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Physical theories often characterize their observables with real number preci-
sion. Many non-fundamental theories do so needlessly: they are more precise
than they need to be to capture the physical matters of fact about their
observables. A natural expectation is that a truly fundamental theory will
require its full precision in order to exhaustively capture all of the funda-
mental physical matters of fact. I argue against this expectation and I show
that we do not have good reason to expect that the standard of precision set
by successful theories, or even by a truly fundamental theory, will match the
granularity of the physical facts.

1. Introduction. Suppose you have been tasked with measuring the value

of my height at some particular instant in time. You might proceed by asking

me to stand up straight against a wall at that instant, making a mark just

above the top of my head with a very fine tipped pen, and measuring the

distance between the mark and the floor with a meter stick. Were you to do

this you would likely find that the mark on the wall falls between two mil-

limeter markings on your meter stick, say the seventh and eighth millimeter

markings between the 95th and 96th centimeter markings. Having already

measured one full length of the meter stick, you would come to the conclusion

that I am 1.957 ± 0.001 m tall.

The precision of this measurement can obviously be improved. If only one

additional decimal place of precision is required you could simply obtain a

rule with finer markings. With the aid of an electron microscope you could

determine the value with nine or ten decimal places of precision. In fact, on

first inspection it seems that the only limit to the precision with which my

height can be accurately determined is the resolution provided by currently

available technology. In order for the only limit on the precision to come from

such pragmatic factors, there must be a physical fact of the matter not just

about the tenth decimal place of my height but also about the nth decimal

place for any arbitrary n. If there is some level of precision beyond which

there is no longer such a physical matter of fact, that marks a principled,

not merely pragmatic, limit on the precision with which my height can be

measured.
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It turns out that there is such a principled limit, at least if we impose plau-

sible conditions on the semantics for the ordinary language term “height”. By

my height we plausibly mean the distance between the floor and the highest

point on my head, and so a measurement of my height is a measurement of

that distance. Consider the determination of the position of the highest point

on my head.1 Suppose we can all agree which cells are part of me and which

electrons are parts of those cells and which are not. Determining which of

those electrons happens to be the furthest from the floor at a given instant

requires exactly determining each of their positions at that instant. But this

is precisely the sort of thing that quantum mechanics indicates that there

will not be a physical matter of fact about because the top of my head is

a complicated superposition of many quantum mechanical particles.2 A real

number provides more precision than is required to exhaust the physical facts

about my height.

This conclusion tells against the expectation that there are only prag-

matic limitations to the precision with which quantities such as height can be

measured. One might think that this is a peculiarity arising from scientific

investigation of a term whose meaning is restricted to the realm of ordinary

language. This turns out not to be the case. The same phenomenon, a mis-

match between the standard of precision in our theories and the granularity

of the physical facts, is a commonplace feature of our physical theorizing.

Empirically successful theories can display such a mismatch, and I will argue

that fundamental theories can exhibit such a mismatch as well.

The argument proceeds as follows. In Section Two I argue that the mis-

match between the precision of our theories and the facts about the world

they are designed to capture can be found in many aspects of our physi-

cal theorizing. In the third section I consider how to identify the standard

of precision that is natural for a given theory. This discussion leads to the

articulation of a collection of distinct standards of precision, each of which

might be natural for some class of theories. In Section Four I consider how

to identify the granularity of a collection of physical facts that a theory is

designed to capture. This process relies on experimental observation, and I

identify general features of experimental practice which demonstrate that the

success of a theory at matching the observational evidence does not require

a match between the standard of precision in the theory and the granularity

of the physical facts. In the fifth section I consider the view that in order for

a theory to be fundamental, its standard of precision must match the granu-

larity of the fundamental physical facts. As in the case of empirical success,

1Issues similar to those that follow obviously also affect the determination of the position
of the floor, but this won’t be of consequence for my argument.

2I develop the argument for this claim in more detail in Section Two.

-2-



I argue that fundamentality does not require such a match. The final section

contains concluding remarks.

2. Worldly Imprecision. I have argued that the physical facts concerning

height have a granularity less sharp than the standard of precision provided

by real numbers. Many find this observation surprising, which motivates

the following question: where does the expectation that one should be able

to make meaningful statements about my height with real number precision

come from? In this section I will argue that it is the practice of physics that

has led us to this expectation.

Consider, for example, the elementary physics problem of determining

the vertical displacement from equilibrium as a function of time y(t), of a

block of mass, m, suspended from a spring with spring constant, k. The

dynamics of classical mechanics holds that this displacement is determined

by the equation,

m
d2y(t)

dt2
= −ky(t), (1)

which is solved by,

y(t) = A cos(ωt+ φ) for ω =

√
k

m
. (2)

Note that once m and k are fixed, and A and φ are determined by the initial

conditions of the system at t0, this solution assigns a real number to the

value of the displacement around the equilibrium position for all times t.

As our theoretical representation of the displacement takes the form of a real

number, we are led naturally to expect that the physical matters of fact about

the actual displacement will come with a granularity that matches the real

numbers. However, as in the case of my height, consideration of the quantum

mechanical nature of the particles constituting the block show that there is

no physical matter of fact about the position of the edge of the block with

real number precision.

Suppose we define the position of the edge of the block to be the position

of the lowest electron constituting the block. Then on most interpretations

of quantum mechanics, that there is no real number fact about the position

is obvious from any one of a number of different observations, such as that

position measurements do not yield exact position eigenstates. Bohmian me-

chanics presents an apparent counterexample as it assigns definite positions

to each of the electrons in the complicated superposition that constitutes the

edge of the block. However, the measurement of any one of the electrons

instantaneously influences the positions of all of the others. As a result, any

attempt to determine whether or not a given electron is the lowest will affect
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the positions of all of the others, and thus there is not a unique, identifiable

lowest point, independent of how one goes about the measurement process.

At a certain level of resolution, there is simply no longer a physical matter of

fact for the measurement to track. Just as we found in the height case, the

theory is more precise than it needs to be to exhaust the physical matters of

fact about the displacement of the block. The facts about the world are im-

precise with respect to the natural standard of precision in the theory. Let’s

call this phenomenon worldly imprecision.

Instances of worldly imprecision are related to, but distinct from, failures

of a view that Teller has recently called measurement accuracy realism (Teller

2018). According to measurement accuracy realism, there is a fact of the mat-

ter about the exact physical value of measured quantities, and thus there is an

objective fact about the accuracy of any given measurement. Teller argues

that in many cases measurement accuracy realism is false, and there is no

objective fact concerning the accuracy of our measurements. He defends this

view by arguing that there is not a fact of the matter concerning the physical

value of the measured quantity. The failure of there to be such a fact results

from reference failure of the statements about the physical quantity, which in

turn result from the idealizations that go into our theoretical articulation of

the quantity. As Teller explains, “Accuracy realism fails because of reference

failure, and reference fails because of a fact that we too easily let drop out of

view: the ubiquitous idealizations of our theoretical accounts of the world”

(Teller 2018, p. 288).

The reference failure that Teller argues for is on full display in the case

of our spring. By modelling the displacement of the spring with Eq. (1),

we have adopted many idealizations. We have assumed, for example, that

the response of the spring is perfectly linear, even though any real spring will

have non-linearities in its response, however slight. We have also assumed that

the gravitational field in which the spring is oscillating is perfectly uniform,

even though the actual field is slightly stronger when the mass is closer to

the earth because of the 1/r2 form of the gravitational force law. And we

could, of course, go on.3 Reference failure ensues, according to Teller, because

deidealizing requires that we specify a run-away list of additional conditions.

The temperature of the room in which the spring is located will affect the

form that the non-linearities in its response will take. The exact form of

the non-uniformity in the gravitational field depends on the specific location

on the surface of the earth where the experiment takes place. The term

“the displacement of the block at time t” fails to refer because we have not

3Many of the idealizations tacitly adopted by modelling the spring with Eq. (1) give rise
to larger contributions to the displacement than those mentioned here. For reasons that
will become clear below, I have chosen to focus on small effects.
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sufficiently specified the conditions involved in the deidealizations to pick out

any one particular quantity with a determinate value. Teller is pessimistic

about the prospects for us ever being able to fully specify a sufficient set of

conditions to completely deidealize, and thus he thinks that reference failure

for quantities runs rampant and measurement accuracy realism generically

fails.

Cue the inevitable rejoinder. Perhaps we aren’t the kinds of agents that

can actually do it, but surely in principle it is possible to completely deide-

alize. After all, for a particular mass on a particular spring at a particular

time, there are facts of the matter about where they are located, the prevail-

ing conditions at that location, the material constitution of the mass and the

spring, and every other causally relevant factor for the determination of the

displacement of the block. The reference of “the displacement of the block

at time t” fails not because the displacement isn’t the kind of thing that can

have a determinate value, but rather because it is ambiguous between the

different exact values it takes on for different specifications of the causally

relevant conditions. What we mean by “the displacement of the block at

time t” is just the value that one would arrive at if they were actually able

to execute this process for the conditions that obtain when and where the

experiment is actually conducted.

I think that Teller is right to point out the importance of deidealization

in fixing the reference of statements picking out quantities and I share his

pessimism about our capability to completely deidealize. What I want to

emphasize is that not all idealizations behave the same with respect to the

determinacy of the reference of terms specifying quantities like “height” and

“the displacement of the block at time t”. There are idealizations that result

from neglecting small effects. These are the kinds of effects that the imagined

interlocutor of Teller is sure we can fill in, at least in principle. But there are

other idealizations whose role is to frame the problem. The perfectly localized

point masses and perfectly sharp edges of blocks of classical mechanics are

examples of idealizations of this second kind. These idealizations do not make

small, neglected contributions to the value of the quantity. Rather, they make

terms like “the displacement of the block at time t” the kind of quantity that

takes a real number value for the other deidealizations to correct the value

towards. Worldly imprecision occurs when reference fails due to idealizations

of this second kind. Even if we were the kinds of agents that could fix all

of the causally relevant conditions for fixing all of the classical mechanical

details in the first group, the reference of “the displacement of the block at

time t” would still fail, because of the framing idealizations in the second

group.

Suppose we begin to make more and more precise measurements of the

-5-



displacement of the block as we did in the case of my height. Executing

the deidealizations of classical mechanical effects with large contributions be-

comes important first and then we can proceed to deidealizations that con-

tribute at the next level of precision. As we proceed, eventually we arrive at a

level of precision where the principled limits from instances of worldly impre-

cision become relevant. It is crucial to note that these limits can arise before

we have completed the process of deidealizing all of the relevant classical me-

chanical effects. The semantic difficulties with “top of my head” and “edge

of the block” arising because of their constitution from quantum mechanical

particles become relevant at a precision of approximately 10−11 m, the scale

of the Bohr radius.4 Many idealizations arising from classical mechanical ef-

fects will be relevant before we reach this level of precision and as such are

significant for the determinacy of the reference of “height” and “the displace-

ment of the block at time t”. Other classical mechanical effects give rise to

contributions right around the 10−11 m threshold. The non-uniformity of the

gravitational field close to the earth’s surface due to the 1/r2 form of the

force law provides an example.5 But some classical mechanical idealizations

give rise to smaller effects than the 10−11 m threshold at which the semantic

difficulties with “edge of the block” arise. The gravitational influence of Pluto

on the displacement of the block is likely one. The gravitational influence of

a speck of dust in the 10,087th most distant galaxy from ours certainly is.

Some classical mechanical effects are so small that the framing idealizations

that we rely on to pose the problem give out before they make a difference.

The phenomenon we have identified here is not a peculiarity of classical

mechanics and its treatment of position observables. Examples where other

classical mechanical observables exhibit worldly imprecision can be readily

constructed. The phenomenon we have identified here is also not a peculiar-

ity of the relationship between classical and quantum mechanics. Instances

of worldly imprecision also arise for observables in thermodynamics when

we consider limits arising from statistical mechanics, for classical electrody-

namics when we consider limits from quantum field theory, and as we will

see in detail in Section Four, they arise in quantum electrodynamics from

limitations coming from the Standard Model of particle physics. The basic

ingredients required for worldly imprecision to obtain occur throughout our

4The Bohr radius is the most likely distance between the electron and nucleus of a hydrogen
atom in its ground state. The current best measured value is rB = 5.29177210903(80)×
10−11 m. The exact standard of precision will depend on the particular material consti-
tution of the block as different materials can have significantly different surfaces.

5For reasonable values of the parameters in the problem, numerical evaluation of the effect
shows that it influences the displacement on the order of 10−9 m or 10−10 m over the
course of one period of oscillation.
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physical theorizing. The framing idealizations in higher level theories give out

before the full precision of the characterization of the observables they give

matters. In many cases, there is more precision in the higher level theories

than is required to say everything that there is to say about their observables.

3. Standards of Precision. When worldly imprecision occurs, the follow-

ing condition fails to obtain:

Match: the standard of maximal precision in the theory matches

the granularity of the physical facts concerning the theory’s ob-

servables.

Of course, a given theory might employ one standard of maximal precision

for some of its observables, and a different standard for others. Match should

be read as requiring that the relevant standard matches the relevant facts in

each case. There are two ingredients that go into making precise what ought

to count as failures of Match; the standard of precision in the theory, and the

granularity of the physical facts. Before proceeding, it is worth thinking in

more detail about both of these ingredients.

The standard of precision of a given theory is determined by the mathe-

matical structure of the theory and the relations that the theory posits be-

tween its observables. Our classical mechanical treatment of the mass on a

spring, captured in Eq. (1) and Eq. (2), stipulates a collection of relations

obtaining between the observables m, y, k, A, and φ. This collection of re-

lations establishes a standard of precision that is maximal for the theory. In

particular, by modelling the problem with Eq. (1) and Eq. (2), we tacitly

adopt the following standard of maximal precision:

MPR: A statement about a quantity Q is maximally precise if

and only if it ascribes a real number d ∈ R to that quantity.

Some ascriptions of values to quantities are less than maximally precise with

respect to this standard. For example, one can take the value of m to be

1/2 kg. This is an ascription of a rational number to m. We frequently

pass between the ascription m = 1/2 kg and the ascription m = 0.50̄ kg,

as they can be used interchangeably for the purposes of some mathematical

manipulations. But by taking m = 1/2 kg we typically mean something

different than m = 0.50̄ kg. In particular, by taking m = 1/2 kg, we typically

mean that m = 0.5d1d2 . . . kg and that the decimal places after the 5, d1, d2,

and so on, are uncertain. Understood in this way, the ascription m = 1/2 kg

is less precise than the MPR standard. Ascriptions of natural numbers, such

as m = 1 kg, are even less precise than ascriptions of rational numbers.

One can also make statements that are more precise than MPR. If a

theory ascribes hyperreal numbers to its observables, for example, then its
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statements are more precise than MPR. The hyperreal numbers, ∗R, contain

the real numbers as a subset and the order relation on the real numbers

is a subset of the order relation on the hyperreal numbers, establishing a

clear sense in which ascriptions of hyperreals to observables are more precise

than the standard of maximal precision set in MPR.6 The real numbers

are used throughout our physical theorizing and for this reason, MPR might

seem to be the natural or perhaps even inevitable standard. But we can

make statements more precise than ascriptions of real numbers to quantities,

and we can also make statements that are less precise. This shows that the

standard of precision in a theory is a modelling choice that we make when

we develop the theory. We can cast theories with standards of precision more

sharp than MPR by allowing for ascriptions of hyperreals to quantities, and

we can cast theories with standards of precision less sharp than MPR by

restricting ascriptions of values to natural or rational numbers.7

The other ingredient in Match is the granularity of the facts about the

physical observables that the theory aims to capture. I will presuppose, as

I think is common in recent discussions of the metaphysics of quantity, that

there are physical facts about the values that quantities possess. This presup-

position commits us to some form of realism about quantities. In particular, it

seems to involve commitment to the view that quantitative properties exist.8

On this view, electrons really have properties like mass and charge, and there

are physical facts about the values of these properties. This in turn involves

commitment to the existence of an objective fact about how fine-grained the

properties are as well. If there is a fact about the value a physical quantity

takes, there are is an additional fact about the granularity of that value.

For Match to be satisfied, the standard of precision that we input into a

theory’s characterization of its observables must exactly agree with the gran-

ularity of the physical facts concerning those observables. Cases of worldly

imprecision amount to failures of Match because they involve situations where

the standard of precision that we input into the theory is more fine-grained

6A clear introduction to the hyperreal numbers can be found in (Keisler 2012).
7Natural numbers and rational numbers are also real numbers, so one might be tempted
to argue that the ascription of a natural or a rational number makes the standard of
maximal precision that of the real numbers. That would be a mistake. When we restrict
ascriptions of values to natural or rational numbers, there are less ascriptions possible
than there would be if we allowed for ascriptions of any arbitrary real number, not just
the real numbers that also happen to be naturals and rationals. This is the sense in which
the standards obtained by restricting to the naturals or the rationals are more coarse than
MPR.

8Realist views of quantities that exhibit this commitment can be found in (Byerly and
Lazara 1973; Swoyer 1987; Mundy 1987). This stands in tension with at least some forms
of operationalism and conventionalism about quantities. For helpful discussion, see (Tal
2017).
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than the physical facts about the observables that the theory provides an

account of. Consider a toy theory whose only statement is the following one:

“at time t, there are 12 books on my desk”. This is an ascription of natural

number to a quantity, and so the standard of maximal precision in the theory

is that of the natural numbers. If we suppose that there are only whole books

on my desk at any given time, then the granularity of the physical facts about

my books is correctly matched by the standard of precision in our toy theory,

and hence Match is satisfied. If we used a distinct toy theory consisting of

the statement “at time t, there are 12.0̄ books on my desk” to capture the

same collection of physical facts, then we have a failure of Match due to an

instance of worldly imprecision. By adding the additional decimal places we

have changed the standard of precision to MPR. But the additional decimal

places of precision in the new theory do not track anything present in the

physical situation. This is also what happens in the case of my height and

the spring.

Failures of Match need not result from instances of worldly imprecision,

though. To see this, suppose that the physical domain we are interested in

representing is one continuous spatial dimension. If the observables we are

interested in representing with our theory are the distances between the points

along this dimension, our theory will need to use the precision of the real

numbers in order to satisfy Match, no matter what system of units we work

in. But now suppose that the spatial dimension has a minimum length. If we

choose a system of units in which that minimum length takes a real number as

its value, then our theory will not satisfy Match. All of the physical distances

between the points are multiples of the minimum length, and hence the full

granularity of the physical facts can be matched with theoretical statements

that ascribe natural numbers to the distances. Similarly, we typically work in

a system of units where the value of the spin of an electron along a particular

direction is ±~/2, a real number. Here again, Match fails because of the

system of units we have chosen to work in, not because of worldly imprecision.

In several of these examples, we have stipulated what the facts about the

granularity of the physical observables are for the purposes of illustration.

But in the context of scientific investigation, this typically is not given to us

for free. Rather, the granularity of the physical facts is something that we set

out to discover about the world, as we did in the case of spin. The best tool we

have to discover such facts is to represent the domain in question theoretically

and determine whether or not our theory successfully represents the domain

in question by making observations of the domain. In the next section we will

consider how the success of a theory bears on the issues discussed above.
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4. Success and Precision. Scientific realists often reason from the success

of a theory to the reference of its theoretical terms, its approximate truth, and

to agreement between aspects of its structure and the structure of the world.

I have argued that the standard of precision that we input into a theory is

one element of its structure. So one might argue that because a theory is

successful, we are warranted in inferring that it satisfies Match. That is, one

might argue that the following principle is true:

Success: For a theory to be successful, the standard of maximal

precision in the theory must match the granularity of the physical

facts concerning the theory’s observables.

In this section I will argue that Success is false.

One reasonable metric for the success of a theory is how well it matches

the available empirical data. Our classical mechanical treatment of the mass

on the spring is successful with respect to this metric. Measurements of the

displacement agree with the solution provided in Eq. (2) within the associated

uncertainties. If Success were true, this would lead us to believe that Match

was satisfied in this case. Since the standard of precision in the theory in

this case is MPR, this would mean that the granularity of the facts about the

displacement matches the precision of the real numbers. But the argument

given in Section 2 shows that this is not the case. Something goes wrong in

the inference from the success of a theory to the satisfaction of Match.

We can readily identify what has gone wrong: when we evaluate the match

between a theory and some empirical data, we often pass to a more coarse

standard of precision than the one involved in the statement of Match. There

are two basic features of the comparison between theory and experiment

that force us to adopt this more coarse standard. First, measurements have

associated uncertainties and so the measurement of an observable is typically

more coarse than the granularity of the facts about the observable. And

second, in order for Eq. (2) to tell us anything at all about y(t), we first need

to fix m, k, A, and φ. In order to do so we need to measure their values, and

these measurements will also have associated uncertainties. Because of these

uncertainties, the precision of the theoretically determined value for y(t) will

not be maximal with respect to MPR. The comparison between the measured

and theoretical values thus involves a standard of precision less sharp than the

one that is maximal for the theory. This is what goes wrong in the inference

from success to the satisfaction of Match. The agreement between theory

and observation that counts as the success of the theory occurs at a level of

precision more coarse than the one that is maximal for the theory, and hence

the one relevant to Match.
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The two basic features of comparison between theory and experiment lead-

ing to this conclusion are not particular to the case of the spring. They are

generic features of scientific practice. Consider the comparison between the-

ory and experiment in the case of the anomalous electron magnetic moment,

an observable that functions as a high precision test of quantum electrody-

namics. The electron’s magnetic moment is a property of electrons when

they are exposed to an external magnetic field. In this case, the current best

theoretical and measured values are as follows:9

ae (theory) = 0.00115965218178(77) (3)

ae (experiment) = 0.00115965218073(28) (4)

Agreement between theory and experiment to twelve decimal places is one

of the highest precision successes that has been achieved in the history of

our physical theorizing. But as in the case of the spring, we have passed

to a standard of precision much more coarse than the one that comes along

naturally with the theory in this case. Again we have a case where the testing

and confirmation of theories that ensures us they are successful is more coarse

than the one involved in Match, and so once again we have a failure of Success.

The uncertainty associated with the experimental value of ae depends

on the details of the technique used to conduct the measurement. In the

first measurement revealing a non-zero value of ae,
10 the uncertainty was

in the fifth decimal place, and in the current best value it is uncertain in

the 12th decimal place, a rate of improvement of approximately one order

of magnitude per decade. The precision of the theoretical value has also

improved over time, roughly keeping pace with the measured value. It is

determined by perturbative calculations in quantum electrodynamics and as

such individual orders of perturbation theory must be calculated and then

summed to determine the theoretical value. This evaluation gives terms that

decrease in magnitude as one proceeds to higher orders of perturbation theory.

The complexity of the calculation also increases with increasing order, and the

current state of the art allows for the calculation of five orders of perturbation

theory which are summed to yield the theoretical value.

This process of perturbative evaluation leads to a number of sources of

uncertainty in the theoretical value. While the integrals contributing to the

first three orders of perturbation theory can be treated analytically, at fourth

9The theoretical value reported here is the one reported in (Aoyama, Hayakawa, Kinoshita,
and Nio 2012), and the experimental value is from (Hanneke, Fogwell, and Gabrielse 2008).
Helpful discussion of the details of the theoretical calculations and the measurements of
these values can be found in (Koberinski and Smeenk forthcoming).

10(Kusch and Foley 1948)
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and fifth order the integrals become more complicated and some require nu-

merical evaluation, which introduces uncertainty in the resulting value. The

perturbation series is an expansion in powers of the fine-structure constant

and so in order to determine the theoretical value of ae we need to input

the measured value into the calculation, just as we needed to input mea-

sured values of quantities like the mass and the spring constant in the case

of the spring. The uncertainty associated with the measured value of the

fine structure constant is in fact the dominant uncertainty in the current best

theoretically determined value of ae. These limitations on the precision of the

theoretical value are pragmatic. With more computing power, the numerical

error from fourth and fifth order could be reduced, and perhaps eventually

the contributions from sixth order will be determined. And of course, the

fine-structure constant will eventually be measured with even more precision.

But there are also principled limitations to the precision of the theoretical

determination of ae. Quantum electrodynamics is expected to contain a Lan-

dau pole – a finite energy scale at which the renormalized coupling becomes

infinite – and for this reason it is best understood as an effective field theory.

Treating a quantum field theory as an effective field theory results in limits

on the precision with which it characterizes its observables. In this case, the

limitation is an exceedingly small one, far beyond the level of precision with

which the success of the theory is demonstrated. A second principled limit to

the theoretical value comes from the perturbative evaluation used to deter-

mine the value of ae. Terms early in the expansion get smaller in magnitude

with increasing order. However, this pattern is eventually expected to stop,

with the terms eventually growing in magnitude with the result that the sum

of the infinite collection of terms diverges. To obtain a finite result, the series

must be truncated at some finite order of perturbation theory.11 These effects

yield principled limits to the value of ae in quantum electrodynamics, though

they are very small compared to the current precision frontier.

There are other contributions to the anomalous electron magnetic moment

that are external to quantum electrodynamics. This theory was originally

developed to describe the coupling between the photon field and the electron

field, and can be generalized to include the coupling of the photon field to

the muon and tauon fields as well. Eventually it was realized that some of

these fields also couple to other fields in the Standard Model and experience

the strong and weak nuclear interactions as well as electromagnetism. These

couplings give rise to weak and hadronic processes that give small, but non-

11See (Fraser 2018) and (Blinded for Review) for further discussion.
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zero contributions to ae:
12

ae (weak) = 0.00000000000002973(52) (5)

ae (hadronic) = 0.000000000001685(22) (6)

The hadronic contribution, which is slightly larger than the weak contribu-

tion, is reflected in the theoretical uncertainty of the value reported in Eq.

(3).13

The observation that there are hadronic and weak contributions to ae is

sufficient to show that quantum electrodynamics exhibits worldly imprecision.

When we treat the problem of determining ae theoretically in quantum elec-

trodynamics, we make both of the kinds idealizations that we found operative

in the spring case. First, there are the higher order terms of perturbation the-

ory that are neglected when the perturbation series is truncated at a given

order. By neglecting these terms, we do not include transitions in the fields

that are part of quantum electrodynamics and which contribute non-trivially

to ae. To deidealize, additional orders of perturbation theory must be calcu-

lated and added to the value.

But there are also the idealizations of the second kind that are involved

in posing the problem. In this case, the structural idealization is that the

electron magnetic moment comes from the coupling of the electron field to

the photon field alone. This idealization is the analog of the assumption that

the block has a boundary that can be viewed as arbitrarily sharp. That is to

say, the anomalous electron magnetic moment of an electron field that only

couples to the photon field is like a block with an edge that can be made

arbitrarily sharp. There is no such block, or set of coupled fields in the world.

In the world the anomalous electron magnetic moment comes from an electron

field that couples to a W± and Z0 fields as well as the Higgs field. In this

case the idealization makes no difference for the first 10 decimal places of ae,

but then the weak and hadronic couplings become relevant. Beyond the level

of precision where these couplings become relevant, there is simply no longer

a physical fact about the value of the anomalous electron magnetic moment

from the coupling of the electron field to the photon field alone. Quantum

electrodynamics is more precise than it needs to be to say everything that

there is to say about its observables. One can continue calculating orders of

12These values are reported in (Mohr, Newell, and Taylor 2016).
13There is also a contribution from the coupling of the electron field to the Higgs field,

though this is smaller than the leading order weak and hadronic contributions. Many
scenarios for physics beyond the Standard Model would make small additional contri-
butions to ae, making discrepancies between the best theoretical and measured values a
potential signal of new physics.
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QED perturbation theory, but eventually this becomes like calculating the

gravitational influence of the speck of dust in the 10,087th galaxy over on our

spring. The framing of the problem has already given out by the time these

effects become relevant. The boundary giving rise to worldly imprecision

makes it the case that corrections from the effective nature of QED, and the

divergent nature of its perturbative expansion, fall beyond the limit of worldly

imprecision.

For a theory to be successful, it need not satisfy Match. We have seen

that in the demonstration that a theory is successful, we pass to a different

standard of precision than the one involved in Match. Our measurements are

less sharp than the granularity of the facts about the world they reveal. And

the processes used to get theoretical values out of our theories necessitate a

retreat to a more coarse standard of precision than what is maximal in the

theory. If one wants to argue in favor of Match, they need a different strategy.

In the next section, I will consider what I think is the last resort for defenders

of Match.

5. Fundamentality and Precision. I have argued that the facts about

the world are imprecise with respect to the standards of precision set by

many of our physical theories. In each case where I have argued that worldly

imprecision obtains, I did so by appealing to limitations arising from a more

fundamental theory. In the case of classical mechanics, I appealed to quantum

mechanics. In the case of thermodynamics, I appealed to statistical mechan-

ics. And in the case of quantum electrodynamics I appealed to the Standard

Model. A natural thought when presented with this collection of observa-

tions is that if we had a truly fundamental theory, a theory that exhaustively

characterized a complete minimal basis for everything that there is,14 then it

would not exhibit the phenomenon of worldly imprecision. In other words,

one might expect that the following principle is true:

Fundamental: For a theory to be fundamental, the standard of

maximal precision in the theory must match the granularity of

the physical facts concerning the theory’s observables.

Like Success, I think that Fundamental is false. In order to show that Fun-

damental is false, it will be helpful to restate it in the following equivalent

form:

Fundamental: For a theory to be fundamental, (i) the standard

of maximal precision in the theory must be at least as sharp as

14I will proceed with this intuitive, but admittedly contentious, understanding of funda-
mentality. Whether or not the arguments below depend on one’s particular account of
fundamentality is not a question I will pursue in this paper, though it merits further
investigation.
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the granularity of the physical facts concerning the theory’s ob-

servables, and (ii) the granularity of the physical facts concerning

the theory’s observables must be at least as sharp as the standard

of maximal precision in the theory.

This is equivalent to the first statement of Fundamental because (i) and (ii)

are both satisfied if and only if Match is satisfied.

First consider clause (i). It holds that in order for a theory to be fun-

damental, its statements about its observables must be at least as sharp as

the granularity of the facts about those observables. This, I claim, is true.

The domain of a fundamental theory is the collection of fundamental physical

facts. If a theory’s statements about the fundamental physical facts are less

precise than the granularity of those facts, then there are more precise truth-

ful statements to make about the fundamental physical quantities. When this

is the case, the theory fails to be complete, and hence fails to be fundamental.

So clause (i) is a reasonable condition on fundamentality.

Now consider clause (ii). It holds that in order for a theory to be funda-

mental, the granularity of the facts about its observables must be at least as

sharp as its statements about its observables. Unlike clause (i), this is not a

reasonable condition on fundamentality. To see this, suppose that it doesn’t

obtain. Then the maximally precise statements of the theory are more precise

than the fundamental physical facts. But this doesn’t tell against the com-

pleteness of the theory. Rather, it means that the theory is more precise than

it needs to be to say everything that there is to say about the fundamental

physical facts: a theory about the fundamental level satisfying (i) but not

(ii) exhibits worldly imprecision. But in this case, the worldly imprecision

does not come from limitations from some more fundamental theory. The

fundamental physical facts simply are less sharp than the maximally precise

statements of the theory.

To put the point a different way, clause (ii) is not about the completeness

of the theory, but rather how concise the theory is in its characterization of

its observables. When clause (ii) fails to obtain, some of the structure in

the theory, some of its precision, is surplus to representational requirements.

To insist that clause (ii) is necessary for a theory to be fundamental is to

insist that a fundamental theory contains no surplus structure of a particular

kind. But we use theories with different kinds of surplus structure all of the

time, and no one ever complains that makes such theories non-fundamental.

The surplus structure at issue in this case, surplus precision, is admittedly

somewhat different than the standard cases, so it is perhaps worth illustrating

with a concrete example.

Consider a candidate fundamental theory which includes as one of its ob-
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servables the mass of the electron, me. Suppose that the electron mass is

in fact one of world’s fundamental physical properties, and that the natural

standard of maximal precision for me in our candidate fundamental theory is

MPR. The principle Fundamental says that for this theory to be genuinely

fundamental, two things must obtain. First, it must be the case that the

granularity of the physical facts about me are not more sharp than MPR.

So long as the physical matters of fact do not have the granularity of the

hyperreals, or some other granularity sharper than MPR, this first condition

will be satisfied. Second, Fundamental says that in order for our theory to

be genuinely fundamental it must be the case that the standard of maximal

precision in the theory is not more sharp than the granularity of the physical

facts about me. Since we are supposing that the standard of maximal preci-

sion in the theory is MPR, in order for this second condition to obtain, there

must be physical matters of fact about the 50th decimal place of me and the

10500th decimal place, and more generally, dN for arbitrarily large values of

N :

me = d0.d1d2d3 . . . d1050 . . . d10500 . . . dN . . . .

If we deny that clause (ii) of Fundamental is necessary for a theory to

be fundamental, things come out differently. Of course, since we are still

committed to clause (i), it will still need to be the case that the granularity

of the physical facts about me are not more sharp than MPR. If they were,

the theory would fail to be complete, and as a result, it would fail to be

fundamental. But when we deny that (ii) is necessary for a theory to be fun-

damental, we open the possibility that even though the standard of precision

in the theory is MPR, the granularity of the facts about me are less sharp

than this standard. That is, our theory might be fundamental even though

there are physical facts about me up to some decimal dW and no fact about

the subsequent decimal places:15

me = d0.d1d2d3 . . . d1050 . . . d10500 . . . dW . . . .

This is what happens in the other cases of worldly imprecision introduced

above. Our theories assign real numbers to their observables, and at some

point in the decimal expansion, the subsequent decimal places cease to give

us any additional information about the physical matters of fact concerning

the observable in question. The argument of this section has shown that the

same thing is possible even in a truly fundamental theory. Why should the

failure of there to be a physical fact about the 10500th decimal place of me

15Where this dW occurs in the expansion will depend on the system of units in which one
chooses to work. But if there is such a dW in some system of units, then there will be
one in every system of units which is a rescaling of the first.
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be taken to tell against the fundamentality of a theory that assigns a real

number to me? I just can’t see any good reason. There is nothing about the

notion of fundamentality that requires it.

6. Conclusion. We are accustomed to thinking that some aspects of a

theory structurally correspond to aspects of the world itself. We are similarly

accustomed to thinking that some aspects of a theory are surplus and do not

correspond to structural aspects of reality. Though not frequently thought

of in this way, the standard of maximal precision that we adopt in a theory

is one aspect of a theory’s structure. Once this is realized, we can consider

whether or not we have good reason to expect that Match is satisfied. I have

argued that the demonstration that a theory is successful does not typically

bear on whether Match is satisfied or not. I have given positive reason to

doubt that it is satisfied in some of our non-fundamental theories, and that a

move to a fundamental theory does not provide grounds to think the situation

will be any different in that context.

Edward Purcell once quipped that “There’s not enough carbon in the

universe to print out the value of one classical variable” where by a classical

variable he meant a variable with maximal precision in the sense of MPR
(Rabi et al. 1985, p. 48). Considerations of the sort Purcell suggests serve to

illustrate just how far removed real number precision is from our epistemic

practices. When we ascribe real number precision to physical quantities we

are using an exceptionally rich structure. Fundamental physical facts might

come structured so richly, but for all we know, they do not. For this reason, it

strikes me as well worth considering the possibility that much of the structure

that we employ when we ascribe real numbers to quantities is in fact surplus

structure.
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