Meeting infinitely many cells of a partition once

Heike Mildenberger ${ }^{1, \star}$, Otmar Spinas ${ }^{2,3, \star \star}$
${ }^{1}$ Mathematisches Institut der Universität Bonn, Beringstr.1, 53115 Bonn, Germany.
e-mail: heike@math.uni-bonn.de
${ }^{2}$ Humboldt Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, D-10099 Berlin, Germany. e-mail: spinas@mathematik.hu-berlin.de
${ }^{3}$ Mathematik, ETH-Zentrum, CH-8092 Zürich, Switzerland (current address)

Received: 2 October 1996 / Revised version: 22 May 1997

Abstract

We investigate several versions of a cardinal characteristic \mathfrak{f} defined by Frankiewicz. Vojtáš showed $\mathfrak{b} \leq \mathfrak{f}$, and Blass showed $\mathfrak{f} \leq \min (\mathfrak{d}, \operatorname{unif}(\mathbf{K}))$. We show that all the versions coincide and that \mathfrak{f} is greater than or equal to the splitting number. We prove the consistency of $\max (\mathfrak{b}, \mathfrak{s})<\mathfrak{f}$ and of $\mathfrak{f}<$ $\min (\mathfrak{d}, \operatorname{unif}(\mathbf{K}))$.

1. Introduction

We start with the definition of several cardinal characteristics. "There are infinitely many" is abbreviated by \exists^{∞}, the dual quantifier "for all but finitely many" is \forall^{∞}. In our context, a partition is a set of pairwise disjoint sets that combine to ω. The set of all functions from ω to ω is written as ω^{ω}; and the set of all infinite subsets of ω is written as $[\omega]^{\omega}$. For $f, g \in \omega^{\omega}$ the ordering of eventual dominance is defined by $f \leq^{*} g$ iff $\forall^{\infty} n f(n) \leq g(n)$. The set ω is equipped with the discrete topology. The Baire space ω^{ω} carries the product topology.

The well-known cardinal invariants we are dealing with are: the splitting number $\mathfrak{s}=\min \left\{|\mathscr{S}|: \mathscr{S} \subseteq[\omega]^{\omega} \wedge \forall X \in[\omega]^{\omega} \exists S \in \mathscr{S}|X \cap S|=|X \backslash S|=\right.$ $\omega\}$, the (un)bounding number $\mathfrak{b}=\min \left\{|\mathscr{B}|: \mathscr{B} \subseteq \omega^{\omega} \wedge \forall f \in \omega^{\omega} \exists b \in\right.$ $\left.\mathscr{B} b \not \mathbb{K}^{*} f\right\}$, the dominating number $\mathfrak{d}=\min \left\{|\mathscr{D}|: \mathscr{D} \subseteq \omega^{\omega} \wedge \forall f \in\right.$ $\left.\omega^{\omega} \exists d \in \mathscr{D} f \leq^{*} d\right\}$, and the uniformity of the sets of first Baire category $\operatorname{unif}(\mathbf{K})=\min \left\{|A|: A \subseteq \omega^{\omega}\right.$ is not meager $\}$.

Definition 1. For $r \in \omega$:

[^0]\[

$$
\begin{aligned}
\mathfrak{f}_{1, r+1}:= & \min \left\{|\mathscr{A}|: \mathscr{A} \subseteq[\omega]^{\omega} \wedge \forall \text { partitions } \mathscr{P}\right. \text { into finite intervals } \\
& \left.\exists A \in \mathscr{\not} \exists^{\infty} \text { pieces } P \in \mathscr{P} 1 \leq|P \cap A| \leq r+1\right\} . \\
\mathfrak{f}_{2}:= & \min \left\{|\mathscr{A}|: \mathscr{A} \subseteq[\omega]^{\omega} \wedge \forall \text { partitions } \mathscr{P}\right. \text { into finite intervals } \\
& \left.\exists A \in \mathscr{C} \exists r \in \omega \exists^{\infty} \text { pieces } P \in \mathscr{P} 1 \leq|P \cap A| \leq r+1\right\} . \\
\mathfrak{f}_{3}:= & \min \left\{|\mathscr{A}|: \mathscr{A} \subseteq[\omega]^{\omega} \wedge \exists r \in \omega \forall \text { partitions } \mathscr{P}\right. \\
& \text { into finite intervals } \exists A \in \mathscr{C} \quad \exists \infty \text { pieces } P \in \mathscr{P} \\
& 1 \leq|P \cap A| \leq r+1\} .
\end{aligned}
$$
\]

If we replace in any of these definitions "finite intervals" by "finite sets", then we get an invariant that we denote with the same indexed letter but primed.

The families \mathscr{A} in the different sets are called "good" for the cardinal in question, and the families \mathscr{A} of minimal cardinality are called "witnesses" for the considered cardinal.

2. Equalities

There are some obvious inequalities: $\mathfrak{f}_{2} \leq \mathfrak{f}_{3} \leq \mathfrak{f}_{1, r+1} \cdots \leq \mathfrak{f}_{1,1}$ for $r \in \omega$, and the same for the primed versions, as well as $\mathfrak{f}_{x} \leq \mathfrak{f}_{x}^{\prime}$ for all meaningful subscripts. Now we show that each primed invariant is the same as the unprimed one. Thereafter, we will work only with the (unprimed) interval versions.

Theorem 1. $\mathfrak{f}_{1, r+1}=\mathfrak{f}_{1, r+1}^{\prime}, \mathfrak{f}_{j}=\mathfrak{f}_{j}^{\prime}$ for $r \in \omega, j=2,3$.
Proof. Let \mathscr{A} be a witness for the definition of $\mathfrak{f}_{1, r+1}$. For $Y \in[\omega]^{\omega}$, we let e_{Y} denote the increasing bijection $\omega \rightarrow Y$. We set $\tilde{\mathscr{C}}=\left\{e_{Y}[A]: A, Y \in \mathscr{A}\right\} \cup \mathscr{A}$ and show that $\tilde{\mathscr{C}}$ meets any partition of ω into finite sets in infinitely many parts between 1 and $r+1$ times.

For any partition \mathscr{P} of ω into finite sets, we define an increasing function $f_{\mathscr{P}}: \omega \rightarrow \omega$ in the following manner:

$$
\begin{aligned}
f_{\mathscr{P}}(0) & =0, \\
f_{\mathscr{P}}(n+1) & =\max \left\{\bigcup P: P \in \mathscr{P}, P \cap\left[0, f_{\mathscr{P}}(n)\right] \neq \emptyset\right\}+1 .
\end{aligned}
$$

Given any increasing function $f \in \omega^{\omega}$, we interpret it as a partition $\mathscr{Q}(f)$ of ω into finite intervals:

$$
\mathscr{O}(f)=\{[0, f(0))\} \cup\{[f(i), f(i+1)): i \in \omega\} .
$$

We will write only f instead of $\mathscr{O}(f)$. The choices of the open and the closed end matter only in the proof of theorem 3. We also have: $\forall P \in \mathscr{P} \exists n P \subseteq$ $\left[f_{\mathscr{P}}(n), f_{\mathscr{P}}(n+2)\right.$).

In the first step, we "treat" a partition gotten by combining pairs of consecutive blocks of $f_{\mathscr{P}}$. The properties of \mathscr{C} yield:

$$
\exists A \in \mathscr{C} \quad \exists^{\infty} i \in \omega \quad 1 \leq|A \cap[f(2 i), f(2(i+1)))| \leq r+1
$$

We fix such an A.
First case:

$$
\begin{array}{ll}
\exists^{\infty} i \in \omega \exists P \in \mathscr{P} \quad & \left(1 \leq\left|A \cap\left[f_{\mathscr{P}}(2 i), f_{\mathscr{P}}(2(i+1))\right)\right| \leq r+1\right. \\
& \text { and } A \cap\left[f_{\mathscr{P}}(2 i), f \mathscr{P}(2 i+1)\right) \cap P \neq \emptyset \\
& \text { and } \left.A \cap\left[f_{\mathscr{P}}(2 i+1), f_{\mathscr{P}}(2(i+1))\right) \cap P \neq \emptyset\right) .
\end{array}
$$

For any $P \in \mathscr{P}$ such that $A \cap P \cap\left[f_{\mathscr{P}}(2 i), f_{\mathscr{P}}(2 i+1)\right) \neq \emptyset$ and $A \cap\left[f_{\mathscr{P}}(2 i+\right.$ 1), $\left.f_{\mathscr{P}}(2(i+1))\right) \cap P \neq \emptyset$, by the definition of $f_{\mathscr{P}}$ we have $P \subseteq\left[f_{\mathscr{P}}(2 i), f_{\mathscr{P}}(2(i+1))\right)$. So we take for each of those infinitely many i one or more $P \in \mathscr{P}$ with these two properties.

Second case:

$$
\begin{array}{ll}
\exists^{\infty} i \in \omega \quad & \left(1 \leq\left|A \cap\left[f_{\mathscr{P}}(2 i), f_{\mathscr{P}}(2(i+1))\right)\right| \leq r+1\right. \\
\text { and } \forall P \in \mathscr{P} & \left(A \cap P \cap\left[f_{\mathscr{P}}(2 i), f_{\mathscr{P}}(2 i+1)\right)=\emptyset\right. \\
& \text { or } \left.\left.A \cap P \cap\left[f_{\mathscr{P}}(2 i+1), f_{\mathscr{P}}(2(i+1))\right)=\emptyset\right)\right) .
\end{array}
$$

Now we define a new partition, that is coarser and shifted to the odd arguments: We enumerate those infinitely many i 's in the case hypothesis increasingly as $\left\langle i_{n}: n \in \omega\right\rangle$. We take the partition defined by $g(n)=f_{\mathscr{P}}\left(2 i_{n}+1\right)$. We think of this partition shrunk to the domain A, explicitly: $g_{0, A}(0)=|[0, g(0)) \cap A|$, $g_{0, A}(n+1)=g_{0, A}(n)+|[g(n), g(n+1)) \cap A|$.

This shrinkage procedure yields: If A^{\prime} is good for $g_{0, A}$, then $e_{A}\left[A^{\prime}\right]$ is good for g. Then we have $A^{\prime} \in \mathscr{\ell}$ such that $e_{A}\left[A^{\prime}\right]$ is good for the partition g. Since $e_{A}\left[A^{\prime}\right] \subseteq A$, for infinitely many n it meets the interval $\left[f_{\mathscr{P}}\left(2 i_{n}+1\right), f_{\mathscr{P}}\left(2 i_{n+1}+1\right)\right)$ between 1 and $r+1$ times in a piece P of \mathscr{P} such that P is not met by A (and hence neither by $e_{A}\left[A^{\prime}\right]$) again in the part of P possibly sticking out into $\left[f_{\mathscr{P}}\left(2 i_{n}\right), f_{\mathscr{P}}\left(2 i_{n}+1\right)\right)$ or into $\left[f_{\mathscr{P}}\left(2 i_{n+1}+1\right), f_{\mathscr{P}}\left(2 i_{n+1}+2\right)\right.$).

For the other versions, we can use almost the same proof: If in the second use of \mathscr{A} a larger r appears, we just take this as a final r.

Remark: Indeed, our proof gives a morphism from the primed relation into the sequential composition of two copies of the corresponding unprimed relation; for details about morphism constructions see [1].

Now we show that all the versions coincide; and we shall call the invariant \mathfrak{f}.
Proposition 1. $\mathfrak{f}_{1,1} \leq \mathfrak{f}_{2}$.

Proof. For any $A \in[\omega]^{\omega}, r \in \omega$, we thin out A as follows: Let $\langle a(n): n \in \omega\rangle$ be the strictly increasing enumeration of A. We set

$$
s(A, r)=\{a(n \cdot(r+1)): n \in \omega\} .
$$

Let \mathscr{A} be a witness for \mathfrak{f}_{2}. We show that $\tilde{\mathscr{\ell}}=\{s(A, r): A \in \mathscr{\mathscr { C }}, r \in \omega\}$ is a set good in the sense of $\mathfrak{f}_{1,1}$.

Let $\mathscr{P}=\langle p(n): n \in \omega\rangle$ be a partition of ω into intervals. As \mathscr{A} is good for \mathfrak{f}_{2} we have

$$
\exists r \exists^{\infty} n|[p(n), p(n+1)) \cap A|=r+1
$$

For those infinitely many $n,[p(n), p(n+1)) \cap A$ consists of $r+1$ consecutive elements of A. Hence we have $|[p(n), p(n+1)) \cap s(A, r)|=1$.

3. Inequalities

In this section we show in $Z F C$ that $\max (\mathfrak{b}, \mathfrak{s}) \leq \mathfrak{f} \leq \min (\mathfrak{d}, \operatorname{unif}(\mathbf{K}))$.
If we work with the strictly increasing enumeration $\left\langle a_{n}: n \in \omega\right\rangle$ of $A \in \mathscr{A}$ and the increasing function p for a partition \mathscr{P}, " A meets infinitely many parts of \mathscr{P} in one element" translates to

$$
\exists^{\infty} n \exists k a(k-1)<p(n) \leq a(k)<p(n+1) \leq a(k+1)=: R(p, a)
$$

For each $p \in \omega^{\omega \uparrow}$, the set of all strictly increasing functions from ω to ω, the set

$$
R_{p}:=\left\{a \in \omega^{\omega \uparrow}: R(p, a)\right\}
$$

is a comeager subset of the Baire space $\omega^{\omega \uparrow}$. Any non-meager set $\mathscr{A} \subseteq[\omega]^{\omega}$ will intersect all the R_{p} 's and hence $\mathfrak{f} \leq \operatorname{unif}(\mathbf{K})$.

We next give a proof of Vojtáš' and Blass' observations. Then we show $\mathfrak{f} \geq \mathfrak{s}$.
Theorem 2 (Vojtáš, Blass). $\mathfrak{b} \leq \mathfrak{f} \leq \mathfrak{d}$.
Proof. First inequality, which is proved in [5]: Assuming that $\mathscr{A} \subseteq[\omega]^{\omega}$ has cardinality strictly less than \mathfrak{b} we give a partition \mathscr{P} of ω into finite intervals that $\forall r \in \omega \forall A \in \mathscr{A}$ for all but finitely many pieces P of \mathscr{P}, the piece P is met by A in more than r points. This shows that even if we leave out the $1 \leq|A \cap P|$ in the requirement for \mathfrak{f}_{2}, we will get an invariant greater or equal than \mathfrak{b}. (Indeed, then we get exactly \mathfrak{b}, which is proved in [5].) We enumerate \mathscr{H} as $\left\langle A_{\alpha}: \alpha<\gamma<\mathfrak{b}\right\rangle$, and define $g_{\alpha}: \omega \rightarrow \omega$, increasing, $g_{\alpha}(0)=0$, $g_{\alpha}(n+1)=$ the $(n+1)$-st element in A_{α} after $g_{\alpha}(n)$.

There is some $g \in \omega^{\omega}$ that dominates all the g_{α}. We define $h(0)=g(0)$, $h(n+1)=g(h(n)+1)$, and consider the partition defined by h. We show:

$$
\forall^{\infty} n \quad\left|[h(n), h(n+1)) \cap A_{\alpha}\right| \geq h(n)
$$

We take n_{0} such that $\forall n \geq n_{0}, g(h(n)+1) \geq g_{\alpha}(h(n)+1)$. Then we have for $n \geq n_{0}: h(n+1)=g(h(n)+1) \geq g_{\alpha}(h(n)+1)=$ the $(h(n)+1)$ st element of A_{α} after $h(n)+1$.

The proof of the second inequality is based upon the same ideas and shows $\mathfrak{f}_{1,1} \leq \mathfrak{d}$. We take a dominating family $\left\{g_{\alpha}: \alpha \in \mathfrak{d}\right\}$. Again, we define $h_{\alpha}(0)=$ $g_{\alpha}(0), h_{\alpha}(n+1)=g_{\alpha}\left(h_{\alpha}(n)+1\right)$, and we take $A_{\alpha}=\operatorname{range}\left(h_{\alpha}\right)$. Suppose we are given a partition $\mathscr{P}=\langle f(n): n \in \omega\rangle$. We choose an α such that $f \leq^{*} g_{\alpha}$, and show that A_{α} is good for \mathscr{P} in the sense of $\mathfrak{f}_{1,1}$, that is $\exists^{\infty} n \mid[f(n), f(n+1)) \cap$ $A_{\alpha} \mid=1$. As A_{α} is an infinite set, $\exists^{\infty} n[f(n), f(n+1)) \cap A_{\alpha} \neq \emptyset$. We show that for all but finitely many of those n there is exactly one element in the intersection.

Suppose that $\forall n \geq n_{0} \quad g_{\alpha}(n) \geq f(n)$ and that $n \geq n_{0}$ and that k is minimal such that $f(n) \leq h_{\alpha}(k)<f(n+1)$. Then $h_{\alpha}(k+1)=g_{\alpha}\left(h_{\alpha}(k)+1\right) \geq$ $f\left(h_{\alpha}(k)+1\right) \geq f(f(n)+1) \geq f(n+1)$; and hence $h_{\alpha}(k)$ is the only element in the intersection.

Theorem 3. $\mathfrak{f} \geq \mathfrak{s}$.
Proof. The main part is the following
Observation: Let $\langle a(n): n \in \omega\rangle$ be an increasing enumeration of a set A, and let $r \in \omega$. For convenience, we set $a(-1)=-1$. We partition ω into $r+1$ pieces $Y(A, i, r), i \leq r$:

$$
Y(A, i, r)=\bigcup\{[a((r+1) n+i-1)+1, a((r+1) n+i)+1): n \in \omega\}
$$

Assume we have a partition $\mathscr{P}=\{[0, p(0))\} \cup\{[p(k), p(k+1)): k \in \omega\}$ such that $\exists i \leq r \forall k \in \omega p(k) \in Y(A, i, r)$. Then we have:

$$
\forall k \in \omega \exists \ell \in \omega|[p(k), p(k+1)) \cap A|=\ell(r+1)
$$

The best way to see this is drawing a picture with a line, some points and looking at it.
\square (observation)

Now suppose we have $\mathscr{A} \subset[\omega]^{\omega}$ of cardinality less than \mathfrak{s}. Then also

$$
\mathscr{A}^{\prime}=\{Y(A, i, r): A \in \mathscr{A}, r \in \omega, i \leq r\}
$$

has cardinality less than \mathfrak{s}. Hence there is a $p \in \omega^{\omega \uparrow}$ such that range (p) is not split by any element of $\mathscr{\not}^{\prime}$, i.e.

$$
\forall A \in \mathscr{A} \forall r \in \omega \exists i \leq r \text { range }(p) \subseteq^{*} Y(A, i, r)
$$

Above some $p(n)$, the observation is applicable and yields

$$
\forall r \in \omega \forall^{\infty} n \in \omega|[p(n), p(n+1)) \cap A| \notin\{1,2, \ldots r\}
$$

so \mathscr{A} is not a family as in the definition of \mathfrak{f}_{2}.

4. Consistency results

In this section, we show: In $Z F C, \mathfrak{f}$ cannot be pinned down as $\max (\mathfrak{b}, \mathfrak{s})$ nor as $\min (\mathfrak{d}, \operatorname{unif}(\mathbf{K}))$.

A forcing notion \mathbf{P} is called ω^{ω}-bounding iff for every \mathbf{P}-generic filter G over V :

$$
\forall f \in \omega^{\omega} \cap V[G] \quad \exists g \in \omega^{\omega} \cap V \quad f \leq^{*} g,
$$

or even without an ${ }^{*}$; that does not make any difference here.
We are now thinking in terms of the $\mathfrak{f}_{1,1}$ version and use the following two abbreviations: For $A \subseteq \omega$ and a partition p we say " A is good for p " iff $\exists^{\infty} n|A \cap[p(n), p(n+1))|=1$. For $\mathscr{A} \subseteq[\omega]^{\omega}$, we say " b is good for p " iff $\exists A \in \mathscr{C}$ such that A is good for p.

Proposition 2. ω^{ω}-bounding forcing does not increase \mathfrak{f}.
We prove a lemma that immediately yields the above proposition.
For $g \in \omega^{\omega}$, let \tilde{g} be defined by

$$
\begin{aligned}
\tilde{g}(0) & =g(0), \\
\tilde{g}(n+1) & =g(\tilde{g}(n)) .
\end{aligned}
$$

As in Theorem 1, for $A \in[\omega]^{\omega}$ and a partition $h \in \omega^{\omega \uparrow}$ let $h_{0, A}$ be the partition of ω that is given by h shrunk to A, explicitly: $h_{0, A}(0)=|[0, h(0)) \cap A|, h_{0, A}(n+1)=$ $h_{0, A}(n)+|[h(n), h(n+1)) \cap A|$.

Let e_{A} be the increasing enumeration of $A, e_{A}: \omega \xrightarrow{\text { bijective }} A$. As in Theorem 1 we will use: If A^{\prime} is good for $h_{0, A}$, then $e_{A}\left[A^{\prime}\right]$ is good for h.

If A is good for $\langle h(2 n): n \in \omega\rangle$, we define h_{A} : We take an increasing enumeration $\left\langle i_{n}: n \in \omega\right\rangle$ of the infinitely many i 's such that $\mid[h(2 i), h(2 i+2)) \cap$ $A \mid=1$ and set $h_{A}(n)=h\left(2 i_{n}+1\right)_{0, A}$.

Lemma 1. If $f \leq^{*} g$ and A is good for $\langle\tilde{g}(2 n): n \in \omega\rangle$ and A^{\prime} is good for \tilde{g}_{A}, then $e_{A}\left[A^{\prime}\right]$ is good for f.

Proof. We show that all but finitely many of those infinitely many n such that $\left|A^{\prime} \cap\left[\tilde{g}_{A}(n), \tilde{g}_{A}(n+1)\right)\right|=1$ there exists some $k(n)$ such that the function k is injective and such that $\left|e_{A}\left[A^{\prime}\right] \cap[f(k(n)), f(k(n)+1))\right|=1$. We take n such that $\left|A^{\prime} \cap\left[\tilde{g}_{A}(n), \tilde{g}_{A}(n+1)\right)\right|=1$ and such that for all $k \geq n, f(k) \leq g(k)$. For such an n, we define $k(n)$ as the unique k such that the singleton $e_{A}\left[A^{\prime}\right] \cap\left[\tilde{g}\left(2 i_{n}+\right.\right.$ 1), $\left.\tilde{g}\left(2 i_{n+1}+1\right)\right) \subseteq[f(k), f(k+1))$. We show that $e_{A}\left[A^{\prime}\right]$ does not hit $[f(k), f(k+1))$ in $[f(k), f(k+1)) \backslash\left[\tilde{g}\left(2 i_{n}+1\right), \tilde{g}\left(2 i_{n+1}+1\right)\right)$. So we suppose that the latter is not empty and consider the two cases:

First case: $f(k) \leq \tilde{g}\left(2 i_{n}+1\right)<f(k+1) \leq \tilde{g}\left(2 i_{n}+2\right)$. Then $\tilde{g}\left(2 i_{n}\right)<f(k)$, and since $A \cap\left[\tilde{g}\left(2 i_{n}+1\right), \tilde{g}\left(2 i_{n}+2\right)\right)=A \cap\left[\tilde{g}\left(2 i_{n}+1\right), f(k+1)\right) \neq \emptyset$, we have $e_{A}\left[A^{\prime}\right] \cap\left[f(k), \tilde{g}\left(2 i_{n}+1\right)\right) \subseteq A \cap\left[\tilde{g}\left(2 i_{n}\right), \tilde{g}\left(2 i_{n}+1\right)\right)=\emptyset$.

Second case: $\tilde{g}\left(2 i_{n+1}\right)<f(k) \leq \tilde{g}\left(2 i_{n+1}+1\right)<f(k+1)$. Then $f(k+1) \leq$ $\tilde{g}\left(2 i_{n+1}+2\right)$ and we have $e_{A}\left[A^{\prime}\right] \cap\left[\tilde{g}\left(2 i_{n+1}+1\right), f(k+1)\right) \subseteq A \cap\left[\tilde{g}\left(2 i_{n+1}+1\right), \tilde{g}\left(2 i_{n+1}+\right.\right.$ 2) $)=\emptyset$.

This also shows that k is injective.
The lemma gives us: If $f \leq^{*} g$ and \mathscr{A} is good for $\langle\tilde{g}(2 n): n \in \omega\rangle$ and good for \tilde{g}_{A} for $A \in \mathscr{A}$, then $\left\{e_{A}\left[A^{\prime}\right]: A, A^{\prime} \in \mathscr{\mathscr { C }}\right\}$ is good for f, which is just a more constructive form of the proposition.(proposition)

Now we get
Theorem 4. $\mathfrak{b}=\mathfrak{s}=\mathfrak{f}=\aleph_{1} \wedge \mathfrak{d}=\operatorname{unif}(\mathbf{K})=\aleph_{2}$ is consistent.
Proof. We start with a model of CH and first add \aleph_{2} Cohen reals with finite support and then we force with the measure algebra on $2^{\aleph_{2}}$, called $B_{\aleph_{2}}$. The Cohen reals increase \mathfrak{d} and keep the rest as \aleph_{1} (for reference to proofs see [2]). The random reals increase unif((\mathbf{K}) while not decreasing \mathfrak{d} and not increasing \mathfrak{f}, because $B_{\aleph_{2}}$ is ω^{ω} bounding (Lemma 3.1.2 in [2]).

Now we begin working towards the complementary result.
Definition 2. Define a forcing (Q, \leq) as follows: Conditions are pairs (σ, F), where $\sigma \in \omega^{<\omega}$ is strictly increasing and $F \subseteq[\omega]^{\omega}$ is finite. The order is defined by letting $(\sigma, F) \leq(\tau, H)$ iff $\tau \subseteq \sigma, H \subseteq F$ and

$$
\forall i \in|\sigma| \backslash(|\tau| \cup\{0\}) \forall a \in H|[\sigma(i-1), \sigma(i)) \cap a| \neq 1
$$

Lemma 2. Let $\sigma \in \omega^{<\omega}$ be strictly increasing and let $n, k \in \omega$. Suppose μ is a Q-name such that $\Vdash Q \mu \in \omega$. There exists $i^{*}<\omega$ such that whenever $F \subseteq[\omega]^{\omega}$ has size n and $|[\sigma(|\sigma|-1), k) \cap a| \geq 2$ for all $a \in F$, then it is not the case that $(\sigma, F) \vdash_{Q} \mu \geq i^{*}$.

Proof. Otherwise there exist $F_{i} \subseteq[\omega]^{\omega}$ of size n such that $|[\sigma(|\sigma|-1), k) \cap a| \geq 2$ for all $a \in F_{i}$ and $\left(\sigma, F_{i}\right) \|-Q \mu \geq i$, for all $i<\omega$. Let $F_{i}=\left\{a_{j}^{i}: j<n\right\}$. By compactness, we may find $B \in[\omega]^{\omega}$ and $a_{j} \subseteq \omega, j<n$, such that $\lim _{i \in B} a_{j}^{i}=a_{j}$ for all $j<n$, i.e.

$$
\forall m \exists i \forall i^{\prime} \in B \backslash i\left(a_{j}^{i^{\prime}} \cap m=a_{j} \cap m\right)
$$

Let $K_{0}=\left\{j<n:\left|a_{j}\right|<\omega\right\}$ and $K_{1}=n \backslash K_{0}$. Note that $\left|[\sigma(|\sigma|-1), k) \cap a_{j}\right| \geq 2$ for all $j<n$. Let

$$
m^{*}=\max \left\{\max \left(a_{j}\right)+1: j \in K_{0}\right\}
$$

Find $(\tau, H) \leq\left(\sigma,\left\{a_{j}: j \in K_{1}\right\}\right)$ such that (τ, H) decides μ, say as i_{0}, and $\tau(|\sigma|)>m^{*}$. Choose $i>i_{0}$ such that for all $j<n$

$$
\begin{equation*}
a_{j}^{i} \cap \tau(|\tau|-1)=a_{j} \cap \tau(|\tau|-1) \tag{*}
\end{equation*}
$$

We claim that $\left(\tau, H \cup F_{i}\right) \leq(\tau, H)$ and $\left(\tau, H \cup F_{i}\right) \leq\left(\sigma, F_{i}\right)$, which is a contradiction as (τ, H) and $\left(\sigma, F_{i}\right)$ force contradictory statements about μ. The first
inequality is clear. For the second we have to show that if $l \in|\tau| \backslash(|\sigma| \cup\{0\})$ and $j<n$, then $\left|[\tau(l-1), \tau(l)) \cap a_{j}^{i}\right| \neq 1$. Suppose first $j \in K_{0}$. If $l=|\sigma|$ then this is true since $\tau(|\sigma|)>m^{*}$. If $l>|\sigma|$, then $[\tau(l-1), \tau(l)) \cap a_{j}^{i}=\emptyset$ for the same reason and by $(*)$. Now suppose $j \in K_{1}$. Then $\left|[\tau(l-1), \tau(l)) \cap a_{j}\right| \neq 1$ since $(\tau, H) \leq\left(\sigma,\left\{a_{j}: j \in K_{1}\right\}\right)$, and hence by $(*)$ we are done.

Corollary 1. Suppose that $U \subseteq \omega^{\omega}$ is unbounded (with respect to \leq^{*}). Then U is unbounded after forcing with Q.

Proof. Suppose that ρ is a Q-name for a function in ω^{ω}. By Lemma 3.5, for every triple $(\sigma, n, k) \in \omega^{<\omega} \times \omega \times \omega$ with σ strictly increasing we have a function $h_{\sigma, n, k} \in \omega^{\omega}$ such that whenever $F \subseteq[\omega]^{\omega}$ has size n and $\left.\mid \sigma(|\sigma|-1), k\right) \cap a \mid \geq 2$ for all $a \in F$, then it is not the case that for some $l<\omega,(\sigma, F) \|-Q \rho(l) \geq$ $h_{\sigma, n, k}(l)$. Choose $h \in \omega^{\omega}$ such that $h>^{*} h_{\sigma, n, k}$ for all (σ, n, k). Find $g \in U$ such that $h \not ¥^{*} g$. Suppose there were $(\sigma, F) \in Q$ and $l^{*}<\omega$ such that

$$
(\sigma, F) \vdash_{Q} \forall l \geq l^{*} \rho(l)>g(l)
$$

Without loss of generality we may assume $|\sigma|>0$. Let $n=|F|$ and let k be large enough such that $|[\sigma(|\sigma|-1), a) \cap k| \geq 2$ for all $a \in F$. Find $l>l^{*}$ such that $h(l)>h_{\sigma, n, k}(l)$ and $g(l)>h(l)$. By the definition of $h_{\sigma, n, k}$ we may find $(\tau, H) \leq(\sigma, F)$ such that $(\tau, H) \quad \vdash_{Q} \rho(l)<h_{\sigma, n, k}(l)$ and hence $(\tau, H) \Vdash_{Q} \rho(l)<g(l)$. This is a contradiction.

Theorem 5. It is consistent with $Z F C$, relative to the consistency of $Z F$, to assume $\max \{\mathfrak{b}, \mathfrak{s}\}<\mathfrak{f}$.

Proof. Let V be a model of $Z F C+C H$, and let $\kappa>\omega_{1}$ be a regular cardinal. Let P be a finite support iteration of Q (Definition 3.4) of length κ, and let G be P-generic over V. Then we have that $V[G] \vDash \mathfrak{b}=\mathfrak{s}=\omega_{1}$ and $V[G] \vDash \mathfrak{f}=\kappa$. The latter is clear by definition of Q. Since Q is Suslin ccc, $V \cap[\omega]^{\omega}$ is a splitting family in $V[G]$ (see [3] for definitions and proofs). By Corollary 3.6 and by Lemma 6.5.7 in [2], every well-ordered unbounded family in $V \cap \omega^{\omega}$ is unbounded in $V[G]$. Hence by the $C H$ in V we conclude $V[G] \models \mathfrak{b}=\mathfrak{s}=\omega_{1}$.

5. Finitely splitting

In [4], Kamburelis and Wȩglorz introduce a strengthening of splitting, called finitely splitting, and show that its norm $f s=\max (\mathfrak{b}, \mathfrak{s})$. We give a direct construction that shows that $\mathfrak{f} \geq f s$. Theorem 5 shows that there is no reverse construction.

The definition of $f s$ is:

$$
f_{s}=\min \left\{|\mathscr{A}|: \mathscr{C} \subseteq[\omega]^{\omega} \wedge \forall \text { partitions } \mathscr{P} \text { of an infinite subset of } \omega\right.
$$ into finite sets

$$
\left.\exists A \in \mathscr{C}\left(\exists^{\infty} P \in \mathscr{P} P \cap A=\emptyset \wedge \exists^{\infty} P \in \mathscr{P} A \supseteq P\right)\right\}
$$

A family \mathscr{A} as above is called a finitely splitting family.
Proposition 3. Suppose \mathscr{A} is a witness for the computation of $\mathfrak{f}_{1,1}$. Then from to we can construct a finitely splitting family of the same size.

Proof. First we take again $\mathscr{C}^{\prime}=\left\{e_{Y}[A]: Y, A \in \mathscr{C}\right\}$, as in the proof of Theorem 1 and in the proof of Lemma 1. Suppose we are given a partition as in the definition of $f s, \mathscr{P}=\left\{P_{n}: n \in \omega\right\}$. We take a partition of ω into intervals $\left\langle q_{k}: k \in \omega\right\rangle$ such that each $\left[q_{k}, q_{k+1}\right)$ contains at least one P_{n}. According to the proofs of Theorem 1 or of Lemma 1 , there are $A, Y \in \mathscr{A}$ and a strictly increasing sequence $\left\langle 2 j_{n}: n \in \omega\right\rangle$, such that

$$
\exists^{\infty} n\left(\left|\left[q_{2 j_{n}+1}, q_{2 j_{n+1}+1}\right) \cap e_{Y}[A]\right|=1 \quad \text { and } \quad\left|\left[q_{2 j_{n}}, q_{2 j_{n}+2}\right) \cap e_{Y}[A]\right|=1\right)
$$

Now we take an increasing enumeration $\left\langle b_{Y, A}(n): n \in \omega\right\rangle$ of $e_{Y}[A]$ for each $A, Y \in \mathscr{A}$, and define

$$
B(Y, A)=\bigcup\left\{\left[b_{Y, A}(2 n), b_{Y, A}(2 n+1)\right): n \in \omega\right\}
$$

The family $\{B(Y, A): Y, A \in \mathscr{C}\}$ is a finitely splitting family.

6. Open questions

One can investigate whether the value of \mathfrak{f} can be arranged more arbitrarily:

1. Can \mathfrak{f} be singular?
2. Is $\max (\mathfrak{s}, \mathfrak{b})<\mathfrak{f}<\min (\mathfrak{d}, \operatorname{unif}(\mathbf{K}))$ consistent? Tomek Bartoszyński observed that one random real forces $\mathfrak{f} \leq \mathfrak{b}$, hence the combination of constructions leading to 5 and 4 does not give the desired result.

Nor does doing first 4 , say with \aleph_{1} and \aleph_{3}, and then 5 , because of the Cohen reals coming with the finite support iteration of Q : adding one Cohen real makes $\operatorname{unif}(\mathbf{K}) \leq \mathfrak{b}$ by Theorem 3.3.22 of [2].

Acknowledgement. We are very grateful to Andreas Blass for many stimulating discussions.

References

1. A. Blass, Reductions Between Cardinal Characteristics of the Continuum, Contemp. Math. 192, (1996), 31-49
2. T. Bartoszyński, H. Judah, Set Theory, On the Structure of the Real Line, A K Peters, 1995
3. H. Judah, S. Shelah, Souslin Forcing, J. Symb. Logic 53, (1988), 1188-1207
4. A. Kamburelis, B. Wȩglorz, Splittings, Arch. Math. Logic 35, (1996), 263-277
5. P. Vojtáš, Set theoretic characteristics of summability and convergence of series, Comment. Math. Univ. Carolinae 28, (1987), 173-184

[^0]: * Supported by Deutsche Forschungsgemeinschaft grant no. Mi 492/1.
 ** Supported by a research fellowship of the Alexander von Humboldt Foundation and grant 2124045702.95 of the Swiss National Science Foundation.

 Mathematic Subject Classification (1991): 03E05, 03E35

