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Abstract

It is known that the spectrum of a Boolean algebra cannot con-
tain a low4 degree unless it also contains the degree 0; it remains
open whether the same holds for low5 degrees. We address the ques-
tion differently, by considering Boolean subalgebras of the computable
atomless Boolean algebra B. For such subalgebras A, we show that it
is possible for the spectrum of the unary relation A on B to contain a
low5 degree without containing 0.

1 Introduction

The question of coding lown sets into Boolean algebras is well-known and
much studied. The initial result of Downey and Jockusch in [2] showed
that every low Boolean algebra has a computable copy, and asked whether
the same held more generally for lown Boolean algebras. Thurber gave an
affirmative answer for the n = 2 case in [12], and Knight and Stob extended
it to the cases n = 3 and n = 4 in [9]. Currently that remains the state of
our knowledge, despite the efforts of many researchers, and recent work by
Harris and Montalbán in [7], building on [8], has suggested that the n = 5
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case is not just more difficult, but actually substantially different from the
previous ones.

The question can readily be adapted to the concept of the spectrum of
a Boolean algebra. Recall that for any countable structure S, the spectrum
of S is the set of all Turing degrees of structures with domain ω which are
isomorphic to S:

Spec(S) = {deg(M) : M ∼= S & dom(M) = ω}.

So the existing results say that if the spectrum of a Boolean algebra contains
any low4 Turing degree, then it must also contain the degree 0.

In [6], Harizanov and the author drew connections from the spectra of
certain types of structures to the spectra of relations on computable universal
models of the same theory. For example, they showed that every nontrivial
countable graph S can be embedded into the computable random graph G so
that the spectrum of S (as a structure, i.e. as defined above) is precisely the
spectrum of the image R of S as a relation on G. By definition, this latter
spectrum is:

DgSpG(R) = {deg(Q) : (G, R) ∼= (H, Q) for some computable H ∼= G}.

Of course, a unary relation R on G forms a graph in its own right, under
the restriction of the edge relation from G, with degree computable from the
degree of R. Indeed, for every unary relation R on G, there exists a countable
graph S with Spec(S) = DgSpG(R), although cases exist in which S cannot
be taken simply to be the restriction to R of the edge relation from G.

Harizanov and the author also studied these questions for linear orders.
In that theory, the natural universal structure is the computable dense linear
order L (with or without end points), and once again, the spectrum of an
arbitrary countable linear order S can always be realized as the spectrum
of its image within L under some embedding. In their terminology, L is
spectrally universal for the class of all countable linear orders, just as G
was spectrally universal for the class of all countable graphs. They asked
whether the converse holds for linear orders as it did for graphs: when R
is a unary relation on L, must DgSpL(R) be the spectrum of some linear
order? Recognizing the close connections between linear orders and Boolean
algebras, they also asked whether the computable atomless Boolean algebra
B is spectrally universal for the class of countable Boolean algebras. In
[3], the answer to the first question was shown to be negative, but in [1],
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Csima, Harizanov, Montalbán, and the author demonstrated that B is indeed
spectrally universal for countable Boolean algebras.

The approach used in this article was inspired by work in [3], by Frolov,
Harizanov, Kalimullin, Kudinov, and the author, on spectra of linear orders.
It remains unknown whether there exists a linear order whose spectrum con-
sists of precisely the non-low degrees, but in Theorem 4.8 of that work, it is
shown that there is a relation R on the computable dense linear order L with
exactly that spectrum (as a relation on L). The construction of that relation
R involved the notion of a doubly dense interval in L: an interval in which
both R and its complement are dense. With one jump, an R′-oracle could
distinguish such intervals from other intervals in which all elements of L lie
in R. This made possible more coding than could have been accomplished
by the same methods in an actual linear order, allowing R to contain infor-
mation so that its jump could enumerate a family of finite sets which is not
0′-enumerable. Moreover, any set C whose jump can enumerate the same
family is capable of computing a relation S on L with (L, S) ∼= (L, R); this
gave the desired result for the spectrum of the relation R. Of course, any
unary relation on L is a linear order in its own right, under the restriction of
the order ≺ of L, but the spectrum of the linear order (R,≺) (as a structure)
turned out not to exclude all low degrees. Without the ambient structure L
present, the intervals in R which used to be doubly dense could no longer be
distinguished from intervals containing only elements of R, and the coding
disintegrated.

In the next section, we use a similar approach to Boolean algebras. The
natural analogue of the computable dense linear order is the computable
atomless Boolean algebra B. It was already known from work by Harizanov
and the author that a unary relation on B could contain a low degree without
containing the degree 0; see [6, Corollary 4.2]. There a follow-up question,
attributed to Montalbán, asked whether such a relation could be a Boolean
algebra in its own right (specifically, a Boolean subalgebra of B). We do
not have an answer to that precise question, but our main theorem in this
paper, Theorem 2.4, shows that the answer to the same question about low5

degrees is positive. Of course, low5 is precisely the point at which the ques-
tion for Boolean algebras as structures becomes open. So our result does not
solve the question posed in [6] of whether the spectrum of a Boolean subal-
gebra of B (as a relation) is always the spectrum of some Boolean algebra
(as a structure). However, we do expect our work to shed further light on
the widespread investigations into the possibility of a low5 Boolean algebra
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having no computable copy.
For details and definitions from computable model theory, [5] is a useful

source, while more basic background on computability theory is available in
many books, including [11].

2 Boolean Subalgebras of B
The concept of double density, applied in [3] to linear orders, requires some
refinement for Boolean algebras. (Thanks are due to the anonymous referee
who pointed this out.) Our first definitions here use the language of a Boolean
algebra with a subalgebra: functions ∨ and ∧, constants 0 and 1, and a unary
relation symbol A denoting the subalgebra. A Boolean structure (B,A) will
be a model of the axioms for a Boolean algebra with Boolean subalgebra: the
Boolean algebra axioms for the structure B itself, and similar axioms saying
that A forms a Boolean algebra containing the same constants 0 and 1. For
models of these axioms, (B′,A′) is a substructure of (B,A) iff A′ = A ∩ B′
(and the functions and constants in B restrict to those in B′, of course). For
brevity, we call such a (B′,A′) a Boolean substructure of (B,A), and (B,A)
a Boolean extension of (B′,A′). Since the axiomatization is finite, we may
check effectively whether a given finite structure in this language is a Boolean
structure.

Definition 2.1 Let B be the countable atomless Boolean algebra, with a
Boolean subalgebra A, and fix a nonzero element x ∈ A. Write Bx = {y ∈
B : y ⊆ x}, and let Ax = Bx ∩ A. Then (Bx,Ax) forms a Boolean structure
in its own right, with greatest element x. We say that A is doubly dense
within x if, for every finite Boolean substructure (B0,A ∩ B0) ⊆ (Bx,Ax),
and for every finite Boolean structure (D0, C0) with Boolean substructure
(B0,A ∩ B0), there exists a Boolean substructure (D′0,A ∩ D′0) ⊆ (Bx,Ax)
with an isomorphism f : (D0, C0) → (D′0,A ∩ D′0) which restricts to the
identity on (B0,A ∩ B0).

Since we can check effectively whether any finite (D0, C0) really is a
Boolean extension of a given Boolean substructure (B0,A ∩ B0) of (Bx,Ax),
the property of being doubly dense is ΠA2 .

To summarize this definition: every finite Boolean substructure of (Bx,Ax)
can be extended in every possible finite way within (Bx,Ax). Moreover, the
extension is an extension of Boolean structures, i.e. respecting Ax. This is
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exactly the property we need for Lemma 2.3 below, which essentially says
that the property of double density within an interval characterizes A in that
interval up to isomorphism.

We will need a fixed computable copy of the atomless Boolean algebra.
For this purpose, we fix a computable presentation B of Intalg(Q), the
Boolean algebra of finite unions of left-closed, right-open intervals within
the standard linear order ≺ on the rationals Q. (Such an interval is allowed
to be of the form (−∞, q) or [q,+∞).) Notice that since the domain of B
officially is ω, we will use the relation < to denote the usual ordering of its
elements, viewed as elements of ω. The less-than relation in the Boolean
algebra B is denoted by ⊆ (and its strict version by (), since we are thinking
of elements of B as denoting intervals in Q. As mentioned above, we also
use ≺ to denote the computable linear ordering of Q. Thus, for instance,
[q, r) ⊆ [q′, r′) iff q′ � q and r � r′. From here on, we switch back to the
language of Boolean algebras, with no additional unary relation symbol for
a Boolean subalgebra. Of course, we are still studying Boolean subalgebras!
However, B is simply a computable atomless Boolean algebra. This means
that the operations of meet ∩ and join ∪ are computable, and hence so are
complementation and the containment relations ⊆ and (, but our subalge-
bras, not being in the language, are not required to be computable, and in
general will not be.

The next lemma will be used in Theorem 2.4 every time we say “make
As doubly dense below x in B.” This really means to extend As (which will
have finite intersection with Bx) as in Lemma 2.2, and then to take As+1 to
be the Boolean subalgebra of B generated by As and the A from the lemma.
If a finite set S of elements of B has already been excluded from A by stage
s, the lemma allows us to maintain this exclusion, by letting S0 be the set of
elements of Bx whose inclusion in A would force some element of S to enter
A.

Lemma 2.2 For every x ∈ B, every finite Boolean subalgebra A0 of Bx =
{y ∈ B : y ⊆ x}, and every finite subset S0 ⊆ (Bx − A0), there exists a
Boolean subalgebra A of Bx, extending A0 and disjoint from S0, which is
doubly dense below x in Bx. Moreover, A may be computed uniformly in x
and in a strong index for A0.

Proof. This is a simple matter of writing down the requirements from Defi-
nition 2.1, with one requirement for each finite Boolean subalgebra of the A
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we build and for each finite Boolean extension (D0, C0) thereof. The initial
Boolean substructure (B0,A0) uses the A0 given, with B0 generated by A0

and the elements of S0, so that S0 ⊆ B0 − A0. Each requirement says that
some copy of a finite Boolean structure (D0, C0) must appear as a Boolean
substructure of (Bx,A), extending the (Bx,As) we have built so far, and
there are always infinitely many elements available in Bx of each type over
(Bs,As). At stage s+ 1 we make sure that only elements > s are adjoined to
As. Thus our A will be not only computably enumerable, but computable.

Later on, when building subalgebras which may turn out to be doubly
dense, we will refer to the above requirements informally as the double-density
requirements.

Lemma 2.3 For any x, x′ ∈ B and Boolean subalgebras A and A′ of B, sup-
pose that A is doubly dense within x and A′ doubly dense within x′. As above,
consider (Bx,Ax) as a Boolean structure in its own right, with Boolean sub-
algebra Ax = Bx∩A, and likewise (Bx′ ,A′x′) with A′x′ = Bx′ ∩A′. Then there
is an isomorphism f of Boolean structures from (Bx,Ax) onto (Bx′ ,A′x′),
computable in the join of deg(A) and deg(A′).

Proof. According to Definition 2.1, x ∈ A and x′ ∈ A′, so (Bx,Ax) and
(Bx′ ,A′x′) are indeed Boolean structures. We build f by a back-and-forth
construction, starting with f0(0) = 0 and f0(x) = x′. Suppose that at
stage s we have built a finite partial isomorphism fs, respecting A and A′
as desired, whose domain Bs is a finite Boolean subalgebra of Bx. Then
(Bs,A∩Bs) is a finite Boolean substructure of (Bx,Ax), and Definition 2.1 is
exactly the property we need to extend fs to the least element y of Bx −Bs:
just let (D0, C0) be the finite Boolean substructure of (Bx,Ax) generated by
Bs and y, with C0 = A ∩ D0. Since A′ is doubly dense within x′, there
exists a finite Boolean substructure of (Bx′ ,A′x′) isomorphic to (D0, C0) via
an isomorphism extending fs. Since everything is finite, it is easy to find
such a Boolean substructure and such an isomorphism, which we define to
be fs+1. The backwards direction is exactly the same, since A is likewise
doubly dense within x.

We use the term A-atom to mean an element a ∈ A which is an atom of
A. Of course, such an a will still have densely many elements of B within it,
but none of them except 0 and a itself lies in A.
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Theorem 2.4 Let c be any Turing degree which is not low4. Then there
exists a Boolean subalgebra A of the computable atomless Boolean algebra B
for which DgSpB(A) contains c but does not contain 0. In particular, there
exist low5 degrees c for which this holds.

Proof. First we describe a straightforward presentation ofA, and explain why
the degree 0 cannot lie in its spectrum. Then we will construct a Boolean
subalgebra D of B such that (B,A) ∼= (B,D) and deg(D) = c. These two
results suffice to establish the theorem.

In building A, we will often say of an interval [m,m + 1) (with m ∈ ω)
that we make A converge to the right in [m,m + 1). This means that all of
the following intervals are enumerated into A:[
m,m +

1

2

)
,

[
m +

1

2
,m +

2

3

)
,

[
m +

2

3
,m +

3

4

)
,

[
m +

3

4
,m +

4

5

)
, . . .

Notice that this does not force [m,m+1) to lie in A, although of course every
finite union of these intervals and of their complements (in B) must enter
the Boolean subalgebra A. We will specify whether the interval [m,m + 1)
belongs to A or not. (Usually it will not.)

Now we describe the Boolean subalgebra A of B. First, the interval
(−∞, 0) is in A, and A is doubly dense inside (−∞, 0). Next, fix any set
C ∈ c, and let {n0 < n1 < n2 < · · · } = C(4), the fourth jump of C. We put
the interval [0, 2n0) into A. Then, as described above, we make A converge
to the right in each of the intervals

[0, 1) , [1, 2) , . . . , [2n0 − 1, 2n0) .

We do not put any of these intervals themselves into A (unless n0 = 0, in
which case [0, 1) lies in A). Write q0 = 0 and r0 = 2n0 .

Next we put the interval [2n0 , 2n0 + 1) into A, and make A doubly dense
there. Then we define

q1 = 2n0 + 1, r1 = 2n0 + 1 + 2n1 ,

put the interval [q1, r1) into A, and repeat the process, making A converge
to the right in each interval

[q1, q1 + 1), [q1 + 1, q1 + 2), . . . , [r1 − 1, r1).
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Next [r1, r1 + 1) enters A and we make A doubly dense there. Then we set
q2 = r1 + 1 and r2 = q2 + 2n2 , and put [q2, r2) into A, with A converging
to the right in every unit integer interval inside there. We continue this way
forever.

Having defined A on these unit intervals which together form a partition
of B, we declare the entire set A to be the Boolean subalgebra of B generated
by those subelements which lie within single intervals and have already been
placed in A. The main point is that when defining A, if b0, . . . , bn /∈ A
and these elements come from (n + 1) distinct unit intervals, then one can
choose whether their union should lie in A or not, and we always choose
not to place it in A. (In contrast, within a single doubly dense interval, two
elements not in A may have their union in A; double density forces this to
happen sometimes. Likewise, each individual interval [qi, qi+1), . . . , [ri−1, ri)
does not lie in A, yet their union does.)

To summarize, we have an infinite ascending sequence

q0 ≺ r0 ≺ q1 ≺ r1 ≺ q2 ≺ · · ·

of rationals, with ri = qi + 2ni and qi+1 = ri + 1 for every i ∈ ω. A is doubly
dense within each interval [ri, qi+1), as well as in (−∞, q0). Each interval
[qi, ri) lies in A and consists of 2ni adjacent unit intervals, none of which lies
in A (unless ni = 0), but within each of which A converges to the right.
Moreover, each of these unit intervals [m,m+ 1) may be seen as the disjoint
union of the intervals[

m,m +
1

2

)
t
[
m +

1

2
,m +

2

3

)
t
[
m +

2

3
,m +

3

4

)
t · · · ,

each of which is an A-atom. (This is clear because no step in our description
of A ever put into A any interval with an endpoint in the interior (m +
k

k+1
,m + k+1

k+2
) of any of these intervals.)

Of course, if A converges to the right in [m,m + 1), then there is a
Boolean-algebra isomorphism, respecting A, from this interval onto any [m+
k

k+1
,m + 1). There is also such an isomorphism from [m,m + 1) onto the

union of this interval with any finite number of A-atoms in B. The portion
of the interval of interest to us is the right end, where the “convergence”
occurs. Each interval [m,m+1) with qi ≤ m < ri, for any i, is called a single
A-supremum, as is any other interval of B which is isomorphic over A to one
of these, according to the following definition.
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Definition 2.5 An element x ∈ B is an A-supremum if x is the least upper
bound in B of an infinite set {ai} of A-atoms. (That is, all ai ⊆ x, and for
every y ( x in B there is an i with ai 6⊆ y.) Such an element is a single
A-supremum if it is not the union of two disjoint A-suprema. The union of
k pairwise-disjoint single A-suprema will be called a k-fold A-supremum.

Lemma 2.6 For the A defined above, if an element x ∈ B contains infinitely
many A-atoms, then x contains some interval of the form [m − 1

k
,m), with

m /∈ {qi : i ∈ ω}.

Proof. Every x ∈ B is a finite union of intervals, so some interval [q, r) within
x contains infinitely many A-atoms. Now A-atoms appear only within the
intervals [qi, ri), not in the doubly dense intervals of B. If r = +∞, then the
conclusion is immediate, so assume r ∈ Q. It follows that [q, r) intersects
only finitely many intervals [qi, ri), and so must contain infinitely many A-
atoms from one particular [qj, rj). But since [q, r) is itself an interval, it must
contain cofinitely many of those A-atoms.

Lemma 2.7 Let x be any element of B, and define A as above. Then x is
a single A-supremum iff all the following properties hold of x.

1. For all y ⊆ x, A is not doubly dense within y.

2. x contains infinitely many A-atoms.

3. For every y ∈ B, either x ∩ y or (x − y) is contained within a finite
union of A-atoms.

4. Every A-atom either is contained within x or does not intersect x.

Thus the property of being a single A-supremum is ΠA3 , and for any k > 1,
the property of being a k-fold A-supremum is ΣA4 , uniformly in k.

Proof. First we note that all four properties described are indeed ΠA3 . Since
every nonzero element of B contains a subelement not in A, Property (1) can
be expressed by:

(∀y ⊆ x)[y 6= 0 =⇒ some double-density requirement fails in By].

Saying that a single double-density requirement fails is a ΣA2 statement: there
is a finite Boolean substructure of By and a Boolean extension of it which is
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not realized in By. So Property (1) is ΠA3 . Property (2) is most easily stated
with the ∃∞ quantifier, which is equivalent to an ∀∃ quantifier:

(∃∞y)[0 6= y ⊆ x & y ∈ A & ∀z ( y(z ∈ A =⇒ z = 0)].

Property (3) is given by:

(∀y ⊆ x)(∃k ∈ ω)(∃z0, . . . zk ∈ A)[(y ⊆ ∪izi or x ⊆ y ∪ z0 ∪ · · · ∪ zk) &

(∀i ≤ k ∀t ( zi[t ∈ A =⇒ t = 0])].

Finally, Property (4) just says:

(∀z ∈ A)[z ⊆ x or z ∩ x = 0 or ∃t ∈ A[0 ( t ( z]].

Each of these is in ∀∃∀ form over an oracle for A, except Property (4),
which merely ∀∃ over A. Moreover, for x to be a k-fold A-supremum is then a
ΣA4 property, uniformly in k, since it says that there exist k pairwise-disjoint
elements which satisfy these ΠA3 conditions and have union x.

We claim that every single A-supremum x satisfies all four properties.
First, if y ⊆ x is doubly dense, then no A-atoms lie within y, and so x−y = x
by the minimality in Definition 2.5, forcing y = 0 and contradicting Definition
2.1. Thus Property (1) holds, and so x ⊆ ∪i[qi, ri). Indeed, since x itself is a
finite union of intervals and ∪i[qi, ri) is not, we get x ⊆ ∪i≤p [qi, ri) for some
finite p. Property (2) is immediate, and so Lemma 2.6 yields an interval
[m − 1

k
,m) ⊆ x. Suppose y ⊆ x. Now y is a finite union of intervals, so

(increasing k and/or replacing y by (x − y) if necessary) we may assume
[m− 1

k
,m) ⊆ y. But we know (y − x) ⊆ x ⊆ ∪i≤p [qi, ri). Moreover, since y

is a finite union of intervals, only finitely many of the A-atoms in ∪i≤p [qi, ri)
can intersect both y and (x− y). Therefore, if y intersected infinitely many
A-atoms, it would contain infinitely many A-atoms, in which case it would
also contain an interval [m′ − 1

k′
,m′), by Lemma 2.6. But then, simply by

disentangling y and (x−y) from the finitely many A-atoms which they split,
we would get two disjoint A-suprema whose union equals x, and so x would
not be a single A-supremum. (Let a be the union of the finitely many A-
atoms which intersect both y and (x−y), and let y′ = y∪a, so y′ and (x−y′)
would both be the least upper bounds of infinite sets of A-atoms.) Therefore,
Property (3) must also hold of x, and Property (4) is quickly seen: if z were
an A-atom intersecting both x and (1− x), then z would not be among the
A-atoms whose supremum is x, and so (x − z) would be a strictly smaller
upper bound for those A-atoms.
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Finally, we show that every element of B satisfying these four proper-
ties is a single A-supremum. Property (2) shows that the set {a ⊆ x :
a is an A-atom} is infinite. If y ⊆ x is also an upper bound for that set, then
(x − y) contains no element within which A is doubly dense, by Property
(1); moreover, any A-atom a intersecting x must be bounded by x (by Prop-
erty (4)), hence is bounded by y as well, so does not intersect (x − y). But
every nonzero interval in B either intersects a doubly dense interval, or else
intersects an A-atom. Therefore x− y = 0, so x is the least upper bound for
the set of A-atoms within x. Finally, if x0 and x1 were disjoint A-suprema
with x0 ∪ x1 = x, then Property (3) would fail, and so x must be a single
A-supremum.

We now claim that there is no computable relation R on B such that
(B, R) ∼= (B,A). If there were, then the uniform ΣA4 definition of k-fold
A-suprema from Lemma 2.7 would convert to a uniform ΣR

4 definition on
(B, R), which of course means just a Σ0

4 definition, since R is computable.
But now we claim that for all n,

n ∈ C(4) ⇐⇒ ∃x ∈ A [x is a 2n-fold A-supremum].

The forward implication is clear from the use of the elements n0, n1, . . . of
C(4) in the construction of A: for each i, there is a 2ni-fold A-supremum
in A, namely the interval [qi, ri). On the other hand, by Lemma 2.6, every
single A-supremum in B is the union of an interval of the form [m − 1

k
,m)

with finitely many more A-atoms (and with m 6= qi for all i). So a 2n-fold
A-supremum must be the union of 2n distinct such intervals with finitely
many more A-atoms, and such an element only entered A if n = ni for some
i. (Here we come to understand the use of the powers 2ni . For instance, if
n0 = 0 and n1 = 1, then A contains a single A-supremum x0 and a separate
2-fold A-supremum x1. Being a Boolean subalgebra, A therefore contains
x0 ∪ x1, which is a 3-fold A supremum. However, every single A-supremum
in A differs from x0 only by finitely many A-atoms, and likewise every 2-fold
A-supremum differs from x1 only by finitely many A-atoms. Therefore, the
only way A could contain a 4-fold A-supremum is if n2 = 2, i.e. if 2 ∈ C(4).
Since A contains essentially just a single 2ni-fold A-supremum for each i (and
since ni 6= nj for i 6= j), there is no way that the smaller-fold A-suprema can
interfere with the use of 2n-fold A-suprema to code whether n ∈ C(4).)

Of course, if (B, R) ∼= (B,A), then all of this analysis transfers over to 2n-
fold R-suprema in R. But it is Σ0

4 whether R contains a 2n-fold R-supremum,
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and so this would imply C(4) ≤T ∅(4). Now the conditions on C in Theorem
2.4 become clear: since C is assumed not to be low4, we know C(4) 6≤T ∅(4),
and so it is impossible for a computable unary relation R on B to satisfy
(B, R) ∼= (B,A).

Next we note that since B is computably categorical, the foregoing suf-
fices to show that the degree 0 does not lie in DgSpB(A). The details, which
are not difficult, appear as Lemma 1.6 in [6], while the proof of computable
categoricity for B is an easy back-and-forth argument, first established inde-
pendently by Goncharov and Dzgoev in [4] and by Remmel in [10].

To prove the theorem, it remains to show that c itself, the degree of C,
does lie in DgSpB(A). For this we use a C-oracle to compute a Boolean sub-
algebra D of B, and then show that there is an automorphism of B mapping
D onto A.

First we make D doubly dense within the interval (−∞, 0) of B. In doing
so, we attend to one detail. For each n, using our C-oracle, we define the
interval [−2n − 2,−2n − 1) to lie in D iff n ∈ C. Clearly, it remains easy
to make D doubly dense in (−∞, 0) after this is done, and by doing so, we
ensure that C ≤T D. The rest of the construction can then be devoted to
making (B,D) ∼= (B,A) with D ≤T C.

Now C(4) can be expressed by a ΣC
4 formula, say ∃a∀b∃c∀dR(n, a, b, c, d),

with R ≤T C. Notice that by [3, Corollary 5.14], we may assume that this
R has the property that for each n, there is at most one value of a satisfying
∀b∃c∀dR(n, a, b, c, d). We also have a reduction, uniform in n, a, and b:

[∃c∀dR(n, a, b, c, d)] ⇐⇒ f(n, a, b) ∈ FinC

using some total computable function f . Combining these gives the form we
will use to approximate C(4) in our construction of D:

∀n [n ∈ C(4) ⇐⇒ ∃a∀bf(n, a, b) ∈ FinC ]

along with the fact that for each n ∈ C(4), the corresponding a is unique.
Having already built D within the interval (−∞, 0) of B, we now extend

it to the rest of B. First, we divide the rest of B into intervals: each “even”
interval [2〈n, a〉, 2〈n, a〉 + 1) will be used to help code whether n ∈ C(4),
while we make D doubly dense within each of the remaining “odd” intervals
[2i + 1, 2i + 2), every one of which is defined to lie in D. Every even interval
[2〈n, a〉, 2〈n, a〉 + 1) is also defined to lie in D, and is subdivided into 2n
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subintervals. In each of these subintervals, we build a copy of the following
structure Dn,a, for the particular n and a corresponding to this even interval.

To simply matters, we define Dn,a here on 2n-many copies of the interval
[0,+∞), which is uniformly computably isomorphic to any left-closed, right-
open interval of Q. To begin with, every subinterval Ui = [i, i + 1) is placed
into Dn,a. These are the original intervals. (However, [0,+∞) itself does
not belong to Dn,a.) Then, using our C-oracle, we simultaneously enumerate
all the C-enumerable sets WC

f(n,a,b), for this n and a and for every b ∈ ω.
We may assume that at most one such set receives an element at any single
stage of our enumeration. At stage s, fix the unique b (if any) for which
Wf(n,a,b),s+1 6= Wf(n,a,b),s, and let tb be the union of the intervals [b + 1,+∞)
from each of the 2n-many copies of [0,+∞). We satisfy the |Wf(n,a,b),s|-th
double-density requirement for tb (as defined in the proof of Lemma 2.3) by
adding finitely many elements of tb to Dn,a and finitely many others to the
complement Dn,a. We ensure that every element added to Dn,a only has end
points whose denominators (in lowest terms) are > s. This completes the
construction; the set Dn,a consists of all finite unions and complements of the
intervals enumerated at all stages s during this process.

Notice first that the Boolean subalgebra Dn,a of Intalg([0,+∞)) thus
generated is C-computable. Every interval entering Dn,a at stage s has end
points with denominators ≥ s, and so an arbitrary finite union of intervals
lies in Dn,a iff it has been enumerated before the stage equal to the maximum
of the denominators of its endpoints.

Next, suppose that (∀b)f(n, a, b) ∈ FinC . Then every original interval Ui

had only finitely many of its subelements added to Dn,a, since all the sets
WC

f(n,a,b) with b < i together had only finitely many elements enumerated

into them. Therefore, in this case Dn,a is atomic and [0,+∞) is a single
Dn,a-supremum: it is the upper bound of all the atoms of Dn,a, but if it
is written as the union of two disjoint subelements, then only one of those
elements can contain the right end of [0,+∞), and the other cannot contain
infinitely many Dn,a-atoms.

On the other hand, if there is a (least) b for which f(n, a, b) /∈ FinC ,
then the interval tb satisfies all of the double-density requirements, while
the interval [0, b + 1) in each copy of [0,+∞) is the union of finitely many
Dn,a-atoms.

This completes our description of Dn,a, for every n and a. Recall now that
the interval [2〈n, a〉, 2〈n, a〉+ 1) of B consists of 2n isomorphic copies of Dn,a:
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each lies in an interval [2〈n, a〉 + i
2n
, 2〈n, a〉 + i+1

2n
), with i = 0, . . . , 2n − 1.

(We simply build an order isomorphism from [0,+∞) onto each [2〈n, a〉 +
i
2n
, 2〈n, a〉+ i+1

2n
), and define D to contain everything in the image of Dn,a un-

der this isomorphism.) We then closeD under finite unions and complements;
it remains C-computable, since each Dn,a was C-computable uniformly on
each interval [2〈n, a〉, 2〈n, a〉 + 1). This parallels the same step in the con-
struction of A above: certain elements from individual unit intervals are
placed in D, and then the entire set D is the Boolean subalgebra generated
by those subelements of the unit intervals. It is important to note that this
does not force the intervals [2〈n, a〉+ i

2n
, 2〈n, a〉+ i+1

2n
) to lie in D, although

the entire interval [2〈n, a〉, 2〈n, a〉+ 1) does lie in D.
So, if (∀b)f(n, a, b) ∈ FinC , then [2〈n, a〉, 2〈n, a〉 + 1) is the union of

these 2n intervals, each of which is a single D-supremum, but no finite
union of which (except [2〈n, a〉, 2〈n, a〉 + 1) itself) lies in D. In fact, in
this case the interval [2〈n, a〉, 2〈n, a〉 + 1) with the subalgebra D is order-
isomorphic to the interval [qi, ri) of B with the subalgebra A (where n =
ni). Thus [2〈n, a〉, 2〈n, a〉 + 1) is a 2n-fold D-supremum. Notice that since
(∀b)f(n, a, b) ∈ FinC , this a witnesses that n ∈ C(4). Moreover, this a is the
unique such witness; for every a′ 6= a, there is some b with f(n, a′, b) /∈ FinC ,
the case we describe next.

If it is not true that if (∀b)f(n, a, b) ∈ FinC , then we saw above that
each copy of Intalg([0,+∞)) is the union of finitely many Dn,a-atoms and
one interval [b + 1,+∞), and that Dn,a satisfied all the double-density re-
quirements on the union tb of these 2n-many intervals [b + 1,+∞). The
structure of each copy of Intalg([0,+∞)) is transferred to each subinterval
[2〈n, a〉+ i

2n
, 2〈n, a〉+ i+1

2n
). Thus, the entire interval [2〈n, a〉, 2〈n, a〉+1) is the

union of finitely manyD-atoms with the image of tb. Since [2〈n, a〉, 2〈n, a〉+1)
lies in D, we can split off the finitely many D-atoms and see that tb is an
element of D, within which D is doubly dense, since this element satisfies all
of the double-density requirements. Therefore, in this case no subinterval of
[2〈n, a〉, 2〈n, a〉+ 1) is even a single D-supremum, let alone a severalfold one.

Now if n ∈ C(4), then there is a unique a satisfying (∀b)f(n, a, b) ∈ FinC ,
and so there is a unique interval [2〈n, a〉, 2〈n, a〉 + 1) which is a 2n-fold D-
supremum and lies in D. Every other interval corresponding to this n is the
union of finitely many D-atoms and one interval in which D is doubly dense.
On the other hand, if n /∈ C(4), then every interval [2〈n, a〉, 2〈n, a〉 + 1) (for
every a) is the union of a D-doubly-dense interval and finitely many D-atoms.
So this gives us our picture of the Boolean subalgebra D of B, and explains
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how the coding of C(4) finally worked.
We still have to show that (B,D) ∼= (B,A). Automorphisms of B, even

without any subalgebra involved, can be tricky. For instance, the bijection
which interchanges each even interval [2n, 2n + 1) with its successor [2n +
1, 2n+2), for every n ∈ Z, yields an automorphism of B, whereas the bijection
interchanging each odd interval [2n + 1, 2n + 2) with [−2n− 1,−2n), for all
n ∈ ω, does not yield an automorphism. (In the latter, the image of [0,+∞)
is not a finite union of intervals.) So we give here a careful description. The
basic principle is that we will map the interval (−∞, 0) of B to itself, and
that the complementary interval [0,+∞) is divided into subintervals, each
of which has only finitely many others to its left. Each such subinterval in
(B,D) is mapped to a similar subinterval in (B,A), which implies that our
map sends each “tail” [q,+∞) in (B,D) to the union of a tail and finitely
many other subintervals in (B,A). (Thus the key is that the subintervals of
[0,+∞) appear in order type ω from left to right. If it were not so, more
care would be required at the limit points in the sequence of subintervals.)

We offer the following helpful schematics of the two structures (B,A)
and (B,D). The first indicates, in (B,A), where to find the A-doubly dense
intervals (labeled by “DD”), the 2ni-fold A-suprema (“2ni”), and the first
A-atom (“at”) of each A-supremum. For reasons explained below, this first
A-atom is separated from the rest of the 2ni-fold A-supremum [qi + 1

2
, ri).

-� )[ )[ )[ )[ )[ )[ )[ )[ )[ )[ )[ )[ )[ )[

(B,A):

DD at 2n0 DD at 2n1 DD at 2n2 DD at 2n3 DD at

q0 =0 r0 q1 r1 q2 r2 q3 r3 q4

The second schematic indicates, in (B,D), where the various 2n-fold D-
suprema in D, the D-doubly dense intervals, and the finite sequences of
D-atoms lie. Of course, with the construction of D, we do not actually know
which even intervals are D-suprema, or how many atoms appear in those even
intervals which are not D-suprema, so the following represents a descriptive
guess, in which C(4) contains both 0 and 1.
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(B,D):

DD at DD DD 20 DD at DD DD at DD DD 21 DD

0 1 2 3 4 5 6 7 8 9 10

Now we describe the isomorphism from (B,D) onto (B,A). First, A is
doubly dense in (−∞, 0), as is D, so by Lemma 2.3, this interval can be
mapped isomorphically onto itself. Next, recall that C(4) = {n0 < n1 < · · · }.
For each i ∈ ω, the unique interval [2〈ni, a〉, 2〈ni, a〉 + 1) ∈ D which is a
2ni-fold D-supremum is mapped onto the interval [qi + 1

2
, ri) by an order

isomorphism. Notice that this leaves the A-atom [qi, qi +
1
2
) out of the image,

so that we have infinitely many A-atoms still available, no two of which are
adjacent to each other. (That is, no two of them share an end point.) These
become the images of the D-atoms from the intervals [2〈n, a〉, 2〈n, a〉 + 1)
for which some b had f(n, a, b) /∈ FinC ; there were infinitely many such
intervals, no two adjacent, and each one had finitely many D-atoms in it.
Finally, each such [2〈n, a〉, 2〈n, a〉 + 1) was the union of those finitely many
D-atoms with one subinterval in which D was doubly dense, and our map
pairs up those subintervals (along with the odd intervals [2i+1, 2i+2)) with
the intervals [ri, qi+1) of B in which A was doubly dense. The [ri, qi+1) are
pairwise nonadjacent, and each D-doubly-dense interval in B was part of at
most a finite chain of pairwise-adjacent such intervals, so we may safely map
each of these D-doubly-dense intervals to the A-doubly-dense interval with
which it was paired, using Lemma 2.3.

We claim that the above description defines an isomorphism from (B,D)
onto (B,A). Recall the structure of (B,D): D is doubly dense in (−∞, 0), in
the odd intervals [2i+1, 2i+2) (for i ∈ ω), and in the finite union of the right
ends of each of the 2n-many pieces of every even interval [2〈n, a〉, 2〈n, a〉+ 1)
for which some b has f(n, a, b) /∈ FinC . The remaining (left) portion of each
piece of each such even interval consists of finitely many D-atoms. Finally,
each even interval [2〈n, a〉, 2〈n, a〉 + 1) for which all f(n, a, b) ∈ FinC is a
2n-fold D-supremum, containing 2n single D-suprema, in each of which the
D-atoms accumulate to the right. The preceding paragraph defined where all
of these intervals should be mapped in (B,A), and also how all subintervals
within them were to be mapped into (B,A). For every interval [q, r) in B with
q 6= −∞ and r 6= +∞, this defines the image of [q, r) under this map: [q, r)
must be a finite union of elements whose images have been defined above,
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and the union of those images forms the image of [q, r). (By the definitions
of A and D, [q, r) ∈ D iff all its intersections with individual unit intervals
lie in D, in which case its image is the union of elements of A, hence lies
in A, and conversely.) The same holds if q = −∞, since (−∞, 0) mapped
isomorphically onto (−∞, 0). If r = +∞ and q ≥ 0, then the interval [q, r)
contains cofinitely many of the D-supremum intervals, cofinitely many of the
D-atoms from even intervals, and cofinitely many of the subintervals in which
D is doubly dense (both odd intervals, and the right ends of even intervals
which are not D-suprema). The finitely many subintervals from [0, q) have
all been mapped to subintervals within [0,+∞), none of which extends to
+∞, and we define [q, r) to map to the complement of the image of [0, q)
within [0,+∞). To complete the description, we map any interval [q,+∞)
in B with q < 0 to the union of the images of [q, 0) and [0,+∞), and we
map each finite union of intervals in B to the union of the images of those
intervals.

To see that this map is onto, one simply follows the description from the
point of view of (B,A), which was the range of the isomorphism described
above. Doing so makes it clear that every [qi, ri) is the isomorphic image
of the unique 2ni-fold D-supremum in D (along with a single D-atom from
elsewhere in (B,D), which maps to [qi, qi + 1

2
)); that every [ri, qi+1) is the

isomorphic image of some interval in which D is doubly dense, and that
(−∞, 0) is the isomorphic image of (−∞, 0). The argument then extends to
all subintervals of (B,A), and all finite unions thereof, just as in the preceding
paragraph. Once again, the key point is that each of (B,D) and (B,A) is
divided into countably many subintervals, appearing in order type ω.

This isomorphism shows that c, the degree of the set C, does lie in
DgSpB(A), even though that spectrum has already been shown not to contain
the degree 0. So we have proven Theorem 2.4.

3 Further Questions

The immediate question to follow Theorem 2.4 is whether one can adapt the
construction to produce a Boolean algebra whose spectrum (as a structure)
likewise contains a low5 degree without containing 0. A fairly quick exami-
nation of the Boolean subalgebra A constructed in the theorem shows that A
itself does not have such a spectrum. In particular, the set of n such that A
contains an n-fold A-supremum must now be an initial subset of ω: in order
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to be a 3-fold A-supremum, for example, an x ∈ A must be the union of
three single A-suprema, meaning that A contains both a single and a 2-fold
A-supremum as well. Since A contained k-fold A-suprema for arbitrarily
large k, it is actually just the union of countably many single A-suprema
with countably many dense intervals interspersed between them, hence has
a computable copy. As in the example from [3] on linear orders, discussed
in Section 1, the ambient structure B allowed our construction to code in-
formation into A which could not have been coded in the same way without
the larger framework of B. Possibly one could produce a related Boolean
algebra A∗ which codes the structure (B,A), in which case the coding of C(4)
could be deciphered from an arbitrary copy of A∗ in five or more jumps: one
or more to decode (B,A), and then four more to decode C(4) itself. In this
case, a lown set C for appropriate n might have its degree in Spec(A∗), yet
preclude any computable copy of A∗ from existing.

Turning to spectra of Boolean subalgebras, it is natural to ask whether
the construction in Theorem 2.4 for non-low4 degrees can be modified to work
for a degree which is not low3, or not low2, or not low. From the opposite
side, it would be natural to attempt first to reproduce the Downey-Jockusch
argument on low Boolean subalgebras of B. Both of these are the subjects of
current investigations. A positive answer to the question for non-low3 degrees
would entail a Boolean subalgebra C of B whose spectrum (as a relation on
B) is not the spectrum of any Boolean algebra (as a structure), thus resolving
the question asked by Montalbán and quoted at the end of [6]. Furthermore,
a positive answer might involve a construction of C simpler than that of D
in Theorem 2.4, since fewer jumps would be involved (although the coding
might be more complicated), and therefore might be more readily adapted
to design a Boolean algebra C∗ to code (B, C), as described above.
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