstein’s Theorem (see
[35]). The usual versions of these may not apply, since they concern only
unique factorization domains and their fraction fields. (It is unknown for
exactly which primes p, or even for how many primes, the ring Z[

√
p] is a

UFD.). However, knowing that
√
p is a prime in Z[

√
p], we may adapt those

results as follows.

Lemma 2.16 If two polynomials f(X), g(X) ∈ Z[
√
p][X] both have content

0, then so does their product. (In Gauss’s terminology, the product of prim-
itive polynomials is also primitive.)

Proof. Let aiX
i and bjX

j be the lowest-degree terms of f(X) and g(X),
respectively, such that

√
p divides neither ai nor bj. Then the coefficient of

X i+j in the product polynomial is the sum of aibj with terms divisible by√
p. Since

√
p is prime, it cannot divide aibj, hence does not divide this

coefficient.
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Lemma 2.17 For any prime degree d > 2 and any prime p, these polyno-
mials h(X) and h−(X) are irreducible in the polynomial ring Q[

√
p][X].

Proof. Suppose h(X) = f(X) · g(X) were a factorization of h in Q[
√
p][X].

First we write all coefficients of f and g in the form
a+b
√
p

pn·c , with a, b, c ∈ Z,
n ≥ 0, and p not dividing c in Z. Then we multiply by the highest power
pn of p occurring in any denominator of those coefficients, and collect the
denominators:

√
pkh(X) = 1

m
f0(X) · g0(X), where now f0, g0 ∈ Z[

√
p][X],

k = 2n, and m ∈ N with p - m. By Lemma 2.16, if k > 0, then either f0 or g0

has content > 0, so we may divide f0 or g0 by
√
p and still have a polynomial

of the same form. By induction, therefore, we may assume that k = 0. So
now

f0(X) · g0(X) = m · h(X).

Write f0(X) =
∑
aiX

i and g0(X) =
∑
biX

i, and fix c = deg(f0), so 0 < c <
d and d− c = deg(g0). In mh(X) the constant term has content 1, the lead
term has content 0, and all other terms have content 2, by our construction of
h(X), since p - m. Multiplying out, we see that a0·b0 equals the constant term
of mh(X), hence has content 1. Without loss of generality, then,

√
p | a0 and√

p - b0 in Z[
√
p]. But now the coefficient of X in mh(X) equals (a0b1 +a1b0)

and is divisible by
√
p, so

√
p | a1 by Lemma 2.14. Likewise, for each i with

1 < i ≤ c in turn, we see that the coefficient of X i in mh(X) is divisible by√
p (since i ≤ c < d) and is equal to a0bi + a1bi−1 + · · ·+ aib0. By induction√
p | aj for all j < i, while still

√
p - b0, forcing

√
p | ai in Z[

√
p]. (If c > d−c,

then those bj with j > d − c are defined to be 0 here, of course.) Thus f0

has content > 0, and g0 has all coefficients in Z[
√
p], yet the lead term Xd

in mh(X) has coefficient m = acbd−c and
√
p - m, a contradiction. Hence

h(X) was irreducible in Q[
√
p][X] as desired, and the same argument works

for h−(X).

Let K and K− be the splitting fields of h(X) and h−(X) over F = Q[
√
p].

By irreducibility of h−, the field F [r−] generated by any single root r− of
h− must have vector-space dimension d over F , and so that dimension d
divides [K− : F ], which equals the order of Gal(K−/F ). Since d is prime, the
Sylow Theorems show that Gal(K−/F ) contains an element of order d. Also,
complex conjugation defines an element of Gal(K−/F ), which transposes the
two non-real roots of h− and fixes all the others. But by a lemma from group
theory (see [18], p. 268; we are following the larger construction given there)
a permutation group on a prime number d of elements which contains both
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a transposition and an element of order d can only be the symmetric group
Sd on those d elements. Thus Gal(K−/F ) ∼= Sd.

Now let E be the field generated by K and K− together, i.e. the splitting
field over Q of the product polynomial (h · h−). All of the following field
extensions are normal: Q ⊂ F , F ⊂ K, F ⊂ K−, K ⊂ E, K− ⊂ E,
and Q ⊂ E. So the nontrivial element σ ∈ Gal(F/Q), which has σ(

√
p) =

−√p, extends to some σ ∈ Gal(E/Q). Since this σ maps h(X) to h−(X),
it must map K onto K− and vice versa. Indeed, by normality, the map
τ 7→ σ−1τσ is an isomorphism of Gal(K/F ) onto Gal(K−/F ), so the former
is also isomorphic to Sd. Moreover, since Gal(K−/F ) ∼= Sd, we have:

Lemma 2.18 For every permutation π of the set {1, . . . , d}, there exists
some τ ∈ Gal(E/Q) with τ(ri) = r−π(i) for every i.

Now fix any i, j ≤ d. This lemma yields a τ ∈ Gal(E/Q) such that
τ(ri) = r−d−1, and τ(rj) = r−d . Let ζ ∈ Gal(E/Q) be complex conjugation,
which is indeed an automorphism of E because E is the splitting field of the
product polynomial ((X2− p) · h(X) · h−(X)) ∈ Q[X]. Hence ζ interchanges
r−d−1 with r−d and fixes all other roots of h and h−, and so we have:

(τ−1 ◦ ζ ◦ τ)(ri) = τ−1(ζ(r−d−1)) = τ−1(r−d ) = rj

(τ−1 ◦ ζ ◦ τ)(rj) = τ−1(ζ(r−d )) = τ−1(r−d−1) = ri

(τ−1 ◦ ζ ◦ τ)(rk) = τ−1(τ(rk)) = rk (for all k /∈ {i, j})
(τ−1 ◦ ζ ◦ τ)(r−k ) = τ−1(τ(r−k ) = r−k (for all k ≤ d),

with the last two lines holding because τ(rk) and τ(r−k ) are real numbers,
hence fixed by ζ. This shows that Gal(E/K−) contains the automorphism
transposing ri with rj and fixing all other rk, and since i, j ≤ d were ar-
bitrary, Gal(E/K−) acts as the symmetric group Sd on the roots of h(X).
Conjugating by σ shows that Gal(E/K) likewise acts as Sd on the roots of
h−(X). This completes the proof of Proposition 2.15.

3 Computable Categoricity

We start considering categoricity with a result first proven by Frohlich and
Shepherdson in [11], the computable categoricity of normal algebraic exten-
sions, which is easily extended (as stated here) to extensions which have only
“finitely much” transcendence or non-normality.
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Proposition 3.1 Let F be a computable field of characteristic 0 with prime
subfield P , and assume there exist elements x1, . . . , xn ∈ F such that F is a
normal algebraic extension of P (x1, . . . , xn). Then F is computably categor-
ical. Moreover, the same holds for computable fields F of characteristic p if
we assume that each xi is algebraic over P .

Proof. We will handle all characteristics simultaneously. Suppose that F̃ is
another computable field, and that ϕ : F → F̃ is an isomorphism between
them. We build a computable isomorphism f : F → F̃ , which will be the
union of compatible partial isomorphisms fs, each with domain Ds ⊂ F . We
start by setting D0 = {0, 1, x1, . . . , xn} and defining f0(0) = 0, f0(1) = 1,
and f0(xi) = ϕ(xi) for all i.

At stage s + 1, we extend fs to the element s ∈ F . By assumption the
field Fs generated by Ds is computably enumerable, and so is the polynomial
ring Fs[X]. Moreover, by Theorem 2.2, we have a splitting algorithm for
Fs[X], uniformly in s. (In the case where χ(F ) 6= 0, this is why we require
all xi to be algebraic over P .) Therefore, we can search until we find a poly-
nomial in Fs[X] with root s, and then factor it until we have the minimum
polynomial ps(X) of s over Fs. (Here we use the fact that F is algebraic
over P (x1, . . . xn).) Now fs is uniquely (and computably) extendible to an
isomorphism from Fs onto a subfield F̃s of F̃ containing the range D̃s of
fs, and applying this map to the coefficients in ps(X) gives a polynomial
p̃s(X) ∈ F̃s[X]. Find the least root r of p̃s in F̃ , and set fs+1(s) = r. This
completes the construction.

To see that f = ∪sfs is an isomorphism, we need the following standard
result. (See, for example, [18] for a proof.)

Sublemma 3.2 Given any countable fields L ⊆ K ⊆ E such that K/L
is a Galois extension and E/L a normal separable (but possibly infinite)
extension, every element of Gal(K/L) extends to an element of Gal(E/L).

Sublemma 3.3 At each stage s of this construction, the map fs can be
extended to an isomorphism from F onto F̃ .

Proof. For s = 0, fs is the restriction of the isomorphism ϕ to D0. Proceeding
by induction on s, we suppose that fs extends to an isomorphism ψ. Then
fs+1(s) and ψ(s) will both be roots of the polynomial p̃(X). Now F is normal
over P (x1, . . . , xn), and the normality is preserved by the isomorphism ψ, so
F̃ must contain a splitting field K̃ of p̃(X) over F̃s. By Lemma 2.12, there
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is an automorphism σ of this splitting field which fixes F̃s pointwise and
maps ψ(s) to fs+1(s). Moreover, Sublemma 3.2 allows us to extend σ to an
automorphism ρ of F̃ . But (σ ◦ ψ)�Ds+1 = fs+1 since σ is the identity on
the subset fs(Ds) of F̃s, and σ(ψ(s)) = fs+1(s). Thus ρ ◦ ψ is the desired
isomorphism extending fs+1.

Therefore, f = ∪sfs is a monomorphism of fields. Moreover, f and ϕ
are equal on the domain P (x1, . . . , xn), and every ã ∈ F̃ is algebraic over
the image of P (x1, . . . , xn). If p̃(X) is the minimum polynomial for ã, then
eventually all the roots of the corresponding polynomial in P (x1, . . . , xn)[X]
will enter the domain of f , and one of these roots must be mapped to ã.
Therefore the range of f is F̃ , and f is the computable isomorphism we
needed.

The key here was Lemma 2.12, which allowed us to choose fs+1(s) to be
the first element we found in F̃ satisfying the appropriate polynomial there,
knowing that this was the correct choice up to an automorphism of F̃ over
the image of fs.

However, in the case where the extension is algebraic but not normal, it
is possible for computable categoricity to fail. This was proven in [7], but
here we construct an example which introduces the techniques we will use in
subsequent results. Begin by using the even integers to construct identical
computable copies F0 and F̃0 of the field Q[

√
pe : e ∈ ω], where p0, p1, . . . are

the primes. Write we and ve for the two square roots in F0 of the e-th prime
(i.e. of the number 1 + 1 + · · · 1, added pe times), and w̃e and ṽe for the same
two square roots in F̃0. At each stage s + 1, we check whether there exists
e ≤ s such that ϕe,s(we) converges to either w̃e or ṽe. If not, we end the
stage. If so, then for the least such e, we adjoin to Fs half of the remaining
odd integers, in such a way as to adjoin two square roots of ve, and we adjoin
to F̃s the same odd integers, but now adjoining two square roots of ϕe(we).
Having done so, we end the stage.

Clearly the fields F and F̃ thus constructed are computable and isomor-
phic. However, if any ϕe were an isomorphism from F onto F̃ , then ϕe(we)
would have to converge to either ṽe or w̃e, and when we saw this convergence,
we would have destroyed the isomorphism ϕe, since we would have no square
root in F , yet ϕe(we) would have a square root in F̃ . (To prove the absence
of square roots of we in F , notice that we may view F as a subfield of the
reals, by thinking of each ve as the positive square root of pe. Hence F has
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no more than two fourth roots of any of its elements. Since the square roots
of ve are fourth roots of pe, we cannot have any square roots of its own.
Moreover, since F and F̃ are isomorphic, the square roots of ϕe(we) are the
only fourth roots of (ṽe)

2 in F̃ .)
Since we must perform this diagonalization at infinitely many stages, the

field F does not satisfy Proposition 3.1: F is an algebraic extension of its
prime subfield P , the rationals, but it is certainly not a normal extension,
even over any finite subfield P [x1, . . . xn]. In particular, for every e such that
we diagonalized against ϕe, the irreducible polynomial X4 − (we)

2 in P [X]
has exactly two roots in F . (Recall that (we)

2 represents the e-th prime
number, with the integers viewed as a subring of P .) If we extended F and
F̃ to include all four roots of these polynomials, then they would become
normal over their prime subfields, but the diagonalization would no longer
hold.

A more interesting result, requiring more technical results from field the-
ory, concerns our ability to avoid computable categoricity even while pre-
serving a splitting algorithm. The preceding construction failed to do so: a
splitting algorithm for that F would allow one to decide whether (X2 − ve)
has any roots in F , from which we could determine immediately whether
or not ϕe(ve) and ϕe(we) will ever converge to ṽe and w̃e, which is not a
decidable question.

Theorem 3.4 There exists a computable algebraic field F which is not com-
putably categorical, yet possesses a splitting algorithm.

Proof. We build isomorphic computable fields F and F̃ of characteristic 0,
diagonalizing against any computable isomorphism between them, yet re-
taining a root algorithm. By Corollary 2.7, this will suffice.

Let F0 and F̃0 be identical computable copies of the quadratic closure of
the field Q, as defined in Lemma 2.9. We will use

√
pe to diagonalize against

the partial computable function ϕe, so that it cannot be an isomorphism.
The strategy is much the same as above: at each stage s, find all e ≤ s such
that ϕe,s(

√
pe)↓= ±

√
p̃e (and such that we have not already acted against ϕe

at a previous stage). For each such e in turn, fix the least odd prime number
de > s + 1 which is larger than any prime yet used in the construction. We
search until we find a polynomial he(X) of degree de, with coefficients in
the subfield Q[

√
pe] of F0, which satisfies the conditions of Proposition 2.15

for de and pe. (We will not actually use all of these conditions here; it is
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Theorem 4.1 below which demands the full strength of the proposition.) Set
Fs+1 = Fs[re], where re is any root of he(X). If ϕe(

√
pe) = −

√
p̃e, then let

F̃s+1 = F̃s[r̃e], where r̃e is a root of he(X) (with coefficients now in F̃0, of
course); but if ϕe(

√
pe) =

√
p̃e, then let F̃s+1 = F̃s[r̃

−
e ], where r̃−e is a root

of h−e (X), the image of he(X) when the automorphism σ of Q[
√
pe] with

σ(
√
pe) = −√pe is applied to the coefficients of he(X). This completes the

construction, and we let F = ∪sFs and F̃ = ∪sF̃s.
First we point out that when the diagonalization happens, he(X) really

is irreducible over Fs, not just over Q[
√
pe]. We know by Lemma 2.11 that

he(X) is irreducible over every repeated quadratic extension of Q[
√
pe], hence

also over F0. Recall that Fs+1 = Fs[re], with re chosen to be any root of
he(X). Since he is irreducible over F0, we know that [F0[re] : F0] = de,
which (by induction and choice of de) is a prime not dividing [Fs : F0]. But
[F0[re] : F0] must divide [Fs+1 : F0], hence must divide [Fs+1 : Fs]. On the
other hand, [Fs+1 : Fs] ≤ de because re satisfies a polynomial of degree de
over Fs, and so in fact [Fs+1 : Fs] = de. This implies that he(X) really is
the minimal polynomial of re over Fs, and so he(X) was irreducible over Fs.
It follows from Lemma 2.12 that it does not matter which root re we chose:
we will always have Fs[re] ∼= Fs[X]/(he(X)). So the construction above is
well-defined.

It now follows that Fs and F̃s are isomorphic for every s. At stage 0 there
are 2ω-many possible isomorphisms f0 from F0 onto F̃0, with each

√
pe being

mapped to either of ±
√
p̃e. When we diagonalize against some ϕe at a stage

s+ 1, there will still be one (but now only one) possible value for fs+1(
√
pe),

namely −ϕe(
√
pe), because he(X) now has a root in Fs+1, while h−e (X) does

not, and exactly one of he(X) and h−e (X) has a root in F̃s+1, with the choice
made so that ϕe mapped

√
pe to the wrong element. Thereafter, all further

extensions of Fs+1 are of larger degrees prime to de, and so no more roots of
he or h−e ever appear in either F or F̃ , by Lemma 2.11. So for each stage
s+ 1 at which we diagonalize, half of the isomorphisms from Fs to F̃s extend
to isomorphisms from Fs+1 to F̃s+1, namely those with the correct value for√
pe. ϕe is not one of that half, so it cannot be an isomorphism. Thus F ∼= F̃ ,

but they are not computably isomorphic.
The root algorithm for F is straightforward. F0 has a root algorithm, by

Lemma 2.9, and therefore so do all the (finite) extensions Fs of F0, uniformly
in s, by Theorem 2.2. Given any p(X) ∈ F [X], find an n ≥ deg(p(X)) such
that p(X) ∈ Fn[X], and check whether Fn contains any roots of p(X). If
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not, then p(X) has no root in F : for s ≥ n, either Fs+1 = Fs or [Fs+1 : Fs]
is a prime d > s ≥ n, in which case all elements of (Fs+1 − Fs) have degree
d over Fs, hence cannot be roots of p(X).

4 0′-Computable Categoricity

We now build a computable algebraic field F which is not even 0′-categorical.
This construction requires the full strength of Proposition 2.15.

Theorem 4.1 There exists a computable algebraic field F which is not 0′-
categorical.

The author is grateful to Joseph Miller and Frank Stephan for pointing out
an error in his original construction of F . The new proof is as follows.

Proof. The object is to build isomorphic CAFs F and F̃ satisfying the re-
quirements:

Re : ge(x) = lim
t
ϕe(x, t) is not an isomorphism from F onto F̃ .

Here ge(x) is defined iff the given limit converges. All 0′-computable func-
tions can be represented as such limits, so these requirements are all that is
necessary to prove the theorem.

The idea is to use the square roots
√
pe and −√pe of the e-th prime

number pe as witnesses for Re. If ge(
√
pe)↓= ±

√
p̃e, the corresponding roots

in F̃ , then for all sufficiently large t we have ϕe(
√
pe, t) ↓= ±

√
p̃e. At each

stage s+1, for the largest t such that ϕe,s(
√
pe, t)↓= ±

√
p̃e, Proposition 2.15

allows us to adjoin to Fs a single root r− of a polynomial h−s , of some large
prime degree d, and meanwhile to adjoin to F̃s+1 a single root of either of
the corresponding polynomials h̃s or h̃−s , so that the only isomorphisms from
Fs+1 onto F̃s+1 map

√
pe to −ϕe(

√
pe, t). If at some subsequent stage s′ + 1

we find that ϕe(
√
pe, t

′) ↓= −ϕe(
√
pe, t) for some t′ > t (so that the current

approximation to ge has reversed itself to the correct value), then we may
adjoin a single root of hs to F and the same for F̃ ; now the Galois group
of F allows

√
pe to be mapped to either ±√pe, and so we will appeal again

to Proposition 2.15 for a new hs′(X) of a new larger prime degree which
we can now use to diagonalize against the new approximation ϕe(

√
pe, t

′) in
the same way. In short, the process of building a computable field (without
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a splitting algorithm) allows us to retract our earlier commitment against
ϕe(
√
pe, t) if necessary, without removing any elements from F ; we simply

adjoin new elements to make F symmetric with respect to
√
pe and −√pe

again, regaining the freedom to diagonalize against the new approximation.
Of course, the approximation ϕe(

√
pe, t) could change its value for infinitely

many t, but in this case Re will clearly be satisfied, since ge will not even be
total, and our fields F and F̃ will still be isomorphic, with a unique root of
each hs and each h−s in F and of each h̃s and each h̃−s in F̃ . Finally, using
new prime degrees d for each new diagonalization will ensure that the new
elements we adjoin will not upset our diagonalizations on behalf of any other
requirements Ri; the key here is Lemma 2.11, along with the primality of
the degrees [Fs+1 : Fs].

We start the construction by setting F0 = F̃0 = Q. The initial isomor-
phism f0 is just the identity map from F0 onto F̃0.

At a stage s + 1 = 〈e, 0〉 + 1, we take our initial action on behalf of the
requirement Re. Fix the least prime pe such that

√
pe /∈ Fs, and let p̃e be the

same prime in F̃s; there must be such a pe, since (by induction) [Fs : Q] is
finite. (In fact pe will always be the e-th prime number.) Let F ′s = Fs[

√
pe]

and F̃ ′s = F̃s[
√
p̃e], with the names

√
pe and

√
p̃e staying affixed to these

elements at all subsequent stages. and let ds+1 be the least prime number
> ds. Find a polynomial hs+1(X) ∈ Z[

√
pe][X] ⊂ F ′s[X] of degree ds+1

satisfying the properties given in Proposition 2.15. Let r−s+1 be a root of the

corresponding h−s+1(X), and define Fs+1 = F ′s[r
−
s+1]. Similarly, let h̃s+1(X) ∈

F̃ ′s[X] be the same polynomial, with its coefficients now interpreted in F̃
(using

√
p̃e in the same role as

√
pe in Fs). Define F̃s+1 = F̃ ′s[r̃

−
s+1], where

r−s+1 is a root of h̃−s+1. For convenience we write ϕe(
√
pe,−1) = −

√
p̃e, and

define fs+1 to extend fs by setting fs+1(
√
pe) =

√
p̃e and fs+1(r

−
s+1) = r̃−s+1.

Thus fs+1 really is an isomorphism, assuming that fs was.
At a stage s + 1 = 〈e, i + 1〉 + 1, we define s′ = 〈e, j〉 + 1 (with j ≤ i)

to have been the last stage at which we took action on behalf of Re. (Since
we took initial action on its behalf at stage 〈e, 0〉+ 1, this must be defined.)
Let ts+1 be the greatest t ≤ s such that ϕe,s(

√
pe, t

′) ↓ for every t′ ≤ t
(allowing ts+1 = −1). If ϕe(

√
pe, ts+1) 6= fs(

√
pe), then we set ds+1 = ds′ ,

change nothing else, and take no action at this stage. (This includes the
case ts+1 = ts′ , of course.) Otherwise, the approximation to the function
ge has changed its guess and now appears correct, so we respond with a
subsequent action on behalf of Re. At stage s′, we had adjoined a root r−s′
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of the polynomial h−s′(X) to F . Now we adjoin a root rs′ of hs′(X) to Fs to

create F ′s = Fs[rs′ ]. Likewise, either h̃s′(X) or h̃−s′(X) (but not both) has a
root in F̃ , and we adjoin a root of the other one to F̃s to create F̃ ′s. Each
of these four polynomials will now have exactly one root in its field, as we
prove below.

Also, we choose ds+1 to be the least prime number > ds, and find a poly-
nomial hs+1(X) ∈ Q[

√
pe][X] ⊂ F ′s[X] of degree ds+1 satisfying the prop-

erties given in Proposition 2.15. Let r−s+1 be a root of the corresponding

h−s+1(X), and define Fs+1 = F ′s[r
−
s+1]. Similarly, let h̃s+1(X) ∈ F̃ ′s[X] be the

same polynomial, with its coefficients now interpreted in Q[
√
p̃e] ⊆ F̃ ′s. If

ϕe(
√
pe, ts+1) =

√
p̃e, then we define F̃s+1 = F̃ ′s[r̃s+1], where r̃s+1 is a root of

h̃s+1; we also define fs+1(
√
pe) = −√pe and fs+1(r

−
s+1) = r̃s+1. If not, then

ϕe(
√
pe, ts+1) = −

√
p̃e, and we define F̃s+1 = F̃ ′s[r̃

−
s+1], fs+1(

√
pe) =

√
pe, and

fs+1(r
−
s+1) = r̃−s+1, where r̃−s+1 is a root of h̃−s+1. This completes stage s+ 1 of

the construction, and F and F̃ are the fields built during all these stages.
We claim, by induction on stages s, that every fs is an isomorphism from

Fs onto F̃s, and that the degree [Fs+1 : Fs] of the extension at each stage is
either 2ds+1 (for an initial action at that stage), or (ds+1 · ds′) (if we made a
subsequent action at stage s+1), or 1 in all other cases. Notice that whenever
we take any action, ds+1 is chosen to be a prime degree larger than the degree
ds used for the most recent action. In every initial action, a square root√
pe /∈ Fs is adjoined to Fs, generating an extension F ′s of degree 2. Clearly

fs extends to an isomorphism f ′s from F ′s onto F̃ ′s. Then a root r−s+1 of h−s+1

is adjoined to F ′s. Now r−s+1 has degree ds+1 over Q[
√
pe], by Proposition

2.15, so ds+1 divides [Fs+1 : Q], yet by induction ds+1 - [F ′s : Q]. Therefore
ds+1 | [Fs+1 : F ′s]. Moreover Fs+1 = F ′s[r

−
s+1] has degree at most ds+1 over F ′s,

because r−s+1 satisfies the polynomial h−s+1(X) ∈ F ′s[X] of degree ds+1, and
so indeed ds+1 = [Fs+1 : F ′s] and 2ds+1 = [Fs+1 : Fs]. This also shows that
h−s+1(X) is the minimal polynomial of r−s+1 over F ′s, because the degree of the
extension F ′s[r

−
s+1] over F ′s must be the degree of the minimal polynomial of

r−s+1 over F ′s. Likewise h̃−s+1(X) is the minimal polynomial of r̃−s+1 over F̃ ′s,
and so the isomorphism f ′s does indeed extend to an isomorphism fs+1 from
Fs+1 onto F̃s+1.

It remains to consider the case of a subsequent action on behalf of some
Re at stage s + 1. In such an action we first build F ′s by adjoining a root
rs′ of hs′(X) to Fs, following an earlier action for Re at a stage s′ ≤ s.
By induction ds′ | [Fs : Q], but (ds′)

2 - [Fs : Q]. The final condition of
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Proposition 2.15 makes clear that [Q[
√
pe, r

−
s′ , rs′ ] : Q[

√
pe, r

−
s′ ]] = ds′ , and so

[Q[
√
pe, r

−
s′ , rs′ ] : Q] = 2(ds′)

2. Therefore (ds′)
2 must divide [Fs′ : Q], and so

ds′ must divide [F ′s : Fs]. As above, [F ′s : Fs] actually equals ds′ , since rs′
satisfies the polynomial hs′(X) of degree ds′ over Fs, and so hs′(X) is the
minimal polynomial of rs′ over Fs. Then we consider the extension Fs+1 =
F ′s[r

−
s+1]. The argument there is exactly the same as the argument above for

initial actions: ds+1 - [F ′s : Q], but does divide [Q[r−s+1] : Q], hence divides
[Fs+1 : Q], hence divides (and indeed equals) [Fs+1 : F ′s]. Thus h−s+1(X) is
the minimal polynomial of r−s+1 over F ′s, and moreover ds+1 ·ds′ = [Fs+1 : Fs].

Finally, parallel arguments for F̃s+1, again using Proposition 2.15, show
that [Fs+1 : Fs] = [F̃s+1 : F̃s] for every s, so that the elements adjoined
all have the same degrees and the corresponding minimal polynomials. The
same square roots of primes are adjoined to F̃s during all initial actions,
and when we adjoined a root of an h-polynomial to F̃s+1, we had adjoined
a root of another h-polynomial to Fs+1, such that the coefficients of the one
polynomial were mapped to the coefficients of the other by fs+1 (as defined
on F ′s or on Fs). So indeed fs+1 is an isomorphism from Fs+1 onto F̃s+1,
completing the induction.

We cannot claim that lims fs is an isomorphism from F to F̃ ; indeed, if
it were, we would have diagonalized against it! For each e, define Re to be
finitary if we took action against it at only finitely many stages, and infinitary
otherwise. IfRe is finitary, then lims fs(

√
pe) converges, and we define f(

√
pe)

to be that limit. Otherwise lims fs(
√
pe) diverges (which is why lims fs fails

to be an isomorphism), and we arbitrarily define f(
√
pe) =

√
p̃e, since in

this case either of ±
√
p̃e can be the image of

√
pe under an isomorphism. In

either case, for the roots r−s and rs adjoined at various stages s at which we
acted on behalf of Re, we then define

f(rs) =

{
r̃s, if f(

√
pe) =

√
p̃e

r̃−s , if f(
√
pe) = −

√
p̃e

f(r−s ) =

{
r̃−s , if f(

√
pe) =

√
p̃e

r̃s, if f(
√
pe) = −

√
p̃e

Since each of these roots was irreducible over the field Fs at the stage s+1 at
which it was adjoined, and since all these roots together (including the square
roots) generate F , the function f defined above extends uniquely to all of F .
Moreover, the extension to each Fs+1 from Fs is clearly an embedding into
F (not necessarily into F̃s+1, since a root r̃s+1 or r̃−s+1 might only appear at a
subsequent stage; but if no subsequent action is taken for this requirement,
then generators of Fs+1 over Fs do map to elements of F̃s+1). Likewise, the
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inverse of this map f is seen to be an embedding with domain F̃ , by the
same argument, and so f is indeed an isomorphism.

It remains to see that all requirements have been satisfied. But this is
straightforward: if ge = limt ϕe( · , t) were to be an isomorphism, then neces-
sarily limt ϕe(

√
pe, t)↓= ±

√
p̃e. Assume for the moment that it converged to√

p̃e, and fix the least modulus t0 of this convergence, The construction shows
that we would have acted at stage s = 〈e, t0〉 + 1 by adjoining an element
r−s to F with h−s (r−s ) = 0, and an element r̃s to F̃ with h̃s(r̃s) = 0. Write
hs(X) = h(

√
pe, X) for some polynomial h(Y,X) ∈ Q[Y,X] ⊂ F [Y,X], and

h̃(Y,X) for the corresponding polynomial with coefficients in the prime field
of F̃ . (Given the polynomials from Proposition 2.15, we can take h to be
linear in Y .)

Since no further action against Re was ever required, we see by the in-
ductive argument above that (ds)

2 - [F̃s0 : Q] for all s0 > s. However,
ds does divide [F̃s : Q] due to r̃s, so by Proposition 2.15, any root r̃ of
h̃−s (X) in F̃ would have forced (ds)

2 to divide [Q[r̃s, r̃] : Q], hence to divide
[F̃s0 : Q] for each stage s0 > s with r̃ ∈ F̃s0 . Therefore F̃ contains no root of
h̃−s (X). But then F̃ contains no root of h̃(−

√
p̃e, X), whereas in F we have

h(−√pe, r−s ) = 0, so no isomorphism from F to F̃ could map
√
pe to

√
p̃e.

Thus ge cannot be an isomorphism.
The case where ge(

√
pe) = −

√
p̃e is parallel, except that now F̃ contains

no root of h̃s(X), whereas F still contains a root r−s of h−s (X), according to
the construction at stage s. Once again one sees that ge cannot have been an
isomorphism. Thus F and F̃ , although isomorphic, are not 0′-computably
isomorphic, proving the theorem.

The two constructions of Theorem 4.1 and Theorem 3.4 are similar: The-
orem 3.4 uses a diagonalization strategy once for each requirement, and The-
orem 4.1 uses the same strategy, but more than once. However, the two
constructions cannot be combined. In Theorem 4.1, in order to have a root
algorithm for F , we would be required to decide, when adjoining roots such
as rs and r̃−s+1 to F and F̃ , whether the polynomials hs+1(X) and h−s+1(X)
have any other roots in F . If we say yes to either of these questions, then
our diagonalization against ϕe fails; but if we say no, then we preclude any
further chance to change our minds. So we would be unable to go back and
forth between the possibilities, but could only diagonalize once, and conse-
quently could only avoid potential computable isomorphisms, not potential
0′-computable ones.
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In fact, the inability to go back also makes it hard even to code a set such
as ∅′, the halting problem, into the isomorphism from F onto F̃ in Theorem
3.4. We can ensure that the entrance of an e into ∅′ is reflected in the
isomorphism, by forcing

√
pe in F to map to −√pe in F̃ once we see e enter

∅′. However, in the situation where e never enters ∅′, isomorphisms can send
the
√
pe in F to either ±√pe in F̃ , so this method does not ensure that an

isomorphism will compute ∅′. √pe starts out with two possible images in F̃ ,
but once we pin it down to one of them, we cannot unpin it without injuring
the splitting algorithm. A similar comment, one jump higher, applies to
Theorem 4.1: the F built there is not 0′-categorical, but it is not clear how
one might code a set of degree 0′′ into the isomorphisms that do exist from
F onto F̃ . We will see in the next section that such a coding is impossible.

5 d-Computable Categoricity

Having shown that computable algebraic fields can fail to be 0′-categorical,
and that even those with splitting algorithms need not be computably cat-
egorical, we now produce positive results stating that they must be fairly
close to those levels of categoricity. First we need some mechanics. The iso-
morphism tree will have nodes corresponding to finite partial isomorphisms
from F into F̃ , and paths corresponding to full isomorphisms.

Definition 5.1 Fix isomorphic computable algebraic fields F and F̃ , with
prime fields Q and Q̃, and write {x0, x1, . . .} instead of ω for the domain
of F , with xi = i for all i. (This is just to avoid confusion with F̃ , whose
domain is still ω.) For each n ∈ ω, let pn(X) be the minimal polynomial of xn
over Q[x0, . . . , xn−1], say with degree d. Now choose polynomials r0, . . . , rd ∈
Q[X0, . . . , Xn−1] such that the i-th coefficient of pn is ri(x0, . . . , xn−1), and
let

qn(X0, . . . , Xn) =
d∑
i=0

ri(X0, . . . , Xn−1) ·X i
n.

The isomorphism tree for F and F̃ is the set

TF,F̃ = {σ ∈ ω<ω : (∀n < lh(σ)) q̃n(σ(0), . . . , σ(n)) = 0 in F̃},

where each q̃n is the image of qn with coefficients mapped from Q to Q̃.
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It is clear that TF,F̃ is a subtree of ω<ω. By Lemma 2.3, pn is computable
uniformly in n. By induction on the length n of σ ∈ TF,F̃ , one sees that the

map Q[x0, . . . , xn−1] → Q̃[σ(0), . . . , σ(n − 1)] with xi 7→ σ(i) is an isomor-
phism for all such σ. Hence, if f is a path through TF,F̃ , then f defines an

embedding of F into F̃ , indeed an isomorphism from F onto F̃ , by Lemma
2.10. Conversely, it is clear that every isomorphism f from F onto F̃ is
defined by a unique path through TF,F̃ in this way.

Intuitively, the process here is simply to line up all the elements x0, x1, . . .
of F , and then to search for possible embeddings of each Q[x0, . . . , xn] into
F̃ . The splitting algorithms for finite extensions of Q enable us to recognize
such embeddings when we find them, and we make them into a tree in the
obvious way, by viewing them as maps from the finite set {x0, . . . , xn} into F̃ .
Basic facts from field theory, along with the algebraicity of F , show the tree
to be finite-branching, and paths through it correspond to full isomorphisms
from F onto F̃ . Of course, some nodes on the tree may be nonextendible,
i.e. may not lie on any (infinite) path.

Theorem 5.2 Any two isomorphic computable algebraic fields F and F̃ have
an isomorphism f from F onto F̃ such that f ′ ≤T R′, where R is the root
set of F .

Proof. The number of immediate successors of a node σ ∈ TF,F̃ is just the

number of roots of qn(σ(0), . . . , σ(n − 1), Xn) in F̃ (where n = lh(σ)). This
number is finite and can be computed from the root set of F̃ , or (by Corollary
2.8) from the root set R of F . In the language of [3], this says that the
computable tree TF,F̃ is highly R-recursive, or highly R-computable. But now
we can apply the Low Basis Theorem of Jockusch and Soare (from [19], or see
Theorem 3.6 of [3]), relativized to anR-oracle, to conclude that there is a path
through TF,F̃ which is low relative to R. This path immediately computes
the isomorphism f we desire, since the lowness means that f ′ ≤T R′.

Since the Low Basis Theorem actually yields more, we state it in full
here, in a relativized form. For a proof, see also [3]. By definition, an R-
computable finite-branching tree T is an R-computable subset of ω<ω, closed
under initial segments, with each level finite.

Theorem 5.3 (Low Basis Theorem; Jockusch & Soare [19]) Fix any
set R ⊆ ω, and let T be the class of all those R-computable finite-branching
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trees T for which the function s : T → ω via

s(σ) = |{n ∈ ω : σ 〈̂n〉 ∈ T}|

is also R-computable. Then there exists a Turing degree d with d′ ≤T deg(R)′

such that every infinite T ∈ T has a d-computable path. (Such a degree is
known as a PA-degree relative to R.) Indeed, there exist two PA-degrees d0

and d1 relative to R such that every degree which is both ≤T d0 and ≤T d1

is ≤T deg(R) as well.

Applying this result to our situation, we see:

Corollary 5.4 For every computable algebraic field F with root set R, there
exists a degree d low relative to R, i.e. with d′ ≤T deg(R′), such that F is
d-computably categorical.

Proof. By Corollary 2.8, for all computable fields F̃ ∼= F and every d which is
a PA-degree relative to R, the isomorphism tree TF,F̃ has a path computable
in d. The Low Basis Theorem provides such a d low relative to R.

Corollary 5.5 There exists a degree d with d′ ≤T 0′′ such that every com-
putable algebraic field F is d-computably categorical. Indeed, every PA-degree
relative to 0′ is such a d.

Proof. The root set R of F , being ∃-definable, always satisfies R ≤T ∅′.

Corollary 5.6 There exists a low degree d such that every computable al-
gebraic field with a splitting algorithm is d-computably categorical. Indeed,
every PA-degree is such a d.

Thus the results in Theorems 4.1 and 3.4 were essentially as strong as we
could have hoped to make them. Next we recall a definition from [9].

Definition 5.7 The categoricity spectrum of a computable structure A is
the set

{d : A is d-computably categorical}.

The degree of categoricity of A is the least degree in the categoricity spectrum
of A, if such a degree exists.
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Corollary 5.8 If F is a computable algebraic field with a splitting algorithm,
and F is not computably categorical, then F has no degree of categoricity.
More generally, for any computable algebraic field F , the degree of categoric-
ity of F , if it exists, must be computable from the root set R of F .

Proof. Theorem 5.3 provides two degrees d0 and d1, both PA-degrees relative
to R, such that every degree below both is computable from R. But the
degree of categoricity of F must lie below all degrees in the categoricity
spectrum of F , including d0 and d1, and the general result follows. In the
specific case where R is computable, the degree of categoricity can only be
0, making F computably categorical.

Fokina, Kalimullin, and Miller proved in [9] that every c.e. degree c can
be the degree of categoricity of a computable algebraic field, by building
isomorphic CAFs F and F̃ such that F is c-computably categorical, but
every isomorphism from F to F̃ computes c. More generally, the following
holds.

Theorem 5.9 (adapted from [9]) For all c.e. degrees c ≤T d, there exists
a computable algebraic field F with degree of categoricity c and with root set
of degree d.

When c = d, this is proved in [9]. In the more general case, one divides the
primes in half, using half of them for degrees of polynomials in the construc-
tion of [9], which codes an arbitrary c.e. set W ∈ c into all isomorphisms
from F to F̃ , and using the other half for degrees of polynomials to code a
c.e. set D ∈ d into the root set of F . Each time an n enters D, one adjoins
to F a full complement of roots of a designated code polynomial for n, which
had no roots in F until that stage. Thus, with an oracle for the root set, one
can compute whether n ∈ D, and conversely, a D-oracle lets one decide W as
well, so that the entire root set is D-computable. Finally, by adding all roots
of the code polynomial when n enters D, we ensure that F is categorical even
in the lower degree c. Of course, Corollary 5.8 shows that the construction
would be impossible unless c ≤T d.

On the other hand, the field F built in Theorem 4.1 is an example of a
CAF with non-computable root set which has no degree of categoricity. If
it had such a degree c, then by Corollary 5.8, c would be computable in its
root set, hence computable in 0′. However, this is impossible, since F is not
0′-computably categorical.
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We next consider the idea of the degree of categoricity of a class of com-
putable structures, defined in the obvious way. For algebraic fields, the an-
swer is that it cannot exist.

Corollary 5.10 There is no least degree d such that every computable alge-
braic field is d-computably categorical. Likewise, there is no such least degree
for CAFs with splitting algorithms.

Proof. Such a degree d would have to lie below all PA-degrees relative to 0′,
by Corollary 5.5, hence below 0′, by the Low Basis Theorem with R = ∅′.
Theorem 4.1 showed this to be impossible. The same argument with R = ∅
and Theorem 3.4 shows the result for fields with splitting algorithms.

Corollary 5.11 Every computable algebraic field with a splitting algorithm,
or even with a low splitting set, has computable dimension either 1 or ω, and
both are possible.

Proof. Goncharov showed in [13] that if two computable structures are iso-
morphic via a 0′-computable isomorphism but not via any computable iso-
morphism, then the isomorphism type of those structures has computable
dimension ω. By Corollary 5.4, this result applies to all computable fields
with low splitting sets which are not computably categorical, and by Theorem
3.4, such a field exists.

Although it is not clear whether this result extends to computable alge-
braic fields in general, we do note that the field F built in the proof of Theo-
rem 4.1 has other computable copies which are 0′-computably isomorphic to
it, but not computably isomorphic to it. We omit the details, which require
a finite-injury argument, but the construction of F in Theorem 4.1 allows
us to “scavenge” by diagonalizing against individual computable functions
when the construction diagonalizes against limits of computable functions.
Hence that F does have computable dimension ω, by Goncharov’s result. We
also note that a different modification of the proof of Theorem 4.1 allows us
to build countably many isomorphic computable algebraic fields, no two of
which are 0′-computably isomorphic. Thus the 0′-computable dimension of
an algebraic field can also be ω.
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6 Finite Transcendence Degree

So far we have considered only algebraic fields. However, our results gen-
erally carry over to the case of a field of finite transcendence degree over
its prime subfield. The difference is that with (positive) finite transcendence
degree it is necessary to know a transcendence basis. This constitutes finitely
much information, and so it is not a problem for an algorithm to have this
information. However, it does eliminate much uniformity from our previous
theorems. We have not dwelt upon uniformity until now, but in this section
we specifically consider it, while extending the preceding categoricity results
to fields of finite transcendence degree. For the most part, the proofs are
identical to those for the original results, and will be omitted. First we recall
a definition.

Definition 6.1 A computable structure A is uniformly computably categor-
ical if there is a Turing functional Ψ such that, whenever S ⊆ ω is the atomic
diagram (under some fixed Gödel numbering) of a computable structure B

isomorphic to A, the function ΨS is an isomorphism from A onto B.

For example, the computable dense linear order without end points is
uniformly computably categorical: one simply goes ahead and begins the
standard back-and-forth construction between any two computable copies,
consulting the oracle, i.e. the atomic diagram, whenever we wish to know the
ordering of domain elements m and n. On the other hand, the computable
dense linear order with end points is computably categorical but not uni-
formly so, because there is no effective way of identifying the end points in
an arbitrary computable copy. (A full proof involves the construction of a
counterexample to each computable partial functional which might serve as
the Ψ.) Of course, if we augment the language by adding a constant sym-
bol for each end point, then the computable DLO with end points becomes
uniformly computably categorical, since now the atomic diagram effectively
picks out those end points.

Proposition 3.1 already allowed for finite transcendence degree, at least
in characteristic 0. The negative results, Theorems 4.1 and 3.4, do not re-
quire consideration for uniformity, since the fields constructed there are not
even computably categorical. The interesting situations are the categoricity
results in Section 5. These results can readily be reproduced for fields of
finite transcendence degree: the key is that, instead of using the prime sub-
field P of F , we fix a transcendence basis B = {b1, . . . , bn} ⊂ F and then
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use the subfield P (b1, . . . , bn) in place of P . Of course we have a splitting
algorithm over this field, just as over P , by Lemma 2.3. The catch is that in
F̃ we cannot just arbitrarily choose a transcendence basis and extend P̃ by
it, because such an arbitrary choice might not admit an extension to an iso-
morphism. (For instance, if F = F̃ = Q(b1), suppose we happened to choose
{b21} as the transcendence basis for F̃ .) Instead, knowing that there exists an
isomorphism ρ : F → F̃ , we replace P̃ by P̃ (ρ(b1), . . . , ρ(bn)) in the proofs
of the results. Then eveything goes through with no trouble. However, we
did allow ourselves the knowledge of the finite set ρ(B), not to mention the
knowledge of a transcendence basis B for F in the first place, and these things
cannot in general be determined from the atomic diagram. Therefore, most
uniformity in the constructions disappears when the transcendence degree
becomes positive.

Of course, it is a bit hard to state the results of Section 5 as uniformity
results anyway, since the isomorphisms produced may not be computable and
hence need not be of the form ϕe to begin with. However, the construction of
the tree TF,F̃ in Theorem 5.2 is uniform in F and F̃ , and the proof of the Low
Basis Theorem from [19] provides a construction of the low path uniformly
below a 0′-oracle (or, relativized to R, an R′-oracle), given an index for the
computably bounded tree and an index for the computable bound itself. To
get the computable bound, we need the root function for F̃ , which can be
computed from the root function (or from the root set R, or from the splitting
set) for F , uniformly in the atomic diagrams of F and F̃ , by Corollaries 2.7
and 2.8. So the whole construction gives an index for computing the low
isomorphism from an R′-oracle, uniformly in the atomic diagrams of F and
F̃ . In the special case when R is computable, we can determine an index
for computing the isomorphism below a ∅′-oracle, uniformly in the atomic
diagrams of F and F̃ and the characteristic function of R.

Likewise, in Corollary 5.5, if we assume the given degree d to be ≥T 0′,
then that degree allows uniform computation below an oracle D ∈ d of an
isomorphism between any isomorphic F and F̃ , given only indices for the
atomic diagrams of those fields. (The root set for F is ∃-definable, so it need
not be given to us.) In 5.6, on the other hand, we require indices for the
atomic diagrams and also for the root set of F ; this root set is assumed to
be computable, of course, but need not be quantifier-free definable (or other-
wise uniformly computable) from the atomic diagram, so more information
is needed to determine the isomorphism. In both of these corollaries, the
uniformity is lost when we pass to the case of finite (positive) transcendence
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degree.
Uniform computable categoricity is studied closely in [4], which also de-

fines a weaker version of our Definition 6.1 in which we compute the isomor-
phism from an index for the characteristic function of the atomic diagram,
rather than using the atomic diagram itself as an oracle. Of course, since our
fields satisfy the stronger version (in the foregoing formulations), they also
satisfy the weaker version. In addition, [4] considers uniform computable
categoricity with parameters, which is exactly the notion required for fields
of finite transcendence degree: the uniformities described above for algebraic
fields hold likewise for any computable field F of finite transcendence degree
n after we augment the language by adding n constant symbols naming the
elements of an (arbitrary) transcendence basis for F . Results from [36] and
[1] show that all computable structures which are uniformly computably cat-
egorical with parameters are also relatively computably categorical (that is,
every pair of isomorphic copies of the structure, both with domain ω, are
isomorphic via a map computable from their Turing degrees), and it seems
likely that some formulation of a kind of relative computable categoricity
should be possible for fields of finite transcendence degree with splitting al-
gorithms, and perhaps even for such fields in general. First one would need
a relative version of Corollary 2.8; then the relativization would presumably
involve not just the Turing degrees of the two isomorphic fields themselves,
but also some (perhaps arbitrary) PA degrees relative to one or both of their
root sets.

7 Characteristic p and Other Questions

Thus far we have focused on fields of characteristic 0. However, Lemma
2.3 and Corollaries 2.7 and 2.8 all hold in all characteristics. We believe,
therefore, that with a few simple modifications, the results in Sections 3
and 5 hold for all computable algebraic extensions of Zp, for every prime
p > 0, as well as for computable algebraic fields of characteristic 0. For
instance, in Theorem 3.4, we could no longer use only square roots as the
witness elements, for we need infinitely many witnesses. However, allowing
q-th roots for distinct q ought to succeed, especially if these values q are
themselves prime. Theorem 4.1 will require more work, from the researcher
willing to tackle it, but we conjecture that fields algebraic over Zp can also
fail to be 0′-categorical.
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Similarly, we believe that the comments in Section 6 also apply to sepa-
rable fields of characteristic p with finite transcendence degree over Zp. The
point here is that when the transcendence basis is adjoined to Zp, the re-
sult is an infinite field of characteristic p, and so Lemma 2.3 is not as easy
for extensions of finite transcendence degree as it was for purely algebraic
extensions of Zp. Indeed, in an inseparable finite algebraic extension of the
field Zp(b1, . . . , bn), Kronecker’s proof from [23] no longer applies. Lemma
2.3 does generalize as follows.

Lemma 7.1 For every computable field F of any characteristic, with finite
transcendence basis {b1, . . . , bn} over its prime subfield P , the splitting set
for each finite separable extension of P (bi : i ∈ I) (with I ⊆ {1, . . . , n})
by a finite tuple ~x is computable uniformly in I and in the finite tuple ~x of
elements of F .

The separability requirement, emphasized above, in no way weakens the
original statement in characteristic 0, where all polynomials are separable,
and allows Kronecker’s algorithm to succeed even in characteristic p. There-
fore, we believe that the results of Section 6 only need the added requirement
of separability in order to hold in all characteristics. However, we leave the
verification of these claims, as well as the investigation of the inseparable
case, for another time.

Next one should ask to what extent our ideas here apply to other algebraic
structures. In a theory T , such as the theory of fields, a complete 1-type Γ(x)
is algebraic if it is consistent with T , but no model of T realizes Γ infinitely
many times. All such types are principal, and it follows from compactness
that there must be some n ∈ ω such that T proves that at most n elements
satisfy the generating formula, so that Γ cannot be realized by more than
n elements in a single model. Fields are the archetype for these notions:
the algebraic types are precisely those realized by algebraic elements, and
a generating formula is just a statement p(x) = 0, for some polynomial p
irreducible over the prime subfield.

In turn, a model of T is algebraic if it realizes only algebraic types. This
cannot be stated in first-order language (unless there are only finitely many
algebraic 1-types, in which case there is a finite bound on the size of algebraic
models of T ), but one can still ask about degrees of categoricity of such
structures, just as we have done in this paper. What further requirements
are necessary in order for our constructions in Section 5 to work for such a
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structure? For example, with fields we have an effective list of generators of
all algebraic types, and without that list, the constructions would be much
more daunting to attempt. We view this as a reasonable question for further
investigation.

Finally, of course, the basic question remains open: which algebraic fields
are computably categorical? As in the examples in Section 1, one hopes for
a purely structural criterion. However, the results of Section 5 suggest that
this problem may be at the level of difficulty of deciding whether a given Π0

1-
class contains a computable member. Actual bi-interpretability of these two
problems is the subject of current study, but we view the results of this paper
as evidence that the question of computable categoricity for fields, even with
no transcendental elements present, is quantifiably a difficult problem.
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