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Abstract 

This article presents the first, systematic analysis of the ethical challenges posed by recommender 

systems. Through a literature review, the article identifies six areas of concern, and maps them 

onto a proposed taxonomy of different kinds of ethical impact. The analysis uncovers a gap in the 

literature: currently user-centred approaches do not consider the interests of a variety of other 

stakeholders—as opposed to just the receivers of a recommendation—in assessing the ethical 

impacts of a recommender system. 
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1.   Introduction 

We interact with recommender (or recommendation) systems (RS) on a regular basis, when we use 

digital services and apps, from Amazon to Netflix and news aggregators. They are algorithms that 

make suggestions about what a user may like, such as a specific movie. Slightly more formally, they 

are functions that take information about a user’s preferences (e.g. about movies) as an input, and 

output a prediction about the rating that a user would give of the items under evaluation (e.g., new 

movies available). We shall say more about the nature of recommender systems in the following 

pages, but even this general description suffices to clarify that, in order to work effectively and 

efficiently, recommender systems collect, curate, and act upon vast amounts of personal data. 

Inevitably, they end up shaping individual experience of digital environments and social 

interactions (Burr, Cristianini, & Ladyman, 2018; de Vries, 2010; Karimi, Jannach, & Jugovac, 

2018).  

RS are ubiquitous and there is already much technical research about how to develop ever 

more efficient systems (Adomavicius & Tuzhilin, 2005; Jannach & Adomavicius, 2016; Ricci, 

Rokach, & Shapira, 2015). In the past 20 years, RS have been developed focusing mostly on 

business applications, and the emphasis has tended to be on commercial objectives. But RS have 

a wider impact on users and on society more broadly. After all, they shape user preferences and 

guide choices, both individually and socially. This impact is significant and deserves ethical 

scrutiny, not least because RS can also be deployed in contexts that are morally loaded, such as 

health care, lifestyle, insurance, and the labour market. Clearly, whatever the ethical issues may be, 

they need to be understood and addressed by evaluating the design, deployment and use of the 

recommender systems, and the trade-offs between the different interests at stake. A failure to do 

so may lead to opportunity costs as well as problems that could otherwise be mitigated or avoided 

altogether, and, in turn, to public distrust and backlash against the use of RS in general (Koene et 

al., 2015). 

Research into the ethical issues posed by RS is still in its infancy. The debate is also 

fragmented across different scientific communities, as it tends to focus on specific aspects and 

applications of these systems in a variety of contexts. The current fragmentation of the debate may 

be due to two main factors: the relative newness of the technology, which took off with the spread 

of internet-based services and the introduction of collaborative filtering techniques in the 1990s 

(Adomavicius & Tuzhilin, 2005; Pennock, Horvitz, & Giles, 2000); and the proprietary and privacy 

issues involved in the design and deployment of this class of algorithms. The details of RS currently 

in operation are treated as highly guarded industrial secrets. This makes it difficult for independent 

researchers to access information about their internal operations, and hence provide any evidence-
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based assessment. In the same vein, due to privacy concerns, providers of recommendation 

systems may be reluctant to share information that could compromise their users’ personal data 

(Paraschakis, 2018).  

Against this background, this article addresses both problems (infancy and fragmentation), 

by providing a survey of the current state of the literature, and by proposing an overarching 

framework to situate the contributions to the debate. The overall goal is to reconstruct the whole 

debate, understand its main issues, and hence offer a starting point for better ways of designing 

RS and regulating their use. 

 

2.   A Working Definition of Recommender Systems 

The task of a recommendation system – i.e. what we shall call the recommendation problem – is often 

summarized as that of finding good items (Jannach & Adomavicius, 2016). This description is 

common and popular among practitioners, especially in the context of e-commerce applications. 

However, it is too broad and not very helpful for research purposes. To make it operational one 

needs to specify, among other things, three parameters: 

a)   what the space of options is; 

b)   what counts as a good recommendation; and, importantly  

c)   how the RS’s performance can be evaluated.  

Specifying these parameter choices is highly dependent on the domain of application and the level 

of abstraction (LoAs, see (Floridi, 2016))1 from which the problem is considered (Jannach, Zanker, 

Ge, & Gröning, 2012). Typically, the literature implements three LoAs: catalogue-based, decision 

support, and multi-stakeholder environment. Let us consider each of these in turn. 

In e-commerce applications, the space of options (that is, the observables selected by the 

LoA) may be the items in the catalogue, while a good recommendation may be specified as one 

which ultimately results in a purchase. To evaluate the system performance, one may compare the 

RS’s predictions to the actual user behaviour after a recommendation is made. In the domain of 

news recommendations, a good recommendation may be defined as a news item that is relevant to 

the user (Floridi, 2008), and one may use click-through rates as a proxy to evaluate the accuracy of 

the system’s recommendations. Similar RS are designed to develop a model of individual users and 

to use it to predict the users’ feedback on the system’s recommendation, which is essentially a 

prediction problem.  

                                                                                                                          
1 A level of abstraction can be imagined as an interface that enables one to observe some aspects of a s system analysed, 
while making other aspects opaque or indeed invisible. For example, one may analyse a house at the LoA of a buyer, 
of an architect, of a city planner, of a plumber, and so on. LoAs are common in computer science, where systems are 
described at different LoAs (computational, hardware, user-centred etc.). LoAs can be combined in more complex 
sets, and can be, but are not necessarily always, hierarchical. 
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Taking a different LoA, RS may also be considered to provide decision support to their users. 

For example, an online booking RS may be designed to facilitate the user’s choice of hotel options. 

In this case, defining what counts as a good recommendation is more complex, because it involves 

appreciation of the user’s goals and decision-making abilities. Evaluating the system’s performance 

as a decision support requires more elaborate metrics. For example, (Jameson et al., 2015) consider 

six strategies for generating recommendations, which track different choice patterns based on 

either of the following features: (1) the attributes of the options; (2) the expected consequences of 

choosing an option; (3) prior experience with similar options; (4) social pressure or social 

information about the options; (5) following a specific policy; (6) trial-and-error based choice.    

More recently, (Abdollahpouri, Burke, & Mobasher, 2017) have proposed a different kind 

of LoA (our terminology), defining RS in terms of multi-stakeholder environments (what we would 

call the LoA’s observables), where multiple parties (including users, providers, and system 

administrators) can derive different utilities from recommendations. Epistemologically, this 

approach is helpful because it enables one to conceptualise explicitly the impact that RS have at 

different levels, both on the individual users interacting with them, and on society more broadly, 

making it possible to articulate what ethical trade-offs could be made between these different, 

possibly competing interests.  

In view of the previous LoAs, and for the purposes of this article, we take recommender 

systems to be a class of algorithms that address the recommendation problem using a content-based or 

collaborative filtering approach, or a combination thereof. This choice has three advantages. It is 

compatible with the most common LoAs we have listed above. By focusing on the algorithmic 

nature of recommender systems, it also singles out one of the fastest growing areas of research 

and applications for machine learning. And it enables us to narrow down the scope of the study, 

as we shall not consider systems that approach the recommendation problem using different 

techniques, such as, for instance, expert systems like IBM Watson. With these advantages in mind, 

in the next section we propose a general taxonomy to identify the ethical challenges of RS. In 

section 4 we review the current literature, structured around six areas of concern. We conclude in 

section 5, by mapping the discussion onto our ethical taxonomy and indicating the direction of 

our further work in the area. 

 

3.   How to Map the Ethical Challenges Posed by Recommender Systems 

In order to identify what is ethically at stake in the design and deployment of a RS, let us start with 

a formal taxonomy. This is how we propose to design it. 



   5  

The question about which moral principles may be correct is deeply contentious and 

debated in philosophy. Fortunately, in this article we do not have to take a side because all we need 

is a distinction about which there is a general consensus: there are at least two classes of variables 

that are morally relevant, actions and consequences. Of course, other things could also be morally 

relevant, in particular intentions. However, for our purposes, the aforementioned distinction is all 

we need, so we shall assume that a recommender system’s behaviour and impact will suffice to 

provide a clear understanding of what is ethically at stake. 

The value of some consequences is often measured in terms of the utility they contain. So, 

it is reasonable to assume that any aspect of a RS that could impact negatively the utility of any of 

its stakeholders, or risk imposing such negative impacts, constitutes a feature that is ethically 

relevant.  

While the concept of utility can be made operational using quantifiable metrics, rights are 

usually taken to provide qualitative constraints on actions. Thinking in terms of actions and 

consequences, we can identify two ways in which a recommender system can have ethical impacts. 

First, its operations can 

a)   impact (negatively) the utility of any of its stakeholders; and/or  

b)   violate their rights.  

Second, these two kinds of ethical impact may be immediate—for example, a recommendation may 

be inaccurate, leading to a decrease in utility for the user—or they may expose the relevant parties 

to future risks. The ethics of risk imposition is the subject of a growing philosophical literature, 

which highlights how most activities involve imposition of risks (Hansson, 2010; Hayenhjelm & 

Wolff, 2012). In the case of RS, for example, the risks may involve exposing users to undue privacy 

violations by external actors, or the exposure to potentially irrelevant or damaging content. 

Exposure to risks of these sorts can constitute a wrong, even if no adverse consequences actually 

materialise.2 

Given the previous analysis, we may now categorise the ethical issues caused by 

recommender systems along two dimensions (see Table 1):  

i)   whether a (given feature of a) RS negatively impacts the utility of some of its 

stakeholders or, instead, constitutes a rights violation, which is not necessarily 

measured in terms of utility; and  

ii)   whether the negative impact constitutes an immediate harm or it exposes the relevant 

party to future risk of harm or rights violation.  

                                                                                                                          
2 The idea that exposing someone to risks can constitute a wrong to them, even if the adverse consequences fail to 
materialise, is familiar from other contexts, e.g. medical ethics: for example, negligence in treating a patient constitutes 
a wrong, even if the patient ultimately recovers and does not suffer as a result of the negligence.  
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Table 1 summarises our proposed taxonomy, including some examples of different types of ethical 

impacts of recommender systems, to be discussed in section 5.   

 

Table 1 

 Immediate Harm Exposure to Risk 

Utility e.g. inaccurate recommendations e.g. A/B testing (see section 4.1) 

Rights e.g. unfair treatment e.g. leaking of sensitive information 

 

 

With the help of this taxonomy we are now ready to review the contributions provided by the 

current literature. We shall offer a general discussion of our findings in the conclusion.  

 

4.   The Ethical Challenges of Recommender Systems 

The literature addressing the ethical challenges posed by RS is sparse, with the discussion of 

specific issues often linked to a specific instance of a RS, and appearing to be fragmented across 

disciplinary divides. Through a multidisciplinary, comparative meta-analysis, we identified six main 

areas of ethical concerns (see appendix for our methodology). They often overlap but, for the sake 

of clarity, we shall analyse them separately in the rest of this section. 

 

4.1.   Ethical content 

Only a handful of studies to date address explicitly the ethics of RS as a specific issue in itself. 

Earlier work on the question of ethical recommendations focuses more on the content of the 

recommendations, and proposes ways to filter the items recommended by the system on the basis 

of cultural and ethical preferences. Four studies are particularly relevant. (Souali, El Afia, & Faizi, 

2011) consider the issue of RSs that are not culturally appropriate, and propose an “ethical 

database”, constructed on the basis of what are taken to be a region’s generally accepted cultural 

norms, which act as a filter for the recommendations. (Tang & Winoto, 2016) take a more dynamic 

approach to the issue, proposing a two-layer RS, comprising a user-adjustable “ethical filter” that 

screens the items that can be recommended based on the user’s specified ethical preferences. 

(Rodriguez & Watkins, 2009) adopt a more abstract approach to the problem of ethical 

recommendations, proposing a vision for a eudaimonic RS, whose purpose is to “produce societies 

in which the individuals experience satisfaction through a deep engagement in the world”. This, 

the authors predict, could be made achievable through the use of interlinked big data structures.  
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Finally, (Paraschakis, 2016, 2017, 2018) provides one of the most detailed accounts. 

Focusing on e-commerce applications, Paraschakis suggests that there are five ethically 

problematic areas:  

•   the practices of user profiling,  

•   data publishing,  

•   algorithm design,  

•   user interface design, and  

•   online experimentation or A/B testing, i.e. the practice of exposing selected groups of 

users to modifications of the algorithm, with the aim of gathering feedback on the 

effectiveness of each version from the user responses.  

The risks he identifies relate to breaches of a user’s privacy (e.g. via data leaks, or by data gathering 

in the absence of explicit consent), anonymity breaches, behaviour manipulation and bias in the 

recommendations given to the user, content censorship, exposure to side effects, and unequal 

treatment in A/B testing with a lack of user awareness, leading to a lack of trust. The solutions put 

forward in (Paraschakis, 2017) revolve around a user-centred design approach (more on this in the 

next paragraph), introducing adjustable tools for users to control explicitly the way in which RS 

use their personal data, in order to filter out marketing biases or content censorship, and to opt 

out of online experiments. 

 With the exception of (Souali et al., 2011), who adopt a recommendation filter based on 

geographically-located cultural norms, the solutions described in this section rely on a user-centred 

approach. Recalling our taxonomy, they try to minimise the negative impact on the user’s utility—

in particular, unwanted exposure to testing, and inaccurate recommendations—and on the user’s 

rights, in particular, recommendations that do not agree with the user’s values, or expose them to 

privacy violations. However, user-centred solutions have significant shortcomings: they may not 

transfer to other domains, they may be insufficient to protect the user’s privacy, and they may 

result in inefficiency, for example impairing the system’s effectiveness in generating new 

recommendations, if enough users choose to opt out of profile tracking or online testing. 

Moreover, users’ choice of parameters can reveal sensitive information about the users themselves. 

For example, adding a filter to exclude some kind of content gives away the information that the 

user may find this content distressing, irrelevant, or in other ways unacceptable. But above all, the 

main problem is that, although user-centred solutions may foster the transparency of 

recommender systems, they also shift the responsibility and accountability for the protection of 

rights and utility to the users. These points highlight how user-centred solutions in general are 

challenged by their demanding nature, as they may constitute a mere shift in responsibility when 
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the users are only nominally empowered but actually unable to manage all the procedures needed 

to protect their interests. This may therefore be an unfair shift, since it places undue burdens on 

the users, and is in any case problematic because the effectiveness of these solutions varies with 

the level of awareness and expertise of the users themselves, which may lead to users experiencing 

different levels of protection depending on their ability to control the technology.3 

Implementing an “ethical filter” for a recommender system, as suggested by (Rodriguez & 

Watkins, 2009), would also be controversial in some applications, for example if it were used by a 

government to limit citizens’ ability to access some politically sensitive contents. As for the 

eudaimonic approach, this goes in the direction of designing a recommender system that is an 

optimal decision support, yet it seems practically unfeasible, and at least much more research would 

be needed. Figuring out what is a “good human life” is something that millennia of reflection have 

not yet solved.  

 

4.2.   Privacy  

User privacy is one of the primary challenges for recommendation systems (Friedman et al., 2015; 

Koene et al., 2015; Paraschakis, 2018). This may be seen as inevitable, given that a majority of the 

most commercially successful recommender systems are based on hybrid or collaborative filtering 

techniques, and work by constructing models of their users in order to generate personalised 

recommendations. Privacy risks occur in at least four stages. First, they can arise when data are 

collected or shared without the user’s explicit consent. Second, once data sets are stored, there is 

the further risk that they may be leaked to external agents, or become subject to de-anonymization 

attempts (Narayanan, 2008). At both stages, privacy breaches expose users to risks, which may 

result in loss of utility (for example, if individual users are targeted by malicious agents as a result), 

or in rights violations (for example, if users’ private information is utilised in ways that threaten 

their individual autonomy, see section 4.3 below). Third, and independently of how securely data 

are collected and stored, privacy concerns also arise at the stage of inferences that the system can 

(enable one to) draw from the data. Users may not be aware of the nature of these inferences, and 

they may object to this use of their personal data if they were better informed. Privacy risks do not 

only concern data collection because, for example, an external agent observing the 

recommendation that the system generates for a given user may be able to infer some sensitive 

information about the user (Friedman et al., 2015). Extending the notion of informed consent to 

                                                                                                                          
3  For a critical analysis of empowerment see Jessica Morley and Luciano Floridi (forthcoming), “Against 
Empowerment: How to Reframe the Role of mHealth Tools in the Healthcare Ecosystem”. 
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the indirect inferences from user recommendations appears difficult.4 Finally, there is also another 

subtle, but important, systemic issue regarding privacy, which arises at the stage of collaborative 

filtering: the system can construct a model of the user based on the data it has gathered on other 

users’ interactions. In other words, as long as enough users interact and share their data with the 

system, the system may be able to construct a fairly accurate profile even for those users about 

whom it has fewer data. This indicates that it may not be feasible for individual users to be shielded 

completely from the kinds of inferences that the system may be able to draw about them. It could 

be a positive feature in some domains, like medical research, but it may also turn out to be 

problematic in other domains, like recruitment or finance.  

 Current solutions to the privacy challenges intrinsic to recommender systems (especially 

those based on collaborative filtering techniques) fall into three broad categories, covering 

architectures, algorithmic, and policy approaches (Friedman et al., 2015). Privacy-enhancing 

architectures aim to mitigate privacy risks by storing user data in separate and decentralised 

databases, to minimise the risk of leaks. Algorithmic solutions focus on using encryption to 

minimise the risk that user data could be exploited by external agents for unwarranted purposes. 

Policy approaches, including GDPR legislation, introduce explicit guidelines and sanctions to 

regulate data collection, use, and storage.  

 The user-centred recommendation framework proposed by (Paraschakis, 2017), which we 

already encountered in the previous section, also introduces explicit privacy controls, letting the 

users decide whether their data can be shared, and with whom. However, as we have already 

remarked, user-centred approaches have limits, as they may constitute a mere shift in responsibility, 

placing an undue burden on the users. A possible issue that may arise specifically with user-enabled 

privacy controls is that the user’s privacy preferences would, in themselves, constitute informative 

metadata, which the system (or external observers) could use to make sensitive inferences about 

the user, for example, to infer that a user who has strong privacy settings may have certain 

psychological traits, or that they may have “something to hide”. When considering systemic 

inferences, due to the nature of collaborative filtering methods, even if user-centred adjustments 

could be implemented across the board in effective ways, they would arguably still not solve the 

problem.  

Crucially, due to the nature of recommender systems – which, as we have seen, rely on 

user models in order to generate personalised recommendations – any approach to the issue of 

user privacy will need to take into account the likely trade-off between privacy and accuracy, but 

                                                                                                                          
4 The recent ProPublica/Facebook exchange about auditing targeted ads may configure as a privacy breach of this 
kind (Merrill & Tobin, 2019). 
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also fairness and explainability of algorithms (Friedman et al., 2015; Koene et al., 2015). For this 

reason, ethical analyses of recommender systems are better developed by embracing a macro-

ethical approach. This is an approach that is able to consider specifically ethical problems related 

to data, algorithms, and practices, but also how the problems relate, depend on, and impact each 

other (Floridi & Taddeo, 2016). 

 

4.3.   Autonomy and Personal Identity 

Recommender systems can encroach on individual users’ autonomy, by providing 

recommendations that nudge users in a particular direction, by attempting to “addict” them to 

some types of contents, or by limiting the range of options to which they are exposed (Burr et al., 

2018; de Vries, 2010; Koene et al., 2015; Taddeo & Floridi, 2018). These interventions can range 

from being benign (enabling individual agency and supporting better decision making by filtering 

out irrelevant options), to potentially questionable (persuasion, nudging), to possibly malign (being 

manipulative and coercive (Burr et al., 2018)).  

Algorithmic classification used to construct user models on the basis of aggregate user data 

can reproduce social categories. This may introduce bias in the recommendations. We shall discuss 

this risk in detail in the next section (4.4). Here, the focus is on a distinctive set of issues arising 

when the algorithmic categorization of users does not follow recognisable social categories. (de 

Vries, 2010) powerfully articulates the idea that our experience of personal identity is mediated by 

the categories to which we are assigned. Algorithmic profiling, performed by recommender 

systems, can disrupt this individual experience of personal identity, for at least two main reasons. 

First, the recommender system’s model of each user is continuously reconfigured on the basis of 

the feedback provided by other users’ interactions with the system. In this sense, the system should 

not be conceptualised as tracking a pre-established user identity and tailoring its recommendations 

to it, but rather as contributing to the construction of the user identity dynamically (Floridi, 2011). 

Second, the labelling that the system uses to categorise users may not correspond to recognisable 

attributes or social categories with which the user would self-identify (for example, because 

machine-generated categories may not correspond to any known social representation), so even if 

users could access the content of the model, they would not be able to interpret it and connect it 

with their lived experiences in a meaningful way. These features of recommender systems create 

an environment where personalization comes at the cost of removing the user from the social 

categories that help mediate their experiences of identity.  
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In this context, an interesting take on the issue of personal autonomy in relation to 

recommender systems comes from the “captology” of recommender systems. (Seaver, 2018a) 

develops this concept from an anthropological perspective: 

[a]s recommender[s] spread across online cultural infrastructures and become practically 

inescapable, thinking with traps offers an alternative to common ethical framings that 

oppose tropes of freedom and coercion (Seaver, 2018a).  

Recommender systems appear to function as “sticky traps” (our terminology) insofar as they are 

trying to “glue” their users to some specific solutions. This is reflected in what Seaver calls 

“captivation metrics” (i.e. that measure user retention), which are commonly used by popular 

recommender systems. A prominent example is YouTube’s recommendation algorithm, which 

received much attention recently for its tendency to promote biased content and “fake news”, in 

a bid to keep users engaged with its platform (Chaslot, 2018). Regarding recommender systems as 

traps requires engaging with the minds of the users: traps can only be effective if their creators 

understand and work with the target’s world view and motivations, so the autonomous agency of 

the target is not negated, but effectively exploited. Given this captological approach, and given the 

effectiveness and ubiquity of the traps of recommender systems, the question to ask is not how 

users can escape from them, but rather how users can make the traps work for them.  

 

4.4.   Opacity  

In theory, explaining how personalised recommendations are generated for individual users could 

help to mitigate the risk of encroaching on their autonomy, giving them access to the reasons why 

the system “thinks” that some options are relevant to them. It would also help increase the 

transparency of the algorithmic decisions concerning how to class and model users, thus helping 

to guard against bias.  

Designing and evaluating explanations for recommender systems can take different forms, 

depending on the specific applications. As reported by (Tintarev & Masthoff, 2011), several studies 

have pursued a user-centred approach to evaluation metrics, including metrics to evaluate 

explanations of recommendations. What counts as a good explanation depends on several criteria: 

the purpose of the recommendation for the user; whether the explanation accurately matches the 

mechanism by which the recommendation is generated; whether it improves the system’s 

transparency and scrutability; and whether it helps the user to make decisions more efficiently (e.g. 

more quickly), and more effectively, e.g. in terms of increased satisfaction.  
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These criteria are satisfied by factual explanations.5  However, factual explanations are 

notoriously difficult to achieve. As noted by (Herlocker, Konstan, & Riedl, 2000), 

recommendations generated by collaborative filtering techniques can, on a simple level, be 

conceptualised as analogous to “word of mouth” recommendations among users. However, 

offline word of mouth recommendations can work on the basis of trust and shared personal 

experience, whereas in the case of recommender systems users do not have access to the identity 

of the other users, nor do they have access to the models that the system uses in order to generate 

the recommendations. As we mentioned, this is an issue in so far as it diminishes the user’s 

autonomy. It may be difficult to provide good factual explanations in practice also for 

computational reasons (the required computation to generate a good explanation may be too 

complex), and because they may have distorting effects on the accuracy of the recommendations 

(Tintarev & Masthoff, 2011). For example, explaining to a user that a certain item is recommended 

because it is the most popular with other users may increase the item’s desirability, thus generating 

a self-reinforcing pattern where the item will be recommended more often because it is popular. 

This, in turn, reinforces its popularity, ending in a winner-takes-all scenario that, depending on the 

intended domain of application, can have negative effects on the variety of options, plurality of 

choices, and the emergence of competition (Germano, Gómez, & Mens, 2019). Arguably, this may 

be one of the reasons why Amazon does not automatically privilege products with less than perfect 

scoring but that have been rated by a large number of reviewers.  

 

4.5.   Fairness  

Fairness in algorithmic decision making is a wide-ranging issue, made more complicated by the 

existence of multiple notions of fairness, which are not all mutually compatible (Friedler, 

Scheidegger, & Venkatasubramanian, 2016). In the context of recommender systems, several 

articles identified in this review address the issue of recommendations that may reproduce social 

biases. They may be synthesised around two approaches.  

 On the one hand, (Yao & Huang, 2017) consider several possible sources for unfairness 

in collaborative filtering, and introduce four new metrics to address them by measuring the 

distance between recommendations made by the system to different groups of users. Focusing on 

                                                                                                                          
5 Factual explanations are usually contrasted to counterfactual ones, that describe what would have had to be the case, 
in order for a certain state or outcome (different from the actual one) to occur. For example, suppose that while 
browsing an e-commerce website, Alice is recommended a brand of dog food. A counterfactual explanation of why 
Alice received this recommendation would specify what would have had to be the case, for Alice not to be 
recommended this specific product (for example, had she not browsed dog collars, she would not have been 
recommended dog food). A factual explanation, on the other hand, would specify why this specific item was 
recommended, for example why this specific brand of dog food was deemed good for Alice.  
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collaborative filtering techniques, they note that these methods assume that the missing ratings 

(i.e., the ones that the system needs to infer from the statistical data to predict a user’s preferences) 

are randomly distributed. However, this assumption of randomness introduces a potential source 

of bias in the system’s predictions, because it is well documented that users’ underlying preferences 

often differ from the sampled ratings, since the latter are affected by social factors, which may be 

biased (Marlin, Zemel, Roweis, & Slaney, 2007). Following (Yao & Huang, 2017), (Farnadi, Kouki, 

Thompson, Srinivasan, & Getoor, 2018) also identify the two primary sources of bias in 

recommender systems with two problematic patterns of data collection, namely observation bias, 

which results from feedback loops generated by the system’s recommendations to specific groups 

of users, and population imbalance, where the data available to the system reflect existing social 

patterns expressing bias towards some groups. They propose a probabilistic programming 

approach to mitigate the system’s bias against protected social groups.  

On the other hand, (Burke, 2017) suggests to consider fairness in recommendation systems 

as a multi-sided concept. Based on this approach, he focuses on three notions of fair 

recommendations, taking the perspective of either the user/consumer (C-fairness); or the provider (P-

fairness); or a combination of the two (CP-Fairness). This taxonomy enables the developer of a 

recommendation system to identify how the competing interests of different parties are affected 

by the system’s recommendations, and hence design system architectures that can mediate 

effectively between these interests.  

 In both approaches, the issue of fairness is tied up with choosing the right LoA for a 

specific application of a recommender system. Given that the concept of fairness is strongly tied 

to the social context within which the system gathers its data and makes recommendations, 

extending the same approach to any application of recommender systems may not be viable. 

 

4.6.   Polarization and social manipulability  

A much-discussed effect of some recommender systems is their transformative impact on society. 

In particular, news recommender systems and social media filters, by nature of their design, run 

the risk of insulating users from exposure to different viewpoints, creating self-reinforcing biases 

and “filter bubbles” that are damaging to the normal functioning of public debate, group 

deliberation, and democratic institutions more generally (Bozdag, 2013; Bozdag & van den Hoven, 

2015; Harambam, Helberger, & van Hoboken, 2018; Helberger, Karppinen, & D’acunto, 2016; 

Koene et al., 2015; Reviglio, 2017; Zook et al., 2017). A closely related issue is protecting these 

systems from manipulation by (sometimes even small but) especially active groups of users, whose 

interactions with the system can generate intense positive feedback, driving up the system’s rate of 
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recommendations for specific items (Chakraborty, Patro, Ganguly, Gummadi, & Loiseau, 2019). 

News recommendation systems, streaming platforms, and social networks can become an arena 

for targeted political propaganda, as demonstrated by the recent Cambridge Analytical scandal in 

2018, and the documented external interference in US political elections in recent years (Howard, 

Ganesh, Liotsiou, Kelly, & François, 2019).  

The literature on the topic proposes a range of approaches to increase the diversity of 

recommendations. A point noted by several authors is that news recommendation systems, in 

particular, must reach a trade-off between the expected relevance to the user and diversity when 

generating personalised recommendations based on pre-specified user preferences or behavioural 

data (Helberger et al., 2016; Reviglio, 2017). In this respect, (Bozdag & van den Hoven, 2015) 

argue that the design of algorithmic tools to combat informational segregation should be more 

sensitive to the democratic norms that are implicitly built into these tools.  

In general, the approaches to the issue of polarization and social manipulability appear to 

be split between bottom-up and top-down strategies, prioritizing either the preferences of users 

(and their autonomy in deciding how to configure the personalised recommendations) or the social 

preference for a balanced public arena. Once again, some authors take a decidedly user-centred 

perspective. For example, (Harambam et al., 2018) propose the use of different “recommendation 

personae”, or “pre-configured and anthropomorphised types of recommendation algorithms” 

expressing different user preferences with respect to novelty, diversity, relevance, and other 

attributes of a recommendation algorithm. In the same vein, (Reviglio, 2017) stresses the 

importance of promoting serendipity even at the cost of sacrificing aspects of the user experience, 

such as diminished relevance of the recommendations.  

 

5.   Conclusion 

Based on the review of the literature presented in the previous section, we can now revisit the 

taxonomy that we proposed in Section 3, and place the concerns that we have identified within 

the conceptual space that it provides. Table 2 summarises our results. 
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Table 2 

 Immediate Harm  Exposure to Risk 

Utility Biased recommendations (4.1) 

 

Opacity (4.4) 

Questionable content (4.1) 

Rights Unfair recommendations (4.5) 

Encroachment on individual autonomy 

and identity (4.3) 

Privacy (4.2) 

Social manipulability and Polarisation (4.6) 

 

 

Starting with privacy, the main challenge that is linked with privacy violations is the possibility of 

unfair or otherwise malicious uses of personal data to target individual users. Thus, from our 

review, it emerges that privacy concerns may be best conceptualised as exposure to risk. Moreover, 

the types of risk to which privacy violations expose users fall mainly under the category of rights 

violations, such as unfair targeting and use of manipulative techniques.  

Issues of personal autonomy and identity also fall under the category of rights violations, and 

constitute cases of immediate violations. Unfair recommendations can be associated with a negative 

impact on utility but, as also noted by (Yao & Huang, 2017), fairness and utility are mutually 

independent, and unfairness may be best classified as a type of immediate right violation.  

A notable insight that emerges from the review is that most of the ethical impacts of 

recommender systems identified in the literature are analysed from the perspective of the receivers 

of the recommendations. This is evident not only in the reliance on accuracy metrics measuring 

the distance between user preferences and recommendations, but also when considering that 

privacy, unfairness, opacity, and the appropriateness of content are judged from the perspective 

of the individual receiving the recommendations. However, individual users are not the only 

stakeholders of recommender systems (Burke, 2017). The utility, rights, and risks carried by 

providers of recommender systems, and by society at large, should also be addressed explicitly in the 

design and operation of recommender systems. And there are also more complex, nested cases in 

which recommendations concern third-parties (e.g., what to buy for a friend’s birthday). Currently, 

this is (partially) evident only in the case of discussion on social polarization and its effects on 

democratic institutions (reviewed in section 4.6). Failure to address explicitly these additional 

perspectives of the ethical impact of recommender systems may lead to masking seriously 

problematic practices. A case in point may be that of introducing a “bias” in favour of 

recommending unpopular items to maximise catalogue coverage in e-commerce applications 

(Jameson et al., 2015). This practice meets a specific need of the provider of a recommendation 
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system, helping to minimise the number of unsold items, which in this specific instance may be 

considered a legitimate interest to be traded off against the utility that a user may receive from a 

more accurate recommendation. However, modelling the provider’s interests as a bias added to 

the system is unhelpful if the aim is to identify what would be the right level of trade-off between 

the provider’s and users’ interests. 

Any recommendation is a nudging, and any nudging embeds values. The opacity about 

which and whose values are at stake in recommender systems hinders the possibility of designing 

better systems that can also promote socially preferable outcomes and improve the balance 

between individual and non-individual utilities.   

The distribution of the topics by discipline also reveals some interesting insights. Among 

the reviewed articles, the ones addressing privacy, fairness and opacity come predominantly from 

computer science. This is in line with the general trends in the field of algorithmic approaches to 

decision making, and the presence of established metrics and technical approaches to address these 

challenges.  

In contrast, the challenges posed by socially transformative effects, manipulability, and 

personal autonomy are more difficult to address using purely technical approaches, largely because 

their definitions are qualitative, more contentious, and require viewing recommender systems in 

the light of the social context in which they operate. Thus, the articles identified in this review that 

relate to these issues are much more likely to come from philosophy, anthropology, and science 

and technology studies. The methodologies that they adopt are more varied, ranging from 

ethnographic study (Seaver, 2018b), to hermeneutics (de Vries, 2010), decision theory (Burr et al., 

2018), and economics (Abdollahpouri et al., 2017).  

This article offers a map and an analysis of the main ethical challenges posed by 

recommender systems, as identified in the current literature. It also highlights a gap in the relevant 

literature, insofar as it stresses the need to consider the interests of providers of recommender 

systems, and of society at large (including third-party, nested cases of recommendations), and not 

only of the receivers of the recommendation, when assessing the ethical impact of recommender 

systems. The next steps are, therefore, filling the gap, and articulating a comprehensive framework 

for addressing the ethical challenges posed by recommender systems, based on the taxonomy and 

the findings of this review.  
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6.   Appendix: Methodology 

We performed a keyword search on five widely used reference repositories (Google Scholar, IEEE 

Xplore, SCOPUS, PhilPapers and ArXiv), using a sting of the general form:  

((moral* OR ethic*) AND (recommend* AND (system* OR algorithm*))) 

The keyword search produced a total of 533 results, including 417 results on Google Scholar, 54 

results on Scopus, 48 results on IEEE Xplore, seven results on PhilPapers, and seven results on 

ArXiv. After eliminating duplicate entries, and screening out the irrelevant entries based on the 

title and abstract, 50 relevant entries were left. These were reviewed in more detail. Finally, 

additional entries were added following the citations in the reviewed articles. The result was a 

corpus of 37 relevant works, discussed in this review and listed in the References. 
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