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Abstract. We prove that there is no Borel connection for non-trivial pairs of unsplitting
relations. This was conjectured in [3].
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Vojtáš [6] introduced a framework in which cardinal characteristics of the conti-
nuum can be regarded as norms of corresponding relations A = (A−, A+, A) with
A−, A+ ⊆ 2ω, A ⊆ A− × A+, and the norm

‖A‖ = min{|Z| : Z ⊆ A+ ∧ (∀x ∈ A−) (∃z ∈ Z)A(x, z)}.
A Galois-Tukey connection from a relation B to a relation A, which we call as in [1]
a morphism from A to B, is a pair of functions (α, β) such that

α : B− −→ A−, β : A+ −→ B+,

(∀b ∈ B−) (∀a ∈ A+) (A(α(b), a) → B(b, β(a))).

If there is a morphism from A to B, then ‖B‖ ≤ ‖A‖, and indeed the proofs of the
inequalities usually exhibit morphisms between the corresponding relations.

We deal with the unsplitting relations: For n ≥ 1, we have

Rn = (nω, [ω]ω, {(f, Y ) : f is almost constant on Y }),
R�

n = (nω, [ω]ω, {(f, Y ) : f is constant on Y }),
rn = ‖Rn‖, r�

n = ‖R�
n‖.

(f is almost constant on Y if there is a finite Y0 ⊆ Y such that f is constant on Y \Y0.)
r2 is the usual unsplitting number. It is easy to see that rm = rn for m, n ≥ 2.

In [3] it was proved that there is no morphism for the sharp unsplitting relations
with Baire measurable first component, and it was conjectured that the same is true
for the ordinary unsplitting relations. In this paper we prove this conjecture, under
the additional premise that α and β are Lebesgue measurable.

The present work is built partly upon techniques from the mentioned work on the
sharp unsplitting relations, to which we add some additional steps mainly coming from
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descriptive set theory. First we recall the (well-known) notions of measurability that
we use. Let X and Y be topological spaces. A function f : X −→ Y is called Borel
measurable if for every open set O in Y, (f−1)”(O) is in the Borel σ-algebra of X .
For a measure µ on X , f : X −→ Y is called µ-measurable iff, for every open set O
in Y, (f−1)”(O) is in the domain of µ. Finally, f : X −→ Y is called Baire measurable
iff for every open set O in Y, (f−1)”(O) is Baire measurable, i. e., there is an open
subset O′ of X such that (f−1)”(O)∆O′ is meager in X . In our application, X will be
ωn for some natural n ≥ 2, equipped with the product topology and the usual Haar
measure which we call µ, or it will be the real interval [0, 1] with its usual topology
and the Lebesgue measure. Y will be ωm for some natural m ≥ 2, equipped with the
product topology, or it will be again the real interval [0, 1] with its usual topology. Any
Borel measurable α : ωn −→ ωm is Baire measurable and µ-measurable. Similarly
any Borel measurable β : [0, 1] −→ [0, 1] is Lebesgue measurable. So the following
theorem, which is the main and only result of this paper, implies that there are no
Borel connections for non-trivial pairs of unsplitting relations, and hence answers a
question of Blass’ [1].

T h e o r em 1.3) For n > m, there is no morphism (α, β) with a Baire measurable
function α and µ-measurable α and Lebesgue measurable β from Rm to Rn.

The proof is preceded by the explanation of some notation.
N o t a t i o n . We give some notation concerning trees, finite sequences, etc. The

symbols ⊂ and ⊃ denote the proper relations. ω>D = {t : (∃h ∈ ω) t : h −→ D}.
[D]ω = {X ⊆ D : |X| = ω}. T ⊆ ω>n is a tree, if for all t ∈ T and for all s ∈ ω>n, if
s ⊆ t, then s ∈ T . The h-th level of a tree T is T ∩ hω. We write T � h for T ∩ h>ω.
The height of the tree T ⊆ ω>n, ht(T ), is the smallest h ∈ (ω+1) such that T ⊆ h>n.
T is an ω-tree if T = ∅ and for all s ∈ T there is t ∈ T such that t ⊃ s.

Let T be an arbitrary (not necessarily ω-) tree. A node t ∈ T ⊆ ω>n is a branching
point of T if there are c0 = c1 ∈ n such that t� c0 ∈ T and t� c1 ∈ T . For an ω-tree T ,
the set of branches of T is [T ] = {f : ∀h (f � h ∈ T ) ∧ f is of maximal length}. For
s ∈ ω>n, we have the basic open sets [s] = {f ∈ ωn : f ⊃ s} and the restricted trees
Ts = {t ∈ T : t ⊇ s}. A tree T ⊆ ω>n is called k-branching if for all h < ht(T ) and
for all s ∈ hn there are at least k �’s such that s� � ∈ T . (So also all branches have
the same length.)

∀∞ means “for almost all”, i. e. for all but finitely many. If X is a subset of the
domain of a function f , then f”(X) denotes {f(y) : y ∈ X}.

P r o o f . We assume that there were α, β contradicting Theorem 1 and work
toward a contradiction.

In the first step of the proof, we search for large subdomains of ωn× [ω]ω on which
(α, β) behave similarly to a connection between the “sharp” relations R�

n and R�
m.

Thereafter we shall mimick the proof of [3, Theorem 1.4] for suitable restrictions of
(α, β) and thus get a contradiction. For k ∈ ω we consider the sets

Uk = {(f, X) ∈ ωn × [ω]ω : α(f) � X is not almost constant or
f � (β(X) \ k) is constant}.

(1)

3)Ad de d i n p r o o f: In summer 2001 Otmar Spinas obtained a stronger version of Theorem 1.
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By our assumption on (α, β), we have that
⋃

k∈ω Uk = ωn×[ω]ω. We take the product
measure µ on ωn and the Lebesgue λ measure on the interval [0, 1] of the reals. Then
we embed [ω]ω into [0, 1] via characteristic functions χ. The range of χ has measure
one but is not closed, and the measure on the range induces a measure on [ω]ω. So
we have (µ × λ)(ωn × [ω]ω) = 1. By our assumptions on α and β all the Uk are
measurable with respect to µ × λ. Hence there is some k such that (µ × λ)(Uk) > 0.
Since the measure µ × λ is approximated from below by measures of compact sets
(see [4]), there is a compact set Ak ⊆ Uk such that (µ× λ)(Ak) = x > 0. We fix such
an Ak, and we shall apply the Lebesgue Density Theorem [4, 3.20] to Ak =: A. For
this purpose, we work with the balls Bh(f, X) = {(g, Y ) : (g, Y ) � h = (f, X) � h} of

depth h around (f, X) for (f, X) ∈ ωn × [ω]ω, which have measure
1

nh · 2h
. If A is

measurable with respect to µ × λ and (µ × λ)(A) > 0, then we denote by Φ(A) the
subset of A of points at which A has Lebesgue density 1, i. e.,

Φ(A) =
{
(f, X) ∈ A : limh→∞

(µ × λ)(Bh(f, X) ∩ A)
n−h · 2−h

= 1
}
.

The Lebesgue Density Theorem says that (µ × λ)(A∆Φ(A)) = 0.
Now we apply it ω times successively in the following way: We take closed set

B(0) = A ∩ Φ(A) and B(n+1) = B(n) ∩ Φ(B(n)). Now we set B =
⋂

�∈ω B(�) and
have that (µ × λ)(B) > x/2 and that

{
(f, X) ∈ B : limh→∞

(µ × λ)(Bh(f, X) ∩ B)
n−h · 2−h

= 1
}

= B.

We fix some point (f, X) ∈ B. We take ε = 1/(2n) and get some h0 ∈ ω such that

for all h ≥ h0,
(µ × λ)(Bh(f, X) ∩ B)

2−h · n−h
> 1 − ε. This means that there are fi,j ∈ B,

i < n, j = 0, 1, such that fi,j ⊃ (f, X) � h0� (h0 + 1, (i, j)). Our next goal is to find
countably many suitable trees T y, y ∈ ω>ω, such that [T y] ⊆ Uk and such that T y

be fully branching on certain levels.
For y = (y0, . . .y�−1) ∈ ω>ω we say that y is sufficiently increasing iff y0 ≥ h0 and

for each i < �, if T y � yi is chosen and (f, X) � yi ∈ T y � yi, and h is chosen minimally
for ε = 1/(2n) and all these (f, X)’s as in the definition for being a member of B,
then yi+1 ≥ h.

C l a im . There is an infinite X such that for every y ∈ ω>ω, if y is sufficiently
increasing, then are a tree T y and some height r, such that T y is fully branching on
each level in ran(y) ∪ (X \ r), such that for all (g, X′) ∈ [T y], (f, X′) ∈ Uk.

P r o o f o f t h e C l a im . Let y ∈ ω>ω be given. We have h0 ∈ y0, because
otherwise y0 is not sufficiently increasing. By the definition of B we may replace h0

by any larger element. Now we take 2n elements (f〈i〉, X〈i〉) 
 (f, X) � h0 such that
(f〈i〉, X〈i〉) � h0 + 1 are all different. For i < 2n find h1 > h0 such that for all h ≥ h1,
(µ × λ)(Bh(f〈i〉, X〈i〉) ∩ B)

2−h · n−h
> 1 − ε. Similarly define (fs, Xs) for s ∈ ω>(2n) by

induction on |s|. Set T y = {(fs, Xs) � h|s|(y) : s ∈ ω>(2n)}. Moreover, we choose
the hi(y), i ∈ ω, above y�−1 in such a careful way, that there is an infinite pseudo-
intersection X to {{hi(y) : i ∈ ω} : y ∈ ω>ω}. Thus the Claim is proved. �

Now we work, until the end of Lemma 2, first on each
π1(T y) = {f � h : (f, X) � h ∈ T y}, y ∈ ω>ω,
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separately. We set H(y) = {hi(y) : i ∈ ω}. In the second step, we restrict the
domain of α to a comeager subset of π1([T y]). For this, we use the following lemma
of Kuratowski [2]:

L e mm a 1. Let X and Y be topological spaces, and Y have a countable base. For
every Baire measurable function f : X −→ Y there is a comeager set C ⊆ X such
that f � C is continuous (w. r. t. the subspace topology on C induced by X ).

We apply this lemma separately for each y to X = π1([T y]) and to α, and there-
after thin out and homogenize further. In the following, until the end of Lemma 2,
everything but X and X∗ (see below) depends on y as well. However, in order to avoid
too clumsy notation we do not index all objects all the time with the supscript y.

So, by the lemma we get a comeager C ⊆ π1([T y]) such that α � C is continuous.
We take nowhere dense Hi, i ∈ ω, such that π1([T y]) \ C =

⋃
i∈ω Hi.

We now choose by induction on i an increasing sequence

n0 = 0 < m0 < n1 < · · · < ni < mi < ni+1 < mi+1 < · · ·
and si : [ni, mi) −→ n, ti : [mi, ni+1) −→ n.

Suppose ni is chosen. Then we take mi > ni and si : [ni, mi) −→ n such that
Hi ∩ {f ∈ X : f � [ni, mi) = si} = ∅. (The existence of such mi, si is proved
in [5, Théorème 21].) Now we take ni+1 > mi and ti : [mi, ni+1) −→ n such that
Hi ∩ {f ∈ X : f � [mi, ni+1) = ti} = ∅. This ends the induction.

We define

T y
0 = {s ∈ π1(T y) : ∀i (mi ≤ lh(s) → s � [ni, mi) = si)},

T y
1 = {s ∈ π1(T y) : ∀i (ni+1 ≤ lh(s) → s � [mi, ni+1) = ti)}.

Now the square brackets also indicate the limit of the trees in the space ωn. Since
[T y

j ] ∩ ⋃
i∈ω Hi = ∅, the α � [T y

j ] and hence α � ([T y
0 ] ∪ [T y

1 ]) are continuous.
For later use, it is important that the T y

j are fully branching on two sets of levels
that combine to H(y):

(∀k ∈ ⋃
i∈ω [ni, mi) ∩ H(y))(∀t ∈ T y

1 � k)(∀j < n) (t� j ∈ T y
1 � (k + 1)),

(∀k ∈ ⋃
i∈ω [mi, ni+1) ∩ H(y))(∀t ∈ T y

0 � k)(∀j < n) (t� j ∈ T y
0 � (k + 1)).

Now let n > m. We are looking for an X′ such that β(X′) cannot be defined if it
has to respect the morphism property. Such an X′ will be found among the subsets
of X. The following is sufficient for this aim:

(∃X′ ∈ [X]ω)
(
(∀β(X′) = Y ′ ∈ [ω]ω)(∃y ⊂ Y ′ \ k)

(∃f ∈ π1([T y]))(α(f) � X′ is almost constant and
f � ((β(X′) \ k) ∩ ran(y)) is not constant)

)
.

(2)

L e mm a 2. There is X∗ ∈ [X]ω with the following property: For every suffi-
ciently increasing y ∈ ω>ω, there are Sy

j ⊂ T y
j and gy

j : Xy −→ m such that Sy
1 is

branching on each level in
⋃

i∈ω[ny
i , m

y
i ) ∩ H(y), Sy

0 is branching in each level in
⋃

i∈ω[my
i , ny

i+1) ∩ H(y) and for all f ∈ [Sy
j ], α(f) � Xy = gy

j , and X∗ \ Xy is finite.
P r o o f . First we choose for v ∈ ω, ky

v such that for all v ∈ ω and for all f ∈ [T y
j ],

α(f)(v) is determined by f � ky
v . Such ky

v exists by the continuity of α � ([T y
0 ] ∪ [T y

1 ]).
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Now we select for every y successively a subset My
j of m that appears densely

often at all the levels in Xy ∈ [X]ω in α”([T y
j ]) such that Xy is a subset of Xy′

for y′

being the successor of y in some enumeration of all the y’s of order type ω: there are
a subsequence 〈ky

uy
v

: v ∈ ω〉 and for j = 0, 1, My
j ⊆ m and ry

j ∈ T y
j � ky

uy
0

such that

for all t ∈ (T y
j )ry

j
� ky

uy
v
, g”((T y

j )t � ky
uy

v+1
) = Mj, and {uy

v : v ∈ ω} ⊆ {uy′
v : v ∈ ω}.

This follows from
(∀W ∈ [ω]ω)(∃V ∈ [W ]ω)(∃My ⊆ m)(∃ry

j ∈ T y
j )(∀t ∈ (T y

j )ry
j
)(∀∞v ∈ V )

g”((T y
j )t � v) = My.

We set Xy = {uy
v : v ∈ ω} and choose for X∗ such that it is a pseudointersection

of Xy , y ∈ ω>ω.
Independently for each j, by induction on v ∈ ω, we construct Sy

j � ky
uv

. We begin
with Sy

j � ky
u0

= ∅. Suppose Sy
j � ky

v is constructed, we take an arbitrary r out of this
set. We select a good “color” gy

j (uv+1) ∈ m such that more than 1/card(My
j ) points

t in (T y
j )ry � ky

v+1 and at least one point out of each (T y
j )r′ � ky

uv+1
, r′ ∈ Sy

j � ky
uv

,
fulfill g(t) = gy

j (uv+1). We put these points into Sy
j � kuv+1 .

Every level of (Sy
0 )ry � ky

uv+1
in [ky

uv
, ky

uv+1
) ∩ ⋃

i∈ω[my
i , ny

i+1) ∩ H(y) has a branch-
ing point, as otherwise in (Sy

0 )ry � ky
uv+1

there would be at most 1/n times the maximal
number nz, z = card([ky

uv
, ky

uv+1
) ∩ ⋃

i∈ω[my
i , ny

i+1)), of points. Similar for Sy
1 . �

In order to finish the proof of Theorem 1, we take an infinite X′ ⊆ X∗ such that
all (gy

0 , gy
1) � X′ are almost constant (and, of course, almost everywhere defined). This

can be done because there are only countably many of them. Then for all y for all
f ∈ [Sy

0 ] ∪ [Sy
1 ] the restriction α(f) � X′ is almost constant, but there is no infinite

β(X′), even no set with more than 3 elements ≥ max(k) in some suitable y, such that
all f ∈ [Sy

0 ] ∪ [Sy
1 ] are constant on β(X′) \ k: Suppose that we had 3 such elements,

say two of them, h0 and h1, are in (the range of) y and in the branching points of Sy0
0

above k. Then we take f0 and f1 ∈ [Sy
0 ] such that f0 � (h0 + 1) = f1 � (h0 + 1) and

f0(h1) = f1(h1). Then f0 � {h0, h1} is not constant or f1 � {h0, h1} is not constant.
Thus Theorem 1 is proved. �
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M. Scheepers, eds.), Contemporary Mathematics Vol. 192, Amer. Math. Soc., Provi-
dence 1996, pp. 31 – 49.

[2] Kuratowski, K., Topology. Vol. 1. Academic Press, New York 1966.
[3] Mildenberger, H., Non-constructive Galois-Tukey connections. J. Symbolic Logic 62

(1997), 1179 – 1187.
[4] Oxtoby, J., Measure and Category. Second Edition. Springer-Verlag, Berlin-Heidelberg-

New York 1980.
[5] Talagrand, M., Compacts de fonctions mesurables et filtres non mesurables. Studia

Mathematicae 67 (1980), 13 – 43.
[6] Vojtás, P., Generalized Galois-Tukey Connections between explicit relations on clas-

sical objects of real analysis. In: Set Theory of Reals (H. Judah, ed.), Israel Math.
Conference Proceeding Vol. 9, Amer. Math. Soc., Providence 1993, pp. 619 – 643.

(Received: April 11, 2001; Revised: January 10, 2002)


