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Abstract

We give for ordinals a a lower bound for the least ordinal a(f) such
that Frgzd(a(ﬂ), B) and show that given enough measurable cardinals
there are forcing extensions where the given bounds are sharp.

1 Introduction

We consider the question whether wellordered structures have free subsets

of given ordertype. Of course, the answer depends on assumptions beyond
ZFC, because Frﬁrgd(a(ﬂ),ﬁ) implies Fry, (card(a(B)), card(B)).

Notation: In order to simplify notation, we allow the function symbols
in a type 7 to be interpreted by partial functions.

For U C A, let [U ]A denote the substructure generated by U in A. In con-
trast to this, let ANU denote the structure with domain U and partial func-
tions fAN such that fAN (a) is defined only if @ € U and fANY (a) € U.
A type 7 is called copious iff it is closed under Skolemfunctions. For a -
structure A, the length of A, 1h(A), is the cardinality card(7).

Definition 1.1 S C A is free in A iff for anyy € S we have y & [S\{y}]"4

Definition 1.2 For a cardinal p and ordinals o, B let Frzrd(oz,ﬁ) be the

following property: for any TU{<}-structure A = (A, <4,...) of length < u
and (A, <?) = (a, €) there is a free subset S of A of order type f3, i.e.
(S, <4 1S%) = (8, €).



Of course, for card(a) < p and 8 > 0, Frzrd(oz,ﬁ) is not true.

Remarks: a) S C U C A. Let 7 be copious. Then S is free in A iff S
is free in AU.

b) For y infinite, Frzrd(a', B) and o/ < « implies Frzrd(oz, B).

Definition 1.3 Let p1, k, A be cardinals. Fr,(k, \) iff for any 7-structure A
of length < u and card(A) > k there is a free subset S of A with card(S) > \.

Remarks: a) For p infinite and ) a cardinal, Frzrd (e, A) implies Fr, (card(c), A)
and Fr(card(a), A).
b) For k, A cardinals Fr,(x, A) implies Frzrd(/ﬁ, A).

Hence min{« | Frffd(a, A)} = min{x | Fr,(~, A)} = min{card(c) | Frzrd(a, A}
for cardinals A.

For cardinals A, [Kol], [Ko2|, [Ko3] and [Sh| give some information on the
minimal x with Fry, (%, A). In the following we consider ordinals 8 which are
not cardinals.

2 The case \- 3, card(f8) < A

Regarding the lengths of the structures, we use the following fact from [Kol]:
If Fr,y (x, A) and & is minimal with this property then Fr,(x, A) for any p < &.
Hence in case x > A und « minimal for Fr, (x, ) for some y' < &, then for
k > g1 > X\ we have Fr,(x, A) and the condition card(5) < p is no restriction.

Proposition 2.1 Assume Fr,(x,\) and card(8) < min(A, p), A > Ro. Then
Fro (k- B, X+ B).

Proof: Let A be a 7 U {<}-structure of length < y and (4, <4) = (k- 8, €).
We expand A to a 7'-structure A’ with card(7) < u by choosing for v < 3
interpretations

SR ey (4 1),
and adding Skolemfunctions as required. By Fr,(x, ) there is a free subset

S in A')k. We fix a function h: A — § (independent of the interpretations of
the functions in A’) that is onto and

VB € Beard(h"{B'}) = A.
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Let S = {s. | ¢ € A\} with pairwise distinct s.. We set

5= f15 (s,
S = {5 ]ee )

S is free in A’ and in A:
By contradiction, assume that A’ € 7’ be an me-ary function symbol and
em & {e; i <m} and WA (5.,,...5.. ) = 5.,. Then

!

WA 5en)s o JE (5en)) = fid ) (52,), and
) A Sy Geo)s e SE (Sen)) = S

Since 7' is closed under Skolemfunctions, S is not free in A’}«x. Contradiction.

S has ordertype > \ - 3: B
We show: For ' < 8, card(SN [k -5 ,k- (' +1))) = A. We have

5. € [k-BL6-(8+1))iff
fib(s) € ne Bk (B + 1)
h(e) = B
and the latter is the case for A many ¢ because of the choice of h. a

Now we can connect 2.1 with known results on consistency strengths and
get for example:

Corollary 2.2 Fro(w, - w,w - w) is equiconsistent to the existence of a mea-
surable cardinal.

Proof: 2.1 shows that Fro(w, - w, w - w) is not strictly stronger than Fr,,(w,, w),
which by [Kol] is equiconsistent to a measurable. It is easy to see that
Fro(w,, - w,w - w) is at least as strong as Fr,,(w,,w).

Next we show under the additional assumptions that the bounds given in
2.1 are minimal.

Proposition 2.3 Let k be minimal with Fr,(k,\) and assume cf(k) < p
(- hence cf(k) = cf(N)—-). Let card(8) < X. Then k - § is minimal with

Fr/(,)ard(ﬁ" : ﬁaA : /8)



Proof: We fix some examples that show —Fr,(x', A) for k' < k, call them for
further use D(x', \). Assume D(x’, ) is a 7(x')-structure and the 7(x') be
pairwise disjoint. Let (k;|i € c¢f(k)) be cofinal in k. Expand k by isomorphic
copies of the D(k;, A), i < cf(x) and call this U;ef(x) 7(k:)-structure D(k, \).
We have: D(k, \) has a free subset of cardinality ), any free subset of D(k, \)
of cardinality A is cofinal in k, and there is no free subset of cardinality > A.

Let y = k-8 4+ < k-8, < k. We expand for " < ' the interval
[k 8", k- (8" +1)) by the shift of D(, A) onto this interval, and we expand
the interval [k - §',k - B’ + 7)) by a copy of D(card(y'), A). It is easy to
see that any free subset in the resulting structure has ordertype less than
A (B +1)<A-B. 0

3 The case A\- B+, card(B) < A\, 0 <y < A

This case is more complicated than the case v = 0. Assume Fr,(x, A). For
S free in A = (k, €,...) we need some information on

(otp(SNd) |6 € k).
Example: If S is free in D(R,,, Ro) then otp(SNR,)) < n.

Lemma 3.1 Assume Fr,(k,\) and cf(k) < p. Then there is a function
g: A = Kk such that for any structure on k of length < p and for any € € A
there is some S of cardinality A free in A with otp(SNg(e)) > e.

Proof: For € € \ define

M(e) = {6 € k|V.A with support
1S of cardinality A free in A, otp(S Né) > e}.

M(e) #0: If 6 ¢ M () then there is a structure A; say of type 75 such that
for any free subset S in A; of cardinality A we have otp(SNd) < e. We may
assume that the 75 be pairwise disjoint. If M(¢) = () then

A = (k, (f'Ad)feT(;,&en)
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would not have any free subset of cardinality A. If we restrict ourselves to §’s

that are elements of a cofinal subset in &, that would give a counterexample
to Fr,(k, A). Now define g(¢) = min(M (¢)). O

We call a g as in lemma 3.1 an upper bound. The g given in the proof
of 3.1 is the lowest upper bound in the partial ordering < on s*: f < g iff
f(e) < g(e) for all e.

The following proposition is a generalisation of 2.1.

Proposition 3.2 Let g be a upper bound for Fr,(k,X). v < X and card(5) <
min(A, u). Then Fr& (k- 8+ g(7), A+ B+ 7).
Proof: Let A be a 7 U {<}-structure with (4,<4) = k-8 + g(7y). Let

T D71U{f, |7 € BU{-1}} be copious. We expand A to a 7'-structure A’
by choosing interpretations

FA g, k) T (ke (y+ 1)),
A e) = (k- B.r-B+9(),€)

and interpreting the compositions in the canonical way. Take an S free in A
with otp(S N g(y)) > ~v. SNg(y) 2 {t; | i < v} with strictly ascending ;.
SNg(y),k) 2 {sc|e € A}. Set fori < ~: t; = ff}’(ti). We take h as in the
proof of 2.1 and define the 5. as there. Then {5, |e € A} U{¢;|i < v} is a
free subset in A of ordertype \- 3+ 7. O
A lower threshold is given by

Proposition 3.3 Let g be the lowest upper bound for Fr,(k,A). v < X and
card(B) < A. Let ' < k- B+ g(7y) and cf(k) < p. Then ﬁFrZrd(ﬁ" A-B+7).

Proof: Regard the defintion of lowest upper bound and use the techniques of
2.3. O

Remark: We may try to change the ordering of the quantifiers in the no-
tion of an upper bound:

Definition 3.4 Assume Fr,(k, ). An upper bound for Fr,(x,\) in the
strong sense is a function g:\ — Kk such that for any structure on k of
length < i there is some S of cardinality \ free in A and such that for each
e € X\ we have otp(SNg(e)) > ¢ .



Despite of the results in sections 4 and 5, there is the

Open Problem 3.5 Assume Fr,(k,\) and cf(k) < p. Is there an upper
bound for Fr,(k, ) in the strong sense?

4 Countable Ordinals

Forcing Fry, (Neyx, A) starting from A many measurables greater than X, in
case A < N, or one measurable > X, in case A = w (cf. [Sh] and [Kol]) gives
the upper bounds in the strong sense g: A — Nj:

gw-i+n) =Reiyiton,n €w,i € A

In order to lower these upper bounds, we may adjoin finitely many small
ordinals to the sets of indiscernibles arising in above mentioned forcing proofs
(cf. 4.6). In the case of £ = 0 and one measurable cardinal this filling up
technique leads to the upper bounds in the strong sense g, =

(Nq, Vo, V3, o Nogpe Nop o Nop g, .. ) for k£ € w. If the measurable cardinal is
supposed to be greater than X, the technique given in this section will work
also for structures of length ..

Theorem 4.1 Given a measurable cardinal there is a forcing extension where

Fr%ﬁd(Nw B+ Ny, w- B+ k) holds for k € w.
Actually we will show:

Theorem 4.2 Given a measurable cardinal there is a forcing extension where
for each k € w we have g, = (N1, Vg, Vg, ... Vo, Nog 10, Nog 1y, ...) as an upper
bound in the strong sense for Fry, (R, Ro).

and then apply 3.2.

Proof:

The forcing is the same as Koepke gives in [Kol]. A closer look at the com-
binatorial components shows that there is a kind of normality (for a precise
definition see theorem 4.4) in the coherent sequence of Ramsey cardinals. We
will go along the lines of [Kol] and indicate the additional conditions.



Let sk be a measurable cardinal and U an normal ultrafilter on . Let
P={(a,X)]|a€ [k, X €U maxa < min X}

be the set of Prikry conditions for x, U, with the usual order. Let G be
P-generic over V, let (k; | i € w) be the Prikry sequence induced by G.

Lemma 4.3 In V[G], the following principle holds: if f:[k]<¥ — k is re-
gressive, i.e. f(x) < minz for x € [k]<¥, then there are m € w and
(Ai | m <i < w) such that

(i) A; C k; is cofinal in k;, and

(ii) if x,y € [k]<¥, z,y C U{Aim < i < w} and if card(zNA;) = card(yNA4;)
for every i and if z € [min(x U y)|<¥ then f(zUzx) = f(zUy).

Proof: Similar to lemma 3.1 of [Kol]. And as in [Kol] the lemma yields:

Theorem 4.4 In V|G| there is an ascending sequence (\; | i € w) cofinal
in k which forms a coherent sequence of normal Ramsey cardinals, i.e. for
every regressive f:[k|<Y — k there are (A; |1 < w) such that:

(i) A; C k; is cofinal in \;, and

(i) if x,y € [k]<Y, z,y C U{A4; | i < w} and if card(z N A;) = card(y N A;)
for every i and if z € [min(x U y)]< then f(zUzx) = f(zUvy). O

Let (%) be the following assertion: If f:[R,]<“ — 2 then there is (C; |7 € w)
such that:

(i) C; is a cofinal subset of Ny; 5, and

(i) if 49 < ... < ip 1 < w and ap, By € Cipy---p 1,601 € C;,_, and
¢ € [R;,]<* then

fleUdag,...an_1}) = f(cU{Bo,---Bn_1})-

Fix a coherent sequence (k; | i € w) of normal Ramsey cardinals with supre-
mum k. Let (P, <) be the following set of conditions

P={(p;|i €w)|po € Col(Ry, ko), p;i € Col(k; {,r;) for 1 <i < w},

where Col(o, p) are the Levy conditions for collapsing the inaccessible p to
o {gi |1 €w) < (p;|i € w)iff Vig; DO p;. Let G be P-generic over V. In
V[G] Ko = Ng, K1 = N4,...,I€: Nw-



Theorem 4.5 (**) holds in V[G].

Proof: Similar to theorem 4.3 in [Kol], but with a coherent sequence of nor-
mal Ramsey cardinals. O

Theorem 4.6 If (xx) holds then for each k € w the function
g = (N, Ro, Ny, o, Vop 0, Nop 14 ...) s an upper bound in the strong sense
for Fry, (R, Rp).

Proof:

Fix a k € w. Let A be a 7-structure of countable type and with support X,,.
Take an enumeration {¢, | n € w} of L, in which each ¢ appears infinitely
often and the free variables of ¢, are contained in {vy,...,v,_1}. We define

f RG] — 2 by
_J 0, if A ¢m(a),a increasing,
fale) = { 1, else.

We apply (*x) to f 4 and get (C;, |n € w) as in (). We show the following
Claim: There is an S free in A such that

SN [NiaNi—}—l) §£ @ for 0 <i< 2]{],
SNC; # Ofori>k.
By induction on ¢ for 0 < i < 2k we choose Ao ;(2k —7) C [Nop_j1, Nog_;)

for 0 < j < i decreasing in 4, and C,,(2k — i) C C,, for n > 2k decreasing in
1 such that:

card(Ag,—;(2k — 1)) Nop_;i1 for 0 < j < 14,
card(Agk_i(Qk - Z)) = Ngk_i,
card(C,,(2k — 1)) = Vo 4 1,
Aseei(2k — i) 0 Roposoy U Aney (2k — i) U | Cu(2k —0)A = 0.

j<i n>2k
Then we take so;; € Agi (1) for 0 < i < 2k, and s,41 € Cy(1) for n > 2k.
S={sp|1<ne€w}is free in A:
Forn > 2k, s, ¢ [S\{sn}]A, because s, is a member of C,,_; and card(C),_1) >
2 and (C; | i € w) is a sequence as in (*x) for f 4.
For n < 2k, s, &[S\ {sn}]"4 because of the choice of A, (n). O

8



5 Uncountable ordinals

We heavily refer to [Sh], but we use some modification of the partition the-
orems therein. We indicate how this modification is derived. Assume that
there are measurable cardinals (k; | ¢ € A) in increasing order, and ko > .
Let P = Col(R¢y1, ko) X [Tiex Col(k;, kit1), and G be P-generic over V.

Lemma 5.1 In V[G], the following holds:

a) Forn € w,i < \: Kpitn = (Nerwironta)V 1, and

b) Vi [Repa]< = 23(Syitn | 7 € w,i € N) such that:

Sw-i—|—n Q N§+w-i+2n+2 and C&I‘d(Sw.H_n) = N§+w-i+2n+2; and

Vi e \n € w,p € [Repgrivon]m € w withw-i+n < i(0) < i(l)... <
’l(m — 1)Vag, bg € Sz(g) f(p U {ao, PN am_l}) = f(p U {bo, PP bm—l})-

Proof: [Sh] theorems 3 and 4 prove: In V[G], GCH is true, and

(*)  form € w,i <X Kyirn = Nerwironse) 9, and
V<f,"n: [N§+)\]<w — N§+w-i—|—2n+1 | new, e )\) E|<Sw-z'+n | neEw, e )\)
such that: Sw-z'—i—n g N§+w-i+2n+2 and card(Sw.Hn) = N§+w-i—|—2n+2; and
Vie\n€wmewwithw-i+n<i4(0) <i(l)...<i(m—1)
Vay, by € Sz(i) fi,n({a'Oa <. aa'mfl}) = fi,n({bO: SR bmfl})-

Now, given f:[Rein]|<Y — 2, we set for n € w,i € A\, a € [Repn]<:

fin(a) = (f(pUa) [p € Rerwisan]™),
and using GCH, we regard the latter as an element of N .i1on41. An ap-

plication of (x) gives the desired partition property. ]

In order to cope with the types 7 of cardinality N, we fix an enumeration
{¢i |7 € Re} of L;. We define f 4: [Rej 2] — 2 by

fala) = {

As in lemma 4.6 (now between R¢; and R¢), we get from lemma 5.1 in V[G]:
Fry, (Re4a, A), and for all k£ € w we have g, as an upper bound in the strong
sense, where

0, if A = ¢mina(a),a increasing, mina < X,
1, else.

gk(j) = RVepjfor 0<j <k
gk(k +n+ ].) = N§+k+2n+2 for n € w
gr(w-(t4+1)4+n) = Nepuipi)gon forn € w,i € A
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From this we get introducing suitable bijections as in 2.1, the following
Theorem 5.2 If A < X, we have Frﬁzd(a,ﬁ) in VIG] for
B=An1"Bma1t+...+X-Bo+k,

with card(5;) < Aj and Ry < Ao < A ... < A1 < A\, N cardinals, 0 < k < w
and

o = N§+,\m,1 ) ﬁm—l + ...+ N§+,\0 . ﬂ() + N§+k.

Proof: We work in V[G]. Given A of length X, such that (4,€) = « and
« as in the proposition, we expand A by the following functions (where the
noncommutative sums are to be taken in decreasing order):

bijective
ForRepr 7S LY R B, DD Repn - Bi+ Reyp),

m>i>0 m>i>0
and for v < B;,7 <m with A\_; =k :

bijective
Fin Rern_rRewny) =0 [0 Reway = Bi Ry, -7, . Rewn, - Bi + Ry, - (v + 1)),

§>i>0 §>i>0

Let A’ be a Skolemstructure belonging to this expansion. Using Fry, (Reya, A)
with an upper bound g as above for the structure A'}R,,, we get a free
subset S = {s; |7 € A} in A'}R¢;y with s; € gx(i + 1) \ g (i) for i € A

We fix for j < m surjections h;: A\; — f; such that Vo € g : card(h; '"{a}) =
)‘j' Then

{f-1(sa) [ 1 < kYU {fin;)(s:) |1 € A, si € dom(fj0), 5 <m}
is free in A" and of order type S. O
Putting together the known examples that show in ZFC' that N¢y,,; is the

smallest cardinal x at which Fry,(k,\;) may be consistent with ZFC' it is
easy to see our given upper bounds being minimal.
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