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Abstract. We give an affirmative answer to Brendle’s and Hrušák’s ques-
tion of whether the club principle together with h > ℵ1 is consistent. We
work with a class of axiom A forcings with countable conditions such that
q ≥n p is determined by finitely many elements in the conditions p and q
and that all strengthenings of a condition are subsets, and replace many
names by actual sets. There are two types of technique: one for tree-like
forcings and one for forcings with creatures that are translated into trees.
Both lead to new models of the club principle.

1. Introduction

Ostaszewski [15] introduced the club principle, also written ♣, for a topolog-
ical construction:

Definition 1.1. The club principle is the following statement: There is a se-
quence 〈Aα : α < ω1, α limit〉 such that for every α, Aα is cofinal in α and for
every uncountable X ⊆ ω1 the set {α ∈ ω1 : Aα ⊆ X} is not empty.

Replacing “not empty” by “stationary”, we get an equivalent principle, see
[17, Observation 7.2]. The club principle together with CH is equivalent to the
diamond [17, Fact 7.3]. Shelah [17, Theorem 7.4] and Baumgartner [12] gave
models for the club principle and non CH. Here we provide more models of this
kind. In the technical side of our work, we show that a strengthening of Axiom
A that is fulfilled by many tree forcings and many creature forcings [16] leads
to models of the club principle in which the continuum and certain cardinal
characteristics are ℵ2. We list the used properties axiomatically (see Def. 2.2)
in order to show that the technique is quite general and can be applied to Sacks
forcing, Miller forcing, Laver forcing, other forcings with normed subtrees of
ω<ω, Blass-Shelah forcing, Mathias forcing, Matet forcing, other forcings with
creatures. We will not go into the general theory of the abundance of notions
of forcing given in [16].

Hrušák and Brendle [6, Question 9.3] asked whether the club principle to-
gether with h = ℵ2 is consistent. Using Mathias forcing, we answer this question
affirmatively:
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Theorem 1.2. The club principle together with c = h = ℵ2 is consistent relative
to ZFC.

(Since h ≤ s in ZFC, also the question on s is answered.)
With our techniques, we also find:

Theorem 1.3. The club principle together with u < g = ℵ2 is consistent relative
to ZFC.

Actually, there are two models for this theorem: the Matet model (that is, a
countable support iteration of length ω2 of Matet iterands) with s = ℵ1 and the
Blass-Shelah model with s = ℵ2. Using our techniques in an axiomatic manner
leads to the following result:

Theorem 1.4. Any countable support iteration of any length of Axiom A
iterands of tree form or of a special (easy) creature form with the finiteness
property for (≤n)n∈ω over a ground model of Jensen’s diamond yields a model
of the club principle. In particular, the club principle holds in the Laver model,
the Miller model, the Blass-Shelah model, the Mathias model, the Matet model
if the diamond holds in the ground model.

This was formerly known for the Sacks model (see [14, Cor. 6.12]) and for
the side-by-side product with countable support of κ Sacks factors [12].

There is a rich history of models of the club principle: The consistency of club
and cov(M) = κ = 2ω for a regular κ ≥ ℵ2 was shown by Fuchino, Shelah, and
Soukup [11], and that of club and add(M) = ℵ2 = 2ω by Džamonja and Shelah
[9]. Brendle [6] showed the consistency of club and cov(N ) = κ for a regular
κ ≥ ℵ2. By a result of Truss [18], |• (i.e., there is 〈Aα : α < ω1〉, Aα ∈ [ω1]ω

such that for every uncountable X ⊆ ω1 there is some α with Aα ⊆ X, see
[7]) and a fortiori ♣ imply that cov(M) = ℵ1 or cov(N ) = ℵ1. So the club
principle implies that add(N ) = ℵ1 and we have a full picture of those cardinals
in Cichoń’s diagramme (see, e.g., [4]) that can be larger than ℵ1 in the presence
of the club principle.

Devlin and Shelah’s weak diamond [8], i.e., 2ℵ0 < 2ℵ1 , can be arranged to
hold or not to hold:

Remark 1.5. Since starting with CH, all our forcings have the ℵ2-c.c., 2ℵ1 can
be anything while 2ℵ0 = ℵ2 is all the mentioned models. So Devlin and Shelah’s
weak diamond may hold or may not hold in our models.

Our notation is fairly standard. For general set-theoretic notation, we refer
the reader to [13] and for cardinal characteristics, [1] and [4] are good sources.
We follow the Israeli convention that the stronger condition is the larger one.

2. Axiom A forcings with a finiteness condition on ≤n

First, we isolate a class of axiom A forcings with an additional property that
allows to determine under q ≥ p whether the stronger q ≥n p holds just from
looking at a suitable finite part of p and of q.

Our work builds on Baumgartner and Laver’s [2] and on Hrušák’s [12].
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Definition 2.1. A notion of forcing (P,≤P) has Axiom A if there are relations
≤n, n ∈ ω, with the following properties:
(1) ≤0=≤P,

(2) p ≤n+1 q implies p ≤n q,

(3) if pn ≤n pn+1 for n ∈ ω, then there is some q ∈ P such that for all n,
pn ≤n q,

(4) for every p ∈ P and every n and every antichain A in P there is some
q ≥n p such that {r ∈ A : r 6⊥ q} is countable.

We now add a property that will be useful for handling conditions in count-
able support iterations. We want that parts of the conditions are determined
and not just names. We give an axiomatisation for tree forcings:

Definition 2.2. A notion of forcing (P,≤P) whose elements p are subsets of
2<ω or of ω<ω has the finiteness property for (≤n)n∈ω iff
(1) q ≥ p implies q ⊆ p, and

(2) there is a function f : P× ω → ω such that for every n, p, q:

(2.1) p ≤n q iff (p ≤P q and q ∩ f(p, n)f(p,n) = p ∩ f(p, n)f(p,n)).

In the case of 2<ω we can write 2f(p,n) instead of f(p, n)f(p,n).

An important consequence of the finiteness property together with the count-
ability of the domain of a condition and the fact that q ≥ p implies q ⊆ p is:
If p ≤n q, then there are a finite subset a ⊆ q and a strengthening p〈a〉 (see
Definition 3.2) of p such that p ≤n p〈a〉 ≤n+1 q (see Lemma 3.4). Since p is
countable, there are countable many possibilities for these sets a, for all possible
q together. In our stepping up Lemma 3.5, we will perform a construction along
these a’s. Besides this, the proof of the club principle uses the original diamond
in the ground model and the properness of the iterands and some hereditary
countability of names and of forcing conditions (after some collapse).

Examples of tree forcings: Sacks forcing S. Conditions are perfect subtrees
of 2<ω. For s, t ∈ ω<ω we write s E t iff s in an initial segment of t. For a
Sacks condition p, r ∈ p is called the trunk of p, if for all s / r, s has only one
immediate successor in p (this is called “s does not split”) and r _ 0 ∈ p and
r _ 1 ∈ p. The length of the trunk +1 is called the first splitting level. A level
k ≥ n of p is called the n-th splitting level if there are 2n points si ∈ p ∩ 2k,
i < 2n, such that {r ∈ p : ∃i ≤ 2n, r E si} can be mapped in a E preserving
and incomparability preserving manner into the tree 2n and if k is minimal
with this property. We take S with the Axiom A structure p ≤n q iff p ≤ q
and p and q agree up to the n-th splitting levels of q. There is a body of work
by Baumgartner and Laver and by Hrušák on the Sacks forcing, which we will
generalise to other Axiom A tree forcings with the finiteness condition. The
set of conditions such that for every n, the n-th splitting level consists just of
the 2n nodes that are the leaves of the 2n tree witnessing that it is the n-th
splitting level, are dense in the Sacks forcing. We set f(p, n) = (n-th splitting
level of p) and the equivalence in (2.1) holds.
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Miller forcing. Conditions are subtrees p ⊆ ω<ω such that (∀s ∈ p)(∃t D
s)|{n : t _ n ∈ p}| = ω. The latter is called “t is infinitely splitting.” Stronger
conditions are subtrees. We restrict the poset to the dense subset of trees all of
whose splitting nodes are infinitely splitting. We take a linear ordering ≤1,k on
ω<ω of type ω. Then we let p ≤n+1 q if the ≤1-first splitting nodes of p with n
splitting predecessors s in p with the first n immediate successors of each such
s are present in q and they are infinitely splitting in q. f(p, 0) = 0, for n ≥ 1,
f(p, n) = max(height of the n-th splitting level of p, n-th successor of any of
the splitting nodes witnessing the n splitting levels).

Similarly we can do with Laver forcing, which increases b and r. We think
of a Laver tree of strictly increasing sequences. f(p, n) = max(n-th successor
of any of the nodes witnessing for the n-th splitting level).

Cohen forcing Fn<ω(ω, 2). Since this is a c.c.c. forcing, Axiom A holds by
letting ≤n being the equality for all n ≥ 1. For n ∈ ω and a condition p, we let
f(p, n + 1) = max(dom(p)). Then f witnesses the finiteness property.

And finally we have that random forcing is a counterexample to the finiteness
property of (≤n)n<ω for whatever ≤n-relations, n ∈ ω, we define on it. This
follows from [18] and our results.

We write iterations as Pγ = 〈Pα, Q
˜

β : β < γ, α ≤ γ〉 with Pα+1 = Pα ∗ Q
˜

α.

In our iterations, we have Qβ = ϕV
Pβ , for some definition ϕ of some Axiom A

forcing with the finiteness condition that is evaluated in the respective inter-
mediate stage. All limits in the iterations are taken with countable supports.
Different kinds of iterands could be mixed in the iterations, and still the club
holds in the final model. However, we do not (yet) have an application for this.

Now let Qβ be an iterand, an Axiom A forcing with the finiteness property.
Let Pα denote a countable support iteration of Qβ of length α. If p, q ∈ Pα, n ∈
ω, F ⊆ α, F finite, we write q ≥(F,n) p iff (∀β ∈ F )((q � β) Pβ

q(β) ≥n p(β)).
We recall the fusion lemma for Pα:

Lemma 2.3. (See [2, Lemma 1.2].) Let ni, i ∈ ω, be a strictly increasing
sequence and let Fi ⊆ α be finite. Assume that pi, i ∈ ω, is such that Fi+1 ⊇ Fi

and
⋃

i∈ω Fi =
⋃

i∈ω supp(pi), and pi+1 ≥(Fi,ni) pi. Then we define p so that
supp(p) =

⋃
i∈ω supp(pi) and ∀β ∈ supp(p), p(β) is a name for the fusion of

{pi(β) : i ∈ ω, β ∈ supp(pi)}, then p ∈ Pα and p ≥(Fi,ni) pi.

Now we introduce a finer notion of ≤F,n in order to describe constructions
in which the ≤-relation is improved at only one coordinate.

Definition 2.4. If p, q ∈ Pβ, F ⊆ β, F finite, ~n ∈ F ω, we write q ≥(F,~n) p iff
F = {β0, . . . , βr}, ~n = (n(β0), . . . , n(βr)) and (∀i ≤ r)((q � βi) Pβi

q(βi) ≥n(βi)

p(βi)).

We write for σ ∈ kk ∩ p, pσ = {τ ∈ p : τ / σ ∨ τ D σ}. If pσ is defined, i.e.,
if σ ∈ p, we say that σ is consistent with p. Now we generalise this notion of
subtrees to iterated forcings:

Definition 2.5. (See [2].) Let p ∈ Pα, F = {β0, . . . , βr} ∈ [supp(p)]<ω, ~k =
(k(β0), . . . , k(βr)) ∈ F ω, and ~σ = (σ(β0), . . . , σ(βr)), σ(βi) ∈ k(βi)k(βi). By
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induction on β ≤ α we define when ~σ � β+1 is consistent with p~σ�β is consistent
with p and then we define p~σ�β+1.

Suppose that p~σ�β is defined. If β ∈ F and if p~σ�β � β Pβ
“σ(β) ∈ p~σ�β(β)(=

p(β))”, then we say that ~σ � (β + 1) is consistent with p and we define the
condition p~σ�β+1 by

p~σ�β+1(α) = p~σ�β(α) for α < β,

p~σ�β+1(β) = (p~σ�β(β))σ(β),

p~σ�β+1(γ) = p(γ) for γ > β.

If β ∈ F and if p~σ�β � β 6 “σ(β) ∈ p(β)”, then p~σ�β+1 is not defined and
~σ � β + 1 is not consistent with p. If β 6∈ F , then p~σ�β+1 = p~σ�β. For a limit
ordinal α, p~σ�α = p~σ�max(F∩α).

The idea behind the next definition is: We want to get rid of the gap between
p~σ�β � β 6 “σ(β) ∈ p(β)” and p~σ�β � β  “σ(β) 6∈ p(β)” for sufficiently many

~σ. Let fβi
∈ VPβi belong to QV

Pβi

βi
as in the finiteness property. k(βi) shall

be so large that p � βi Pβi
k(βi) ≥ fβi

(p(βi), ni) for all βi ∈ F . Since in an

iteration p(β) is only a name for a condition in QV
Pβ , we need to find sufficiently

large finite sets such that pinning down all their members guarantees that all
interpretations of the name of the condition are in the desired ≤(F,~m)-relation.

Definition 2.6. (Compare with [2].) Let F = {β0, . . . , βr} be a finite subset of
α and ~k ∈ F ω. A condition p ∈ Pα is said to be (F,~k)-determined if for every
~σ = (σ(β0), . . . , σ(βr)) with σ(βi) : k(βi) → k(βi) the following holds: either ~σ
is consistent with p or ∃β ∈ F so that ~σ � (F ∩ β) is consistent with p and
p~σ�(F∩β) � β Pβ

σ(β) 6∈ p(β).

Let Fn ∈ [α]<ω and mn ∈ ω. Now we want that (Fn, ~mn), n ∈ ω, grows in
such a way that we have a fusion lemma again. The following definition helps
to describe the growth behaviour of the ~mn.

Definition 2.7. Let F,G ∈ [α]<ω and F ⊆ G. Let ~m ∈ F (ω r {0}) and let
~n ∈ G(ω r{0}). Then we write (F, ~m) ≤ (G,~n) iff F ⊆ G and m(β) ≤ n(β) for
all β ∈ F and we write (F, ~m) < (G,~n) iff there is β ∈ F such that m(β) < n(β)
or if G ) F .

Lemma 2.8. (Compare to [2],[12, Lemma II.4].) For β < α, let fβ ∈ V[Pβ] be
a function for Qβ as in Definition 2.2. Let p ∈ Pα, F ∈ [α]<ω and ~m ∈ F ω.
There are q ≥(F,~m) p and ~k(p, F, ~m) = ~k ∈ F ω such that q is (F,~k)-determined
and for all β ∈ F , q � β Pβ

k(β) ≥ fβ(q(β),m(β)).

Proof. The lemma is proved by induction on α simultaneously for all F ∈ [α]<ω,
~m. α = 1: this is true since every p ∈ P1 is ({0}, k)-determined for every
k ∈ ω. α = β + 1: Only the case when β ∈ F needs to be considered. There
are a Pβ-name q

˜
and a name k

˜
such that p � β Pβ

“q
˜
≥m(β) p(β) and k

˜
=

fβ(p(β),m(β))”. By the inductive hypothesis, there are q′ and ~k′ such that
q′ ≥Fr{β}, ~m�β p � β, q′ is (F r {β},~k′)-determined and for all γ ∈ F ∩ β,
q′ � γ Pγ k′(γ) ≥ fγ(q′(γ),m(γ)).
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For every ~σ = (σ(β0), . . . , σ(βr−1)), Fr{β} = {β0, . . . , βr−1}, σ(βi) : k′(βi) →
k′(βi), consistent with q′ we take q′′~σ ≥ q′~σ and k~σ such that q′′~σ Pβ

k
˜

= k~σ ≥
fβ(q′(β),m(β)) and such that q′′~σ decides q(β)

˜
∩ kk~σ

~σ , say to q′′~σ(β). We let
~k(p, F, ~m) � β = ~k′ and we let ~k(p, F, ~m)(β) = max{k~σ : ~σ consistent with q′})+
1. Now we let q =

⋃
~σ q′′~σ

_ q′′~σ(β) and have that q ≥F,~m p, q is (F,~k)-
determined and ∀γ ∈ F , q � γ  k(γ) ≥ fγ(q(γ),m(γ)).

For limit α, we choose β such that max(F ) < β < α. By induction hypo-
thesis there are q′ ∈ Pβ

~k = ~k(p � β, F, ~m) such that q′ is (F,~k)-determined
and q′ ≥(F,~m) p � β. Then we let pβ,α be such that p = p � β _ pβ,α and put
q = q′ _ pβ,α. a

We denote by ~k(p, F, ~m) the (lexicographically) minimal ~k as in the previous
lemma. From Axiom A we get

Lemma 2.9. [2, Lemma 2.3 (iii)] Let P = 〈Pα, Q
˜

β : β < γ, α ≤ γ〉 be a
countable support iteration of Axiom A iterands and let {pi : i < κ} be an
antichain above p ∈ P. Further, let G ∈ [γ]<ω, ~n ∈ Gω. Then there is some
q ≥(G,~n) p such that {pi : i < κ, pi 6⊥ q} is countable.

The following slight generalisation of a notion introduced in [12] will be very
important for showing the club principle:

Definition 2.10. Given a Pα-name X
˜

for an uncountable subset of ω1, a con-
dition p ∈ Pα, F ∈ [α]<ω, and ~m ∈ F ω we let

AF,~m(p, X
˜

) = {γ ∈ ω1 : (∃q ∈ Pα)(q ≥(F,~m) p ∧ q  γ ∈ X
˜

)}.

Definition 2.11. A condition p ∈ Pα is said to be (X
˜

, F, ~m)-good if p is
(F,~k(F, p, ~m))-determined and ∀q ≥(F,~m) p, |AF,~m(q, x

˜
)| = ℵ1.

In the following section we show how one can step up from (X
˜

, F, ~m)-good
to (X

˜
, G, ~n)-good conditions.

3. Stepping up from good to better conditions

For one iterand Q, we have the following [12, Claim IV.2] that is stated and
proved there for Sacks forcing:

Lemma 3.1. If p ∈ S is (X
˜

, {0},m)-good then there is a q ≥m p that is
(X
˜

, {0},m + 1)-good.

In order prove an analogous stepping up lemma for the countable support
iteration of arbitrary tree forcings with the finiteness condition, we shall carry
out an induction over the heights of initial segments of trees such that all
possibilities of extending a condition are covered in the end. This version is
related to the stated but not proved result [12, Claim IV.3] on product forcing
of Sacks factors with countable support. In each step, initial finite parts of the
tree are arranged and then frozen. These parts need to be actual finite sets and
not just names for parts of the conditions. In the following, let Pγ = 〈Pβ, Q

˜
α :

α < γ, β ≤ γ〉 be a countable support iteration of tree iterands that are tree
forcings with the finiteness property.
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Definition 3.2. Let p ∈ Pγ, G = {β0, . . . , βr} ⊆ [γ]<ω, ~n ∈ Gω, ~k ≥ ~k(p, G,~n)
and let p be (G,~k)-determined. For

(3.1) p � β0  (a(β0) ⊆ p(β0) ∩ k(β0)k(β0) and a(β0) is a tree)

we define p〈a(β0)〉(γ) = p(γ) for γ 6= β0 and p〈a(β0)〉(β0) =
⋃
{p(β0)τ : τ ∈

a(β0)}.
If for every τ ∈ a(β0),

(3.2) p〈a(β0)〉 � β1  (a(β1, τ) ⊆ p(β1) ∩ k(β1)k(β1) and a(β1, τ) is a tree),

we let

p〈a(β0), (a(β1, τ) : τ ∈ a(β0))〉(γ) = p〈a(β0)〉(γ) for γ < β1, and

p〈a(β0), (a(β1, τ) : τ ∈ a(β0))〉(β1) =
⋃
{p(β1)τ ′ : τ ∈ a(β0), τ ′ ∈ a(β1, τ)}

p〈a(β0), (a(β1, τ) : τ ∈ a(β0))〉(γ) = p(γ) for γ > β1.

If for every τ ∈ a(β0), τ ′ ∈ a(β1, τ),

p〈a(β0), (a(β1, τ) : τ ∈ a(β0))〉 � β2 Pβ2
(a(β2, τ, τ

′) ⊆ k(β2)k(β2)

and a(β2, τ, τ
′) is a tree),

(3.3)

we continue the inductive definition in the obvious way.

If p is (G,~k)-determined then ā = (a(β0), (a(β1, τ) : τ ∈ a(β0)), . . . ,
(a(βr, τ0, . . . , τr−1) : τ0 ∈ a(β0), τ1 ∈ a(β1, τ0), . . . , τr−1 ∈ a(βr−1, τ0, . . . , τr−2)))
can be chosen as a tree in V (or rather a tree of trees, also indexed by β0, . . . , βr)
in the ground model and not a name. Note that p〈a(β0), (a(β1, τ) : τ ∈
a(β0))〉{(β0,τ),(β1,τ ′)} � β2 = (p{(β0,τ),(β1,τ ′)}) � β2 if τ ∈ a(β0) and τ ′ ∈ a(β0, τ).

Definition 3.3. Let (F,m) ≤ (G′, ~n′) ≤ (G,~n) and let p, G, ~n, ā be as above.
If p is (G,~k(p, G,~n))-determined and if there is a (G,~k(p, G,~n))-determined
q ≥(F,~m) p such that q ≥(G′,~n′) p〈ā〉 ≥(F,~m) p and all τ ∈ ai for any ai ∈ ā and
τ ∈ ai fulfil τ ∈ ``, then a sequence ā like this is called relevant for p, ~k(p, G,~n)
of strength (`, (G′, ~n′)).

Note that ~k(p, G,~n) can be much bigger than ~k(p, F, ~m) and then there are
many relevant sequences. However, the number of relevant sequences is finite
for each fixed strength.

The thickness of ā leads to p〈ā〉 ≤(G,~n) q for larger (G,~n): If the sets
ā = (a(β0), (a(β1, τ0) : τ0 ∈ a(β0)), . . . , (a(βi, τ0, . . . , τi) : τ0 ∈ a(β0), . . . , τi ∈
a(βi, τ0, . . . , τi−1))), i ≤ r, are chosen such that for all i ≤ r,

p〈ā〉 � βi Pβi
a(βi, τ0, . . . , τi−1) ∩ q(βi) = fβi

(q(βi), n(βi)) ∩ q(βi)∧
a(βi, τ0, . . . , τi−1) ⊆ q(βi) ⊆ p(βi),

then we get p〈ā〉 � βi  p〈ā〉(βi) ≤n(βi) q(βi) and p〈a〉 ≤(G,~n) q.

Lemma 3.4. Let p ≤(F,~m) q and assume that p and q are (G,~k(G,~n))-determined.
Then there are ` and ā such that p ≤(F,~m) p〈a〉 ≤(G,~n) q and ā is of strength
(`, (G,~n)).
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Proof. Just cut ā out of q with ⊆ replaced by equality in equations (3.1), (3.2),
(3.3) of Definition 3.2, and p by q and also the ~k-function from q. The resulting
` is determined by fβi

(q, ~n) and not uniform in p, (G,~n). a

The following stepping up lemma is an important tool for the proof on the
club principle.

Lemma 3.5. (Cf. [12, Claim IV.3]) If p ∈ Pα, F ⊆ G be finite subsets of
α, X

˜
a Pα-name for an uncountable subset of ω1, and let ~m ∈ F (ω r {0}),

~n ∈ G(ω r {0}), (F, ~m) ≤ (G,~n). If p is (x
˜
, F, ~m)-good then there is q ∈ Pα,

q ≥(F,~m) p and q is (X
˜

, G, ~n)-good.

Proof. The lemma can be proved by successive applications of steps of the
following two basic kinds: First with G r F = {α0} and n(α0) = 1 for some
α0, or second, with G = F and one coordinate is increased by one when going
from ~m to ~n. Hence we only need to consider these two cases. (This cutting
down to elementary steps is not necessary for the proof. Working along ā that
grow higher and higher in just one coordinate β and otherwise are the same
and at the same time freezing higher and higher subtrees of the conditions in
more and more coordinates in the iteration length merely seems to be easier
than working with more (still finitely many) ā that grow in all coordinates of
dom(~n) simultaneously.)

Suppose that the lemma fails. We construct a sequence 〈pi, Gi,~ki, ~ni, : i ∈ ω〉
with the following properties:
(1)

⋃
i∈ω Gi =

⋃
i∈ω supp(pi), (G0, ~n0) ≥ (G,~n), ~ni ∈ Gi(ω r {0}),

(2) pi ∈ Pα, p0 = p,
(3) pi+1 ≥(Gi,~ni) pi,

(4) pi is (Gi,~ki)-determined for ~ki = ~k(pi, Gi, ~ni),

(5) for all ~σ ∈
∏

β∈Gi
ki(β)ki(β), if ~σ is consistent with pi then ~σ is consistent

with pi+1,
(6) limi→∞ ~ni(β) = ∞ for all β ∈

⋃
i∈ω supp(pi), and for all i, (Gi+1, ~ni+1) >

(Gi, ~ni),

(7) for all i, for all ā relevant for pi, ~k(pi, Gi, ~ni) of strengths (i, (G,~n)) we have
|AG,~n(pi+1〈ā〉, X

˜
)| < ℵ1.

To do this, suppose that pi, Gi, ~ki, ~ni have been constructed. Enumerate all ā
as in (7) as {ār : r < R}. We construct {pr

i : r ≤ R} so that
(a) p0

r = pi,

(b) pr+1
i ≥Gi,~ni

pr
i ,

(c) |AG,~n(pr+1
i 〈ār〉, X

˜
)| < ℵ1.

At step r we find p̄r
i ≥ pr

i 〈ār〉, such that ār ⊆ p̄r
i , so p̄r

i ≥G,~n pr
i 〈ār〉, and

|AG,~n(p̄r
i , X˜

)| < ℵ1. If this were not possible then the lemma holds, as pr
i 〈ār〉 ≥F,~m

p and as then pr
i 〈ār〉 is (X

˜
, G, ~n)-good. We take a maximal antichain in the

set of these counterexamples p̄r
i . By Lemma 2.9 there is a ~k(pr

i 〈ār〉, Gi, ~ni)-
determined qr+1

i ≥(Gi,~ni) pr
i (〈ār〉) such that qr+1

i = qr+1
i 〈ār〉 is compatible
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with at most countably many of the members of the antichain and hence has
|AG,~n(qr+1

i 〈ār〉, X
˜

)| < ℵ1. We define pr+1
i . For ~τ ∈ ār we let (pr+1

i )~τ = (qr+1
i )~τ .

In the parts not above a stem in ār, we let (pr+1
i )~τ = (pr

i )~τ . Thus we have
pr+1

i ≥(Gi,~ni) pr
i and |AG,~n(pr+1

i 〈ār〉, X
˜

)| < ℵ1. Now also property (5) is true for
pr

i and for pr+1
i . Now we go over to ār+1, and work on it if it is still a subset of

pr+1
i . (Otherwise ār+1 will be erased from the list of tasks.) So we go on until

we reach r = R and set pR
i = pi+1. Then we choose Gi+1 and ~ni+1 with an eye

towards (6) and choose ~ki+1 = ~k(pi+1, Gi+1, ~ni+1) ≥ ~ki and a p′i+1 ≥Gi,~ni
pi+1

such that p′i+1 is (Gi+1,~ki+1)-determined. We rename such a p′i+1 to pi+1 and
finish the inductive step.

Now let pω be the fusion of the sequence pi and let

A =
⋃
{AG,~n(pω〈ā〉, X

˜
) : (∃i, r < ω)(ā that is relevant for pr

i , Gi, ~k(p, Gi, ~ni)

and of strength (i, (G,~n)))}.

Since there are countably many ā’s and since AG,~n(pω〈ā〉, X
˜

) ⊆ AG,~n(pi
r〈ā〉, X˜

)
for the construction stage i, r when ā is relevant and of strength (i, (G,~n)) for
the first time, we have that A is countable. The set AF,~m(pω, X

˜
) is uncountable

since pω ≥G,~n p and p is (F, ~m)-good and (G,~n) ≥ (F, ~m). Now we choose
γ ∈ AF,~m(pω, X

˜
) r A. Then there is a (G,~k(pω, G, ~n))-determined p′ ≥F,~m pω

such that p′  γ ∈ X
˜

. We choose

ā = {~σ ∈
∏
β∈G

~k(pω, G, ~n)(β) : ~σ is consistent with p′}.

Then there are i, r such that ā appeared in the step from i to i + 1 and hence
there are Gi, ~ki showing that ā relevant for pr

i and (Gi, n̄i) that is of strength
(i, (G,~n)). This yields p′〈ā〉 ≥(G,~n) pω〈ā〉. Then, however, we get p′〈a〉 = p′ and
hence γ ∈ AG,~n(pω〈ā〉, X

˜
), which is impossible. a

4. The finiteness condition for creature forcings

There are many useful notions of forcings that can be described in the fol-
lowing (strongly simplified, see [16]) creature framework: Let n0 = 0, and let
ni, i < ω, be a a strictly increasing sequence of natural numbers. A condi-
tion has the form p = (a, c0, c1, . . . ), with a ⊆ n0 and ci ⊆ [ni, ni+1) or even
ci ⊆ 2ni × 2ni+1 (see [5] or [1, page 370]) for some strictly increasing sequence
ni, i < ω, and possibly some limit condition of the kind limn→∞ norm(cn) = ∞
or some lim sup condition. The relation p ≤ q = (b, d0, d1, . . . ) is defined
by b ⊇ a and b r a as well as every di is a combination (that is, union
of some of them, composition of some of them when conceived as relations,
or something similar, called subcomposition in [16]) of finitely many of the
ci, say of {cj : j ∈ [mi,mi+1)}, such that given finitely many ci there are
only finitely many combinations d allowed. Now we can translate p to a tree
t(p) = {b ∈ 2<ω : ∃q = (b, d̄) ≥ p} of trunks of possible extensions, and get
q ≥ p implies that t(q) ⊆ t(p) and moreover, if we restrict the part of the tree
that is gotten from {cj : j ≤ m0} by the combination operation then it is
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finite (though there might be infinitely many trunks of some fixed lengths, just
gotten from later and later cj) It is equivalent to force with the translated trees
and the translated ≤-relation (which is a sharpening of ⊆). The translation
p 7→ t(p) in injective, and the outcome are somewhat uniform trees.

Then (P,≤P) (or rather its translation) has the finiteness property for (≤n)n∈ω

if there is a function f : P× ω → ω such that for every n, p, q:

p = (s, c̄) ≤n q = (t, d̄) iff
p ≤P q and

(s ∩ f(p, n), c0 ∩ f(p, n), c1 ∩ f(p, n), . . . ) =

(t ∩ f(p, n), d0 ∩ f(p, n), d1 ∩ f(p, n), . . . ).

Proof: We look at the subtrees built from ci for i such that ci ⊆ f(p, n) or
ci ⊆ 2≤f(p,n) × 2≤f(p,n) if the ci are relations. These are finitely many i, and
the subtree is a subset of 2≤f(p,n).

We give examples. For Mathias forcing M, we let (s, C) ∈ M if s ∈ [ω]<ω,
C ∈ [ω]ω and max(s) < min(C). (s, C) ≤ (t, D) iff t ⊇ s, For n ∈ ω, (s, C) ≤n+1

(t, D) iff (s, C) ≤ (t, D) and s = t, and the first n elements of D are the first
n elements of C. It is well known that an iteration of M of length ω2 with
countable supports gives a model of h = ℵ2, for a proof see e.g. [10, Lemma 3.2].
f((s, C), 1) = max(s) + 1 and f((s, C), n + 1) = (n-th element of C) + 1 for
n ≥ 1. Mathias forcing is used to show the consistency of h = ℵ2 together with
the club principle.

Matet forcing: (See [3].) Conditions are of the form p = (s, c̄), where c̄ =
c0 < c1 . . . and ci ∈ [ω]<ω. Here we write c < d to denote max(c) < min(d). We
let (s, c̄) ≤ (t, d̄) iff t r s is the union of some members of c̄ and every member
of d̄ is the union of some members of c̄. We let (s, c̄) ≤n+1 (t, d̄) iff s = t and
ci = di for i < n and cn = dn ∩ (max(cn) + 1). f((s, c̄), n + 1) = max(cn) + 1
with c−1 = s.

Blass-Shelah forcing (See [1, page 370 ff.] or [5]) also fulfils this condition.
f(p, n) is max{x : x ∈ ck} where p = (a, c0, c1, . . . ) and k is such that from
k onwards the norm of ci is above n. Blass-Shelah forcing is translated into
a forcing with labelled trees in [1, pages 370–372]. This procedure given their
differs slightly from the simple translation given above and allows for a very
elegant proof of item (4) in the definition of Axiom A.

5. The effect of Jensen’s diamond in the ground model

It is well known [5, Lemma 5.10] that in countable support iterations of
proper iterands Q ⊆ ωω, starting from a ground model with CH, names for
subsets of ω1 have in a certain sense equivalent names ⊆ H(ω1). We recall
the proof of this fact, and we strengthen the notion of equivalence slightly. In
this sitation, names for subsets of ω1 can be guessed if Jensen’s diamond holds
in the ground model. Then we find countable subsets of the guessed names,
in the ground model, and this will be our club sequence. In the following let
Pα = 〈Pγ , Q

˜
δ : γ ≤ α, δ < α〉 be a countable support iteration of proper

iterands such that for all γ < α, Pγ  Q
˜

γ ⊆ ωω. Here, we identify each tree
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p ∈ Q, where Q is an iterand as in the second or in the fourth section, with a
real. The guessing procedure to establish the club principle in VPα works for
any iteration length α. For application we set α = ω2.

Our proof of the existence of hereditarily countable names is a modification
of Section 5 in [5]. Since it is a slight strengthening, we carry it out.

We consider Pα-names x for subsets of ω (i.e., reals) as being specified by
giving, for each n ∈ ω, a maximal antichain A(x, n) in Pα and for each p ∈
A(x, n) a value v(x, n, p) ∈ 2 such that p  x(n) = v(x, n, p). It is well known
that every name of a real is equivalent, in the sense of equality forced by all
conditions, to one of this sort. When we are interested only in conditions
extending a particular p, then the antichain A(x, n) need to be maximal only in
the weaker sense that no extension of p can be added to them, we then refer to
x as a name for a real relative to p. We call such a name x hereditarily countable
relative to p if, for each n, the subset of A(x, n) that consists of the conditions
in A(x, n) that are compatible with p is countable and all the Pβ-names of reals
occurring in the conditions pβ constituting any p = 〈pβ : β < α, β ∈ supp(p)〉 ∈
A(x, n) are hereditarily countable relative to p. A (just) hereditary countable
name x is an x ∈ H(ω1).

Lemma 5.1. [5, Lemma 5.7] Let N be a countable elementary submodel of
H(χ) that contains Pα, and let p be an (N, Pα)-generic condition. Then for
every Pα-name x ∈ N for a real there is a hereditarily countable Pα-name y
relative to p such that p  x = y.

Corollary 5.2. [5, Cor. 5.8] If x is a P-name for a real then the set of conditions
that force x = y for some y ∈ H(ω1) is dense.

We need a slightly improved version of this lemma: The hereditarily count-
able name relative to p is the same for many p.

Lemma 5.3. Let N be a countable elementary submodel of H(χ) that contains
Pα. Then for every Pα-name x ∈ N for a real there is a name y, that is
hereditarily countable relative to every (N, Pα)-generic p and every (N, Pα)-
generic p forces x = y.

Proof. The (N, Pα)-genericity of p implies that p � β is (N, Pβ)-generic for all
β ∈ α. Since p ∈ N and supp(p) is countable supp(p) ⊆ N . The lemma is
proved by induction on α. To obtain y, first replace each of the antichains
A(x, n) by its intersection with N . These intersections are maximal relative
to p for every (N, Pα)-generic p, just by (N, Pα)-genericity, and the name x′

obtained in this way is forced by p to equal x. Since N is countable, the an-
tichains A(x′, n) = A(x, n) ∩ N are countable. If q = 〈qβ : β < γ〉 is in one
of these antichains, hence in N , then N also contains an enumeration, in an
ω-sequence of all the countably many conditions as the iteration has countably
many non-trivial components qβ. Thus each of these components qβ is in N and
can therefore by induction hypothesis be replaced, for every (N, Pβ)-generic q
by a hereditarily countable relative to q Pβ-name. Doing this simultaneously
for all such q and β we obtain the desired name y. a
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Now from our lemma we also get a slightly stronger corollary:

Corollary 5.4. If x ∈ N is a Pα-name for a real then there is some y ∈ H(ω1)
such that the set of conditions that force x = y is dense for conditions in N ,
i.e., (∀p ∈ N)(∃q ≥ p)(q  x = y).

For δ < ω1, the same applies to all Pω2-names for subsets of δ instead of
subsets of ω. Every name X for a subset of ω1 is equivalent to the sequence of
names of 〈X ∩ δ : δ < ω1〉. Given an increasing sequence of models Nδ, δ < ω1,
each member Xδ of the sequence can be replaced by a hereditarily countable
object that is forced to be the same by densely many conditions in Nδ. The
same analysis shows that conditions themselves, being countable functions into
iterands whose conditions are reals, are equivalent to hereditarily countable
objects.

The next lemma is a modification of [12, IV.4] for ℵ1 names for X∩δ, δ < ω1,
and for arbitrary iteration length. We write ω2 nevertheless.

Lemma 5.5. Assume ♦ in the ground model, and assume that Pω2 is an itera-
tion of axiom A forcings with the stepping up property from Lemma 3.5. There
is a sequence 〈Cδ : δ ∈ lim(ω1)〉 such that Cδ is cofinal in δ and for every
p ∈ Pω2 and every Pω2-name X

˜
for an uncountable subset of ω1 there are q ≥ p

and δ ∈ lim(ω1) such that q  Cδ ⊆ X
˜

.

Proof. We start with the diamond:

Claim 5.6. (See the claim within the proof of [12, IV.4]) Under ♦, there is a
sequence 〈pδ, Aδ,Mδ : δ ∈ lim(ω1)〉 such that if p ∈ Pω2, X

˜
a Pω2-name for

an uncountable subset of ω1, X
˜
⊆ H(ω1) and C ⊆ [H(ω3)]ℵ0 is a closed and

unbounded set of countable elementary submodels then there are an M ∈ C such
that X

˜
, p, Pω2 ∈ M , X

˜
can be written as

⋃
δ∈ω1

X
˜

δ, X
˜

δ ∈ H(ω1) such that for
every δ, Xδ

˜
is a hereditarily countable name relative to every Mδ-generic q and

is equivalent to X
˜
∩ δ in the sense of Lemma 5.3, and there is δ < ω1 such that

p is equivalent to pδ, M ∩H(ω1) = Mδ, Mδ ∩ ω1 = δ, pδ ∈ Mδ and X
˜

δ = Aδ.

Proof. Fix a ♦-sequence 〈Dδ : δ ∈ lim(ω1)〉. First, using CH, we construct a
sequence 〈Mδ : δ ∈ C ′〉 for some club C ′ in ω1 such that
(a) Mδ is an elementary submodel of H(ω1),

(b) Mβ � Mδ for β < δ, and Mδ =
⋃
{Mβ : β < δ} for limit δ,

(c) {Mδ : δ ∈ C ′} is a closed and unbounded subset of [H(ω1)]ℵ0 ,

(d) Mδ ∩ ω1 = δ for δ ∈ C ′.

Note that
⋃
{Mδ : δ ∈ C ′} = H(ω1). For every C ⊆ [H(ω3)]ℵ0 that is a closed

and unbounded set of elementary submodels of H(ω3) the set

{δ ∈ ω1 : (∃M ∈ C)M ∩H(ω1) = Mδ}

contains a club subset of C ′. We also fix a bijection Φ: ω1 → H(ω1) such that
Φ[δ] = Mδ for δ ∈ C ′. Now we define pδ, Aδ. For δ ∈ C ′ if Φ[Dδ] = {p}× (δ,A)
we let pδ = p, Aδ = A. Otherwise we let pδ and Aδ be arbitrary.
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To see that the construction works let p, X
˜

, C be as required. Let D =
Φ−1[{p}×

⋃
δ∈C({δ}×X

˜
δ)]. Let C ′′ = {δ ∈ C ′ : (∃M ∈ C)(M ∩H(ω1) = Mδ)}

and note that this is a club subset of ω1. There is an δ ∈ C ′′ such that
Dδ = D∩δ, since (Dδ)δ∈lim(ω1) is a ♦-sequence. This implies that p is equivalent
to pδ and X

˜
δ = Aδ. As δ ∈ C ′′, also Mδ ∩ ω1 = δ, and there is an M ∈ C such

that M ∩H(ω1) = Mδ. This finishes the proof of the claim.

Having fixed a sequence 〈pδ, Aδ,Mδ : δ ∈ lim(ω1)〉 like this, construct Cδ

as follows: If there is a p ∈ Pω2 , X
˜

a name for an uncountable subset of ω1 of
the prescribed form and an elementary submodel M containing p and X

˜
such

that pδ = p, Mδ = M ∩H(ω1), Mδ ∩ ω1 = δ, and Aδ = X
˜
∩Mδ then we find a

sequences 〈αi ∈ ω〉 ↗ δ and an enumeration Ii, i ∈ ω, of the dense sets of Pω2

that are in Mδ, and according to the stepping up lemma we may construct a
sequence 〈qi, Fi, ~ni,~ki, βi : i ∈ ω〉 such that

(1) Fi ⊆ Fi+1,
⋃

i∈ω Fi = δ,

(2) αi < βi < δ,

(3) q0 ≥ pδ,

(4) qi ∈ Pω2 ∩Mδ is (Fi, ~ki) determined and ~ki = ~k(pi, Fi, ~ni), w.l.o.g. ~ni can be
the vector constant to i, at least we need that (∀β ∈ supp(p))(limi→ω ~ni(β) =
∞),

(5) qi+1 ≥(Fi,~ni) qi,

(6) qi is (X
˜

δ, Fi, ~ni)-good in Mδ,

(7) qi  βi ∈ Aδ and

(8) qi  Ii ∩Mδ ∩G
˜
6= ∅.

Finally set Cδ = {βi : i < ω}.
In order to verify that 〈Cδ, : δ ∈ ω1〉 construction works let p ∈ Pω2 and X

˜be as required. Let C be a closed unbounded set of elementary submodels of
H(ω3). Take M ∈ C containing p, Pω2 and X

˜
. Then there is a δ ∈ lim(ω1) such

that p is equivalent to pδ and X
˜
∩Mδ = Aδ and M ∩H(ω1) = Mδ. Let q be

the fusion of the sequence constructed at stage δ as above. Note that though
the model in which q was constructed was probably different from M and the
name for an uncountable subset of ω1 was most likely not X

˜
in the construc-

tion we never had to go outside H(ω1) on which the two models agree. Since q
is (Mδ, P)-generic Cor. 5.4 yields q  X

˜
∩Mδ = Aδ and hence q Pω2

Cδ ⊆ X
˜

. a

In Lemma 5.5 we just used Cor. 5.4 and the stepping up lemma. The premises
to these lemmas are fulfilled by countable support iterations of axiom A forcing
with the finiteness property. Putting things together we get: If Jensen’s dia-
mond holds in the ground model, and we iterate axiom A forcings that have the
finiteness property with countable support, then in the resulting extension the
club principle holds. So Theorem 1.4 is proved. Now we take ω2 as the iteration
length. Since in the Mathias model h = ℵ2, Theorem 1.2 is now proved. Since
in the Matet model u < g, Theorem 1.3 is proved.
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