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Abstract Proof-theory has traditionally been developed based on linguistic
(symbolic) representations of logical proofs. Recently, however, logical reasoning
based on diagrammatic or graphical representations has been investigated by logicians.
Euler diagrams were introduced in the eighteenth century. But it is quite recent (more
precisely, in the 1990s) that logicians started to study them from a formal logical
viewpoint. We propose a novel approach to the formalization of Euler diagrammatic
reasoning, in which diagrams are defined not in terms of regions as in the standard
approach, but in terms of topological relations between diagrammatic objects. We for-
malize the unification rule, which plays a central role in Euler diagrammatic reasoning,
in a style of natural deduction. We prove the soundness and completeness theorems
with respect to a formal set-theoretical semantics. We also investigate structure of
diagrammatic proofs and prove a normal form theorem.

Keywords Proof-theory · Diagrammatic reasoning · Euler diagram

1 Introduction

Euler diagrams were introduced by Euler (1768) to illustrate syllogistic reasoning. In
Euler diagrams, logical relations among the terms of a syllogism are simply repre-
sented by topological relations among circles. For example, the universal categorical
statements of the forms All A are B and No A are B are represented by the inclusion
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366 K. Mineshima et al.

Fig. 1 Universal statements

Fig. 2 Barbara with Euler diagrams

Fig. 3

and the exclusion relations between circles, respectively, as seen in Fig. 1. Given two
Euler diagrams which represent the premises of a syllogism, the syllogistic inference
can be naturally replaced by the task of manipulating the diagrams, in particular of
unifying the diagrams and extracting information from them. For example, the well-
known syllogism named “Barbara,” i.e., All A are B and All B are C; therefore All A
are C , can be represented diagrammatically as in Fig. 2.

However, things become complicated when existential statements come into the
picture. In Euler’s original system, any minimal region, i.e. region inside of some
circles and outside of the rest of the circles (possibly none) in a diagram, is assumed to
represent a non-empty set. Thus, in this system, diagram D1 of Fig. 3 says that three
sets A∩ B, A\ B, and B \ A are non-empty. This existential import destroys the simple
correspondence between categorical statements and Euler diagrams (cf. Hammer and
Shin 1998). For instance, Some A are B can be expressed by the disjunction of D1,D2
and D3 of Fig. 3:

Venn (1881) and Peirce (1933) overcame this difficulty by removing the existen-
tial import from regions, and by introducing new syntactic devices. Venn first fixed a
so-called “primary diagram” such as D1 of Fig. 3, which does not convey any specific
information about the relation between A and B. Meaningful relations between circles
are then expressed by specifying which regions are “empty” using the novel syntactic
device of shading, which corresponds to logical negation. Observe that All A are B
is equivalent to There is nothing which is A but not B, and the statement is expressed
by making use of the shading as in Fig. 4. In Venn diagrams, existential claims are
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Fig. 4

Fig. 5 Existential statements

Fig. 6 Barbara with Venn diagrams

expressed by using another syntactic device, “×,” which was introduced by Peirce
(1933, 4. 359), and which represents non-emptiness of the corresponding region as
seen in Fig. 5.

Two Venn diagrams may be combined into another Venn diagram by accommo-
dating the labels of circles and then by superposing the shaded regions, as illustrated
in Fig. 6. Because of their expressive power and their uniformity in formalizing the
manipulation of combining diagrams (simply as the superposition of shadings), Venn
diagrams have been very well studied; formal semantics and inference systems are
given, and basic logical properties such as soundness, completeness, and decidability
are shown. Cf. Venn-I, -II systems of Shin (1994), Spider diagrams SD1 and SD2 of
Howse et al. (2000), Molina (2001), etc. For a recent survey, see Stapleton (2005).

However, the development of systems of Venn diagrams is obtained at the cost
of clarity of the representations of Euler diagrams. As Venn (1881) himself already
pointed out, when more than three circles are involved, Venn diagrams fail in their
main purpose of affording intuitive and sensible illustration. (For some discussions on
visual disadvantages of Venn diagrams, see Hammer and Shin 1998.) In order to make
up for the shortcoming of Venn diagrams, Euler diagrams with shading were intro-
duced by considering some shaded regions of Venn diagrams as “missing” regions.
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E.g., Euler/Venn diagrams of Swoboda and Allwein (2004); Spider diagrams ESD2 of
Molina (2001) and SD3 of Howse et al. (2005). At the concrete level of representation,
the diagrams in these systems are Euler diagrams. However, their abstract syntax and
semantics are still defined in terms of regions. Thus we call both Venn diagrams and
Euler diagrams with shading region-based diagrams.

The region-based framework still fails in capturing the simplicity of representations
and inferences of Euler diagrams; it has the following complications:

(1) In region-based diagrams, logical relations among circles are represented by
the use of shading or missing regions. This makes the translation of categorical
statements uncomfortably complex. Cf. the translation of universal categorical
statements in Fig. 4.

(2) The inference rule of unification, which plays a central role in Euler diagram-
matic reasoning, is defined by way of the superposition of Venn diagrams. For
example, when we unify two diagrams D1 and D2 of Fig. 2 to derive the diagram
E , they are first transformed into Dv

1 and Dv
2 of Fig. 6, respectively; then, by the

derivation of Fig. 6, the diagram Ev is obtained; finally, Ev is transformed into E
of Fig. 2. In this way, processes of deriving conclusions are often made complex,
and hence less intuitive.

In contrast to the studies in the tradition of region-based diagrams, we propose
a novel approach to formalize Euler diagrams in terms of topological relations. Our
system has the following features and advantages:

(1) Our diagrammatic syntax and semantics are defined in terms of topological
relations, inclusion and exclusion relations, between two diagrammatic objects.
This formalization makes the translations of categorical sentences natural and
intuitive.

(2) We decompose the unification operation into more primitive unification rules,
where one of the two unified diagrams is restricted to be a minimal diagram,
i.e., a diagram consisting of two objects. This enables us to define the unification
directly without making a detour to Venn diagrams, and hence to capture the
inference process as illustrated in Fig. 2. Also, by decomposing the unification
operation, the validity of the primitive unification rules becomes immediate, and
the operational meaning of them is clear. Our completeness theorem ensures that
general complex diagrams, which are not necessarily minimal, may be unified
by using our unification rules.

(3) We formalize the unification in the style of Gentzen’s natural deduction (Gentzen
1934). This makes it possible to compare our Euler diagrammatic inference
system directly with linguistic natural deduction systems. Through such a
comparison, we can apply well-developed proof-theoretical techniques such as
normalization of proofs to diagrammatic reasoning studies.

From a perspective of proof-theory, the contrast between the standpoints of the
region-based framework and our topological-relation-based framework can be under-
stood as follows: At the level of representation, the contrast is analogous to the one
between disjunctive normal formulas and implicational formulas; at the level of rea-
soning, the contrast is analogous to the one between resolution calculus style proofs
and natural deduction style proofs. See Mineshima et al. (2010) for a formal discussion.
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A Diagrammatic Inference System 369

From a perspective of cognitive psychology, our system is designed not just as
an alternative of usual linguistic/symbolic representations; we make the best use of
advantages of diagrammatic representations so that inherent definiteness or specificity
of diagrams can be exploited in actual reasoning. (See Sato et al. 2010 for our cognitive
experimental studies.)

In this paper, we start our study by concentrating on the following basic syntactic
devices: inclusion and exclusion relations between two circles and points; crossing
relations between circles, which say nothing specific about the semantic relationship
between the circles as it does in Venn diagrams; named points (constant symbols)
to represent the existence of particular objects. Although our basic system is weaker
in its expressive power than usual Venn diagrammatic systems (e.g. Shin’s Venn-II,
which is equivalent to the monadic first order logic), our system is expressive enough
to characterize basic logical reasoning such as syllogistic reasoning. (In Mineshima
et al. 2009, we discuss natural extensions of our system.)

The rest of this paper is organized as follows. In Sect. 2, we introduce a topological-
relation-based Euler diagrammatic representation system EUL. We give a definition of
an Euler diagrammatic syntax EUL in Sect. 2.1 and a set-theoretical semantics for it in
Sect. 2.2. In Sect. 3, we formalize a diagrammatic inference system GDS. We introduce
two kinds of inference rules: unification and deletion. We define in Sect. 3.2 the notion
of diagrammatic proof, which is considered as a chain of unification and deletion steps.
The inference system GDS is shown in Sect. 3.3 to be sound (Theorem 3.5) and com-
plete (Theorem 3.14). In Sect. 3.4, we discuss some consequences of completeness of
GDS. In particular, a normal form theorem (Theorem 3.18) of GDS is shown.

2 A Diagrammatic Representation System EUL for Euler Circles

2.1 Diagrammatic Syntax of EUL

Let us start by defining the diagrams of EUL.

Definition 2.1 (EUL-diagram) An EUL-diagram is a plane (R2) with a finite num-
ber, at least two, of named simple closed curves 1 (simply called named circles, and
denoted by A, B, C, . . .) and named points (denoted by a, b, c, . . .), where

• no two named simple closed curves and points are completely concurrent, and
• no two named circles and points have the same name.

Named circles and named points are collectively called (diagrammatic) objects, and
denoted by s, t, u, . . .. We use a rectangle to represent the plane for an EUL-diagram.
EUL-diagrams are denoted by D, E,D1,D2, . . ..

When D is an EUL-diagram, we denote by pt (D) the set of named points of
D, by cr(D) the set of named circles of D, by ob(D) the set of objects of D, i.e.,
ob(D) = pt (D) ∪ cr(D).

1 See Blackett (1983) for a formal definition of simple closed curves on R
2.
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(i) (ii) (iii) (iv) (v) (vi)

Fig. 7 Non-well-formed diagrams of EUL

Examples of non well-formed diagrams are given in Fig. 7. (i), (ii), (iii) consists of
less than two objects; in (iv), named circles A and B are completely concurrent, i.e.,
located at the same place; in (v) and (vi), two objects have the same name.

Note that any two objects are spatially distinct in a diagram by definition.

Definition 2.2 (Minimal diagram) An EUL-diagram consisting of only two objects
is called a minimal diagram. Minimal diagrams are denoted by α, β, γ, . . ..

We study mathematical properties of EUL-diagrams in terms of the following topo-
logical relations between two diagrammatic objects:

Definition 2.3 (EUL-relation) EUL-relations are the following binary relations
between distinct diagrammatic objects:

A � B “the interior2of A is inside of the interior of B,”
A �� B “the interior of A is outside of the interior of B,”
A �� B “there is at least one crossing point between A and B,”
b � A “b is inside of the interior of A,”
b �� A “b is outside of the interior of A,”
a �� b “a is outside of b (i.e. a is not equal to b).”

EUL-relations �� and �� are symmetric, while � is not. Note that all EUL-relations
are irreflexive.

Proposition 2.4 Let D be an EUL-diagram. For any distinct objects s and t of D,
exactly one of the EUL-relations s � t, t � s, s �� t, s �� t holds.

Observe that, by Proposition 2.4, for a given EUL-diagram D, the set of EUL-
relations holding on D is uniquely determined. We denote the set by rel(D).

The following properties, as well as Proposition 2.4, characterize EUL-diagrams.

Lemma 2.5 Let D be an EUL-diagram. Then for any objects (named circles and
points) s, t, u ∈ ob(D), we have the following:

1. (Transitivity) If s � t, t � u ∈ rel(D), then s � u ∈ rel(D).
2. (��-downward closedness) If s �� t, u � s ∈ rel(D), then u �� t ∈ rel(D).
3. (Point determinacy) For any x ∈ pt (D) other than s, exactly one of x � s and

x �� s is in rel(D).
4. (Point minimality) For any x ∈ pt (D), s � x 	∈ rel(D).

2 Here, the interior of a named circle A means the region strictly inside of A (cf. Blackett 1983).
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Fig. 8 Equivalence of EUL-diagrams

In order to study mathematical properties of our diagrammatic system, we consider
equivalence classes of diagrams. Our equivalence relation among EUL-diagrams is
defined in terms of EUL-relations as follows.

Definition 2.6 (Equivalence among EUL-diagrams) Any EUL-diagrams D and E are
syntactically equivalent when rel(D) = rel(E).

For example, diagrams D1,D2, and D3 of Fig. 8 are equivalent since exactly the
same EUL-relations A �� B, A �� C, B �� C, a �� A, a � B, and a �� C hold on
them. (See Mineshima et al. 2009 for extensions of our representation system EUL,
where D1,D2, and D3 are distinguished by regarding intersection, union, and com-
plement regions respectively as diagrammatic objects.) On the other hand, D1 and
D4 (resp. D1 and D5) are not equivalent since different EUL-relations hold on them:
A � C holds on D4 in place of A �� C of D1 (resp. C � A and C � B hold on D5
in place of A �� C and C �� B of D1).

Our equation of diagrams may be explained in terms of a kind of “continuous
transformation (deformation)” of named circles, which does not change any of the
EUL-relations in a diagram. The named circle C in D1 of Fig. 8 can be continuously
transformed, without changing the EUL-relations with A, with B and with a in such
a way that C covers (resp. is disjoint from) the intersection region of A and B as it
does in D2 (resp. in D3).

In what follows, the diagrams which are syntactically equivalent are identified, and
they are referred to by a single name.

2.2 Set-Theoretical Semantics of EUL

In this section, we give a formal semantics for EUL. We adopt the standard set-theo-
retical semantics.3 Intuitively, each circle is interpreted as a set of elements of a given
domain, and each point is interpreted as an element of the domain. However, observe
that each point of EUL can be considered as a special circle which does not contain,
nor cross, any other objects. This observation enables us to interpret the EUL-relations
� and �� uniformly as the subset relation and the disjointness relation, respectively.

Definition 2.7 (Model) Let D be an EUL-diagram. Let M be a pair (U, I ), where U
is a non-empty set (the domain of M), and I : ob(D) −→ P(U ) is an interpretation

3 For similar set-theoretical approaches to semantics of Euler diagrams, see Howse et al. (2005), Hammer
(1995), Swoboda and Allwein (2004) etc. Our semantics is distinct from theirs in that diagrams are inter-
preted in terms of binary relations, and not every region in a diagram has a meaning.
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function which assigns to each diagrammatic object a non-empty subset of U such
that

• I (x) is a singleton for any named point x , and
• I (x) 	= I (y) for any points x, y of distinct names.

M = (U, I ) is a model of D, written as M |� D, if the following truth-conditions (1)
and (2) hold: For all objects s, t of D,

(1) I (s) ⊆ I (t) if s � t holds on D,
(2) I (s) ∩ I (t) = ∅ if s �� t holds on D.

Note that we assign a non-empty set to each named circle. Note also that when s
is a named point a, for some e ∈ U, I (a) = {e}, and the above I (a) ⊆ I (t) of (1) is
equivalent to e ∈ I (t). Similarly, I (a) ∩ I (t) = ∅ of (2) is equivalent to e 	∈ I (t).

The well-definedness of the truth-conditions follows from Proposition 2.4.

Remark 2.8 (Semantic interpretation of ��-relation) By Definition 2.7, the EUL-
relation �� does not contribute to the truth-condition of EUL-diagrams. Informally
speaking, s �� t may be understood as I (s) ∩ I (t) = ∅ or I (s) ∩ I (t) 	= ∅, which is
true in any model.

Definition 2.9 (Validity) An EUL-diagram E is a semantically valid consequence of
EUL-diagrams D1, . . . ,Dn , written as D1, . . . ,Dn |� E , when the following holds:
For any model M , if M |� D1 and …and M |� Dn , then M |� E .

3 Diagrammatic Inference System GDS

In this section, we introduce Generalized Diagrammatic Syllogistic inference sys-
tem GDS for the EUL-diagrams defined in Sect. 2.1. There are two inference rules of
GDS: unification and deletion. We first give an informal explanation of our unification
in Sect. 3.1, and we then formalize it in Sect. 3.2. In Sect. 3.3 our GDS is shown to be
sound and complete with respect to our set-theoretical semantics. In Sect. 3.4, we dis-
cuss some consequences of the completeness theorem of GDS. In particular, we define
a class of normal diagrammatic proofs of GDS and we show a normal form theorem.

3.1 Introduction to Unification

Before giving a formal description of our diagrammatic inference system, we moti-
vate our inference rule unification. Let us consider the following question: Given
diagrams D1,D2 and D3 of Fig. 9, what diagrammatic information on A, B and c can
be obtained by the conjunction of the given diagrams? (In what follows, in order to
avoid notational complexity in a diagram, we express each named point, say •c, simply
by its name c). Figures 9, 10, and 11 represent the three ways of solving the question.

In Fig. 9, at the first step, D1 and D2 are unified to obtain D1 +D2, where the point
c in D1 and D2 are identified, and B is added to D1 so that c is inside of B and B
overlaps with A without any implication of a relationship between A and B. Then,
D1 + D2 is combined with another diagram D3 to obtain (D1 + D2) + D3. Note that
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Fig. 9

Fig. 10

Fig. 11

the diagrams D1 + D2 and D3 share two circles A and B: A �� B holds on D1 + D2
and A � B holds on D3. Since the semantic information of A � B on D3 is more
specific than that of A �� B on D1 + D2, according to our semantics of EUL (recall
that A �� B means just “true” in our semantics), one keeps the relation A � B in
the unified diagram (D1 + D2) + D3. Observe that the unified diagram represents the
information of these diagrams D1,D2, and D3, that is, their conjunction.

Figures 10 and 11, illustrate other procedures to solve the question. At the first
step of unifying D1 and D3 in Fig. 10 (and D2 and D3 in Fig. 11), there are two
possible positions of the point c. Such disjunctive ambiguities may be represented by
Peirce’s linking of points (cf. Peirce 1933; Shin 1994) as illustrated in Figs. 10 and 11.
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Fig. 12 Inconsistency

However, in order to formalize the most basic diagrammatic system, we keep our
diagrams free from such disjunctive ambiguity, and we impose some constraint on
unification, called the constraint for determinacy: Any two diagrams are not permitted
to be unified when the relations between each point and all circles of the two diagrams
are not determined. Thus D1 and D3 of Fig. 10 (respectively D2 and D3 of Fig. 11)
are not permitted to be unified.

We impose another constraint on unification called a constraint for consistency, in
order to avoid complexity due to conflicting graphical information represented in a
single diagram.4 For example, it is not permitted to unify two diagrams D4 and D5
when, as is shown in Fig. 12, they share two circles C and B such that a � C and
a � B hold on D4 and C �� B holds on D5. Note that these relations a � C, a � B,
and C �� B are incompatible in the same diagram. The diagrams D6 and D7 in Fig. 12
are also not permitted to be unified in our system. Recall that each circle is interpreted
by a non-empty set in our semantics of Definition 2.7, and hence relations A � B and
A �� B are also incompatible.

3.2 Generalized Diagrammatic Syllogistic Inference System GDS

We formalize our unification of two diagrams by restricting one of them to be a min-
imal diagram, except for one rule called the Point Insertion-rule. Our completeness
(Theorem 3.14) ensures that any diagrams D1, . . . ,Dn may be unified, under the
constraints for determinacy and consistency, into one diagram whose semantic infor-
mation is equivalent to the conjunction of that of D1, . . . ,Dn . (We will return to this
issue in Sect. 3.4.1.)

We give a formal description of inference rules in terms of EUL-relations. Given
a diagram D and a minimal diagram α, the set of relations rel(D + α) for the unified
diagram D + α is defined.

The unification rules are divided into three groups, Group (I), (II), and (III). The
rules in Group (I) and (II) are classified according to the number and type of objects
shared by a diagram D and a minimal diagram α. In Group (I), D and α share one
object. The rules in this group are further divided into two types: those in which one
point is shared (U1–U2 rules) and those in which one circle is shared (U3–U8 rules).

4 In place of our syntactic constraint, it is possible to allow unification of inconsistent diagrams by intro-
ducing an inference rule corresponding to the absurdity rule of Gentzen’s natural deduction system: We can
infer any diagram from a pair of inconsistent diagrams. Such a rule is introduced in, for example, Howse
et al. (2005) for spider diagrams; Hammer and Danner (1996) for Venn diagrams; Swoboda and Allwein
(2004) for Euler/Venn diagrams. However, such a rule requires a linguistic symbol, say ⊥, or some arbitrary
convention to represent inconsistency, and hence we prefer our syntactic constraint in our framework of a
diagrammatic inference system.
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Each rule is specified by the relation holding on α, and has a constraint for determi-
nacy. In Group (II), D and α share two circles (hence α consists of two circles). We
distinguish two rules in this group (U9 and U10 rules), depending on whether A � B
or A �� B holds on α. Both rules have a constraint for consistency. The rule in Group
(III) is Point Insertion rule, where neither of two premise diagrams is restricted to be
minimal.

For a better understanding of the unification rule, we also give a schematic dia-
grammatic representation and a concrete example of each rule. In the schematic rep-
resentation of diagrams, to indicate the occurrence of some objects in a context on a
diagram, we write the indicated objects explicitly and indicate the context by “dots”
as in the diagram to the right below. For example, when we need to indicate only A
and c on the left hand diagram, we could write it as shown on the right.

B F

A

E
D

c

b

A
c

Definition 3.1 (Inference rules of GDS) Axiom, unification, and deletion of GDS are
defined as follows.

Axiom:

A1: For any circles A and B, any minimal diagram where A �� B holds is an axiom.
A2: Any EUL-diagram which consists only of, at least two, points is an axiom.

Unification: We denote by D + α the unified diagram of D with a minimal diagram
α. D + α is defined when D and α share one or two objects.

(I) D and α share one object:

U1 rule Premises: b � A holds on α, and b ∈ pt (D).
Constraint for determinacy: pt (D) is the singleton {b}.
Conclusion: The set rel(D + α) of the unified diagram is as follows:

rel(D) ∪ rel(α) ∪ {A �� X | X ∈ cr(D)}.

b

D �

A

b

α

�U1

A

b

D + α

Schema of U1

C B

b

E

D �

A

b

α�U1
C

b

B

A

E

D + α

Example of U1
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U2 rule Premises: b �� A holds on α, and b ∈ pt (D).
Constraint for determinacy: pt (D) is the singleton {b}.
Conclusion: rel(D + α) = rel(D) ∪ rel(α) ∪ {A �� X | X ∈ cr(D)}

b

D �

A
b

α
�U2

Ab

D + α

Schema of U2

B
b

C

D

B
b

C
A

D + α

A
b

� �U2 α

Example of U2

U3 rule Premises: b � A holds on α, and A ∈ cr(D).
Constraint for determinacy: A � X or A �� X holds for all circles X of D.
Conclusion: rel(D + α) is the following:

rel(D) ∪ rel(α) ∪ {b � X | A � X ∈ rel(D)}
∪ {b �� X | A �� X ∈ rel(D)} ∪ {b �� x | x ∈ pt (D)}

A

D �

A

b

α�U3

A

b

D + α

A

B
C

D �

A

b

�U3 α

A
b

B
C

D + α

U4 rule Premises: b �� A holds on α, and A ∈ cr(D).
Constraint for determinacy: X � A holds for all circles X of D.
Conclusion:
rel(D+α)= rel(D)∪rel(α)∪{b �� X | X � A∈ rel(D)}∪{b �� x | x ∈ pt (D)}

A

D �

A
b

α�U4

A
b

D + α

B

A

D �

Ab

α
�U4

B

A
b

D + α

U5 rule Premises: A � B holds on α, and B ∈ cr(D).
Constraint for determinacy: x �� B holds for all x ∈ pt (D).
Conclusion: rel(D + α) is as follows:
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rel(D) ∪ rel(α) ∪ {A �� X | X � B or X �� B ∈ rel(D)} ∪ {A � X | B � X

∈ rel(D)} ∪ {A �� X | X �� B ∈ rel(D)} ∪ {x �� A | x ∈ pt (D)}

B

D �

A
B

α�U5

A
B

D + α

C

B

E
F

a

D �

A
B

�U5 α

A C

B

E
F

a

D + α

U6 rule Premises: A � B holds on α, and A ∈ cr(D).
Constraint for determinacy: x � A holds for all x ∈ pt (D).
Conclusion: rel(D + α) is as follows:

rel(D) ∪ rel(α) ∪ {X �� B | A � X or A �� X or A �� X ∈ rel(D)}
∪ {X � B | X � A ∈ rel(D)} ∪ {x � B | x ∈ pt (D)}

A

D �

A
B

α�U6

A
B

D + α

C
A

E
a

D �

A
B

�U6 α

E
a

C
A

B

D1 + α

U7 rule Premises: A �� B holds on α, and B ∈ cr(D).
Constraint for determinacy: x � B holds for all x ∈ pt (D).
Conclusion: rel(D + α) is as follows:

rel(D) ∪ rel(α) ∪ {A �� X | B � X or B �� X or B �� X ∈ rel(D)}
∪ {X �� A | X � B ∈ rel(D)} ∪ {x �� A | x ∈ pt (D)}

B

D �

A B

α�U7

A B

D + α

B
a

C

E

D

A B

� �U7 α

B
a

C

E

A

D + α
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U8 rule Premises: A �� B holds on α, and A ∈ cr(D).
Constraint for determinacy: pt (D) = ∅.
Conclusion: rel(D + α) = rel(D) ∪ rel(α) ∪ {B �� X | X ∈ cr(D)}

A

D �

A B

α�U8

A B

D + α

C

A
E

D �

A B

�U8 α

C

A
E

B

D + α

(II) D and α share two circles:

U9 rule Premises: A � B holds on α, and A �� B holds on D.
Constraint for consistency: There is no object s such that s � A and s �� B hold
on D.
Conclusion: rel(D + α) is the following:

(
rel(D) \ {A �� B} \ {A �� X | B � X ∈ rel(D)} \ {A �� X | B �� X ∈ rel(D)}

\ {X �� B | X � A ∈ rel(D)} \ {Y �� X | Y � A and B � X ∈ rel(D)}
\ {X �� Y | X � A and Y �� B ∈ rel(D)} )

∪ {A � B} ∪ {A � X | B � X ∈ rel(D)} ∪ {A �� X | B �� X ∈ rel(D)}
∪ {X � B | X � A ∈ rel(D)} ∪ {Y � X | Y � A and B � X ∈ rel(D)}
∪ {X �� Y | X � A and Y �� B ∈ rel(D)}

A B

�D

A
B

�U9
α

A
B

D + α

A B
C

E
a

D �

A

B

�U9 α

A
B

C
E

a

D + α

U10 rule Premises: A �� B holds on α, and A �� B holds on D.
Constraint for consistency: There is no object s such that s � A and s � B hold
on D.
Conclusion: rel(D + α) is the following:

(
rel(D) \ {A �� B} \ {X �� B | X � A ∈ rel(D)} \ {X �� A | X � B ∈ rel(D)}

\ {X �� Y | X � A and Y � B ∈ rel(D)} )

∪ {A �� B} ∪ {X �� B | X � A ∈ rel(D)} ∪ {X �� A | X � B ∈ rel(D)}
∪ {X �� Y | X � A and Y � B ∈ rel(D)}
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A B

�D

A B

�U10 α

A B

D + α

A B
C FE

a

U10D �

A B

� α

A

C
E

B

F
a

D + α

(III) Neither of two premise diagrams is restricted to be minimal:

Point Insertion Premises: X�Y ∈ rel(D1) iff X�Y ∈ rel(D2) holds for any
circles X, Y with � ∈ {�,�,��, ��}, and pt (D2) = {b} such that b 	∈ pt (D1).
Conclusion: rel(D1 + D2) = rel(D1) ∪ rel(D2) ∪ {b �� x | x ∈ pt (D1)}

A
a

c

C

B

A b
C

B

D1 D2� �

A
a

c
b

C

B

D1 + D2

Deletion Premise: D contains an object s.
Constraint: D is not minimal.
Conclusion: rel(D − s) = rel(D) \ {s�t | t ∈ ob(D),� ∈ {�,�,��, ��}}

Definition 3.2 (Diagrammatic proofs of GDS) A diagrammatic proof (or d-proof, for
short) π of GDS is defined inductively as follows:

1. An axiom is a d-proof of itself.
2. A diagram D is a d-proof from the premise D to the conclusion D.
3. Let π1 be a d-proof from D1, . . . ,Dn to F and π2 be a d-proof from E1, . . . , Em

to E , respectively. If D is obtained by an application of unification to F and E ,
then the following is a d-proof π from D1, . . . ,Dn, E1, . . . , Em to D in GDS.

π1
F
�

π2
E

�
D

4. Let π1 be a d-proof from D1, . . . ,Dn to E . If D is obtained by an application of
deletion to E , then the following is a d-proof π from D1, . . . ,Dn to D in GDS.

π1
E
�

D
Here

π
D means a d-proof π with D as the conclusion.

The height of a d-proof is defined as the maximum length of the branches in the
underlying tree, where the length of a branch is the number of applications of inference
rules.
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Definition 3.3 (Provability) Let � be a set of EUL-diagrams. An EUL-diagram E is
provable from �, written as � � E , if there is a d-proof of E in GDS from a sequence
D1, . . . ,Dm such that Di ∈ �. We call � (resp. E) premise (resp. conclusion) dia-
grams.

Lemma 3.4 The following hold in GDS:

1. If � � u � s and � � s � t , then � � u � t;
2. If � � u � t and � � s �� t , then � � u �� s;
3. If � � u � s and � � s �� t and � � v � t , then � � u �� v.

Proof Immediate by the following d-proofs.

(1)

u
s

�

s
t

�U6(U5)

u
s
t

�

u
t

(2)

u
t

�

t s

�U7(U5)

t s
u

�
u s

(3)

u
s

�

s t

�U7(U5)
s t
u

�
tu

�

v

t

�U5(U7)

v

t
u

�
vu

��

Our description of unification rules was given in a static way, i.e., in terms of the
set of relations. Alternatively, our unification rules can be described operationally.
Recall that each unification rule is applied to a diagram D and a minimal diagram α.
From an operational point of view, α may be considered to be an instruction on how
to modify the diagram D into a diagram D + α by (i) adding an object (U1–U8) or
(ii) rearranging the configuration of objects (U9, U10). Although we shall not discuss
details of implementation in this paper, let us illustrate with U1 and U9 rules. The
other rules can be implemented in similar ways: U2, U5–U8, in which a circle is
added, are similar to U1; U10, in which some ��-relations are changed, is similar to
U9; and for U3–U4, in which a point is added, the location of named point to be added
is determined by our constraint for determinacy.

In U1 rule of Definition 3.1, a circle A is added to D so that b � A and A �� X
hold for all X ∈ cr(D). An implementation of such an operation is given by Stapleton
et al. (2008), and is further developed in Stapleton et al. (2011). In Fig. 13, we roughly
sketch their idea using the example of an application of U1 rule given in Definition 3.1.
For details, we refer to the construction given in Stapleton et al. (2008).

In U9 rule, a given diagram D, where A �� B holds, is modified into D + α so that
A � B holds. We sketch, in Fig. 14, an implementation of such modification of D.
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Fig. 13 Implementation of U1 rule. We first delete the point b from a given diagram D. We then regard
the diagram as an Euler graph eg(D), whose vertexes are the crossing points of curves, and whose edges
are the curve segments that connect the vertexes. Then by taking a dual graph of eg(D), we obtain an Euler
graph dual as in egd(D). A maximal subgraph of the Euler graph dual that contains all vertexes but no
multiple edges defines a concrete dual as in cd(D). Then, by finding a Hamiltonian cycle of the concrete
dual, we obtain a diagram D + A. We finally obtain D + α by adding the point b to the appropriate region,
which is determined due to the constraint for determinacy

Fig. 14 Implementation of U9 rule. In a given diagram D where A �� B holds, we take any circle X that
is inside A, and eliminate the curve segments of A and X that are outside B. Then we obtain D + α

3.3 Soundness and Completeness of GDS

We prove soundness (Theorem 3.5) and completeness (Theorem 3.14) of GDS with
respect to our formal semantics.

In what follows, we sometimes refer to any minimal diagram, say α where s � t
holds, by the EUL-relation holding on it, as s � t .

Theorem 3.5 (Soundness of GDS) Let D1, . . . ,Dn, E be EUL-diagrams.
If D1, . . . ,Dn � E in GDS, then D1, . . . ,Dn |� E .

Proof By induction on the height of a given d-proof as usual. ��

For the completeness, we impose the following condition for premise diagrams:

Definition 3.6 (Semantic consistency) A set D1, . . . ,Dn of diagrams is semantically
consistent if there is a model M such that M |� Di for any 1 ≤ i ≤ n.

Without this condition, any diagram, say E where A �� C holds, is a valid con-
sequence of an inconsistent set of premise diagrams D1 and D2 where a � B and
a �� B hold, respectively, although there is no d-proof of E from D1 and D2 in GDS.
(Cf. also footnote 4.)

It is obvious that the soundness theorem (Theorem 3.5) also holds under the assump-
tion of the semantic consistency of the premise diagrams. The following is an important
consequence of semantic consistency:

Lemma 3.7 (Semantic consistency) Let �α be a set of minimal diagrams which is
semantically consistent. Then none of the following holds in GDS for any objects s
and t:
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1. �α � s � t and �α � s �� t .
2. There is an object u such that �α � s �� t and �α � u � s and �α � u � t .

Given an EUL-diagram E and two objects, say s and t , on E , a minimal diagram
is obtained from E by deleting all objects other than s and t . By Proposition 2.4, the
set of such minimal diagrams of E is uniquely determined. According to our seman-
tics, the set of minimal diagrams is semantically equivalent to the original diagram E .
Hence, the premise D1, . . . ,Dn |� E of the completeness is equivalent to saying that
D1, . . . ,Dn |� β for any minimal diagram β which corresponds to some relation hold-
ing on E . Thus we first show atomic completeness (Proposition 3.13), which restrict
the conclusion diagram to be minimal. Then using such provable minimal diagrams,
we give a canonical way to construct a d-proof of E .

In order to show the completeness theorem of GDS, we construct two kinds of
syntactic models, called canonical models, in a similar way as the construction of
Lindenbaum algebras in the literature of algebraic semantics for various propositional
logics. We first define the simpler one.

Definition 3.8 (Canonical model M�α) Let �α be a set of minimal diagrams which
is semantically consistent. A canonical model M�α = (M�α, I�α) for �α is defined as
follows:

– The domain M�α is the set of diagrammatic objects (named circles and points)
which occur in any minimal diagram α ∈ �α.

– I�α is an interpretation function such that, for any object t ,

I�α(t)={s | �α � s � t in GDS} ∪ {t}.

Observe that in the above definition of I�α , when t is a named point, say a, its inter-
pretation I�α(a) is the singleton {a} since �α 	� s � a for any object s by soundness
(Theorem 3.5).

Lemma 3.9 (Canonical model M�α) Let �α be a set α1, . . . , αn of minimal diagrams
which is semantically consistent. Then M�α is a model of �α.

Proof We show that M�α |� αi for each αi ∈ �α (1 ≤ i ≤ n). The case αi = s �� t is
trivial. Otherwise, we divide into the following cases according to the form of αi :

1. When αi ∈ �α is s � t , we have �α � s � t in GDS. We show M�α |� s � t , i.e.,
I�α(s) ⊆ I�α(t). Let u ∈ I�α(s).
(a) When u ≡ s, we immediately have s ∈ I�α(t) by the fact �α � s � t .
(b) Otherwise, by the definition of I�α(s), we have �α � u � s. By composing it

with �α � s � t as seen in Lemma 3.4(1), we have �α � u � t in GDS, that
is, u ∈ I�α(t).

2. When αi ∈ �α is s �� t , we have �α � s �� t in GDS. We show M�α |� s �� t , i.e.,
I�α(s) ∩ I�α(t) = ∅. When both s and t are points, the claim is trivial. Otherwise,
assume to the contrary that some u ∈ I�α(s) ∩ I�α(t).

(a) When u ≡ s, we have s ∈ I�α(t), i.e., �α � s � t . This, together with
�α � s �� t , is a contradiction by Lemma 3.7(1).
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(b) The same applies to the case u ≡ t .
(c) Otherwise, s 	≡ u 	≡ t , and we have �α � u � s and �α � u � t by the

definition of I�α(s) and I�α(t). They contradict �α � s �� t by Lemma 3.7(2).

��
As an illustration of the canonical model, let us consider the following example.

Example 3.10 (Canonical model M�α) Let �α be the following minimal diagrams
α1, α2, α3, α4:

A

a

α1

Ab

α2

A B

α3

B

c

α4

Observe that we have �α 	� b � B and �α 	� b �� B. In such a case, we say that the
point b is indeterminate with respect to the circle B. Let us construct the canonical
model for the �α by defining: I�α(A) = {A, a} and I�α(B) = {B, c}. Note that the
indeterminate point b w.r.t. B is not contained in the interpretation I�α(B) of B. With
this interpretation, for any named point x ∈ I�α(B), we have �α � x � B (i.e., for
c ∈ I�α(B), �α � c � B). In general, validity of �-relation in the model M�α imply
provability of �-relation.

In the above model, however, x 	∈ I�α(B) does not necessarily imply �α � x �� B;
because we do not have �α � b �� B, while b 	∈ I�α(B). Thus, in the canonical model
M�α of Definition 3.8, validity of ��-relation does not imply provability of ��-relation,
and hence the model is not enough to establish completeness. Let us try to modify
the above model M�α so that the indeterminate point b w.r.t. B is contained in the
interpretation I ′

�α(B) of B: I ′
�α(A) = {A, a} and I ′

�α(B) = {B, c, b}. This definition
also provides a model of �α, and we have �α � x �� B for any named point x 	∈ I ′

�α(B).
However, in this model, x ∈ I ′

�α(B) does not necessarily imply �α � x � B; because
we do not have �α � b � B, while b ∈ I ′

�α(B).
Although the above two kinds of models alone are insufficient to establish com-

pleteness, we can obtain our completeness result in the following manner: we construct
the model M�α of Definition 3.8 for validity of �-relation, which implies provability
of �-relation, and the model M�α,B of the following Definition 3.11 for validity of
��-relation, which implies provability of ��-relation.

Definition 3.11 (Canonical model M�α,B) Let �α be a set of minimal diagrams which
is semantically consistent. Let B be a fixed named circle. A canonical model M�α,B =
(M�α,B, I�α,B) for �α is defined as follows:

– The domain M�α,B is the same set as M�α of Definition 3.8.
– I�α,B is an interpretation function defined as follows: For any object t ,

when t ≡ B or �α � B � t holds,
I�α,B(t) = I�α(t) ∪ {s | �α 	� B � s and �α 	� s � B and �α 	� s �� B};
otherwise, I�α,B(t) = I�α(t).
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As seen in Definition 3.8, observe that I�α,B(a) = {a} when a is a named point.
Note also that I�α,B(t) is equal to I�α(t) of Definition 3.8 when �α 	� B � t .

Let us show that M�α,B is a model of �α.

Lemma 3.12 (Canonical model M�α,B) Let �α be a set α1, . . . , αn of minimal diagrams
which is semantically consistent. Let B be a fixed named circle. Then M�α,B is a model
of �α.

Proof We show that, for each αi ∈ �α (1 ≤ i ≤ n), M�α,B |� αi . The case αi = s �� t is
trivial. Otherwise, we divide into the following cases according to the form of αi . We
sometimes write �α 	� s�t when none of �α � s � t, �α � t � s, and �α � s �� t holds.

1. When αi ∈ �α is s � t , we have �α � s � t . We show I�α,B(s) ⊆ I�α,B(t). Let
u ∈ I�α,B(s).

(a) When u ≡ s, by the fact �α � s � t , we have s ∈ I�α,B(t) by the definition
of I�α,B(t).

(b) Otherwise (u 	≡ s), we divide into the following two cases according to s
and B:

(i) When s ≡ B or �α � B � s hold, by the definition of I�α,B(s), we have
(i-1) �α � u � s or (i-2) �α 	� u�B. (i-1) implies, together with �α �
s � t , that �α � u � t , by Lemma 3.4(1), i.e., u ∈ I�α,B(t). For (i-2),
�α � B � s and �α � s � t imply �α � B � t by Lemma 3.4(1). Hence,
in conjunction with �α 	� u�B, we have u ∈ I�α,B(t) by definition.

(ii) When s 	≡ B and �α 	� B � s, by the definition of I�α,B(s), we have
�α � u � s. Hence this case is the same as (i-1).

2. When αi ∈ �α is s �� t , we have �α � s �� t . We assume s 	≡ B 	≡ t since
the other cases are similar. We show that I�α,B(s) ∩ I�α,B(t) = ∅. When both s
and t are points, the claim is trivial. Otherwise, assume to the contrary that some
u ∈ I�α,B(s) ∩ I�α,B(t).

(a) When u ≡ s, we have s ∈ I�α,B(t). We divide into the following two cases
according to whether or not �α � B � t holds:

(i) When �α � B � t holds, by the definition of I�α,B(t), we have (i-1)
�α � s � t or (i-2) �α 	� s�B. Case (i-1) contradicts �α � s �� t . For
(i-2), from �α � s �� t and �α � B � t , we have, by Lemma 3.4(2),
�α � s �� B, which contradicts �α 	� s�B.

(ii) When �α 	� B � t , we have �α � s � t by the definition of I�α,B(t),
which contradicts �α � s �� t .

(b) The same applies to the case u ≡ t .
(c) Otherwise (s 	≡ u 	≡ t), we divide into the following cases: (i) �α � B � s

and �α � B � t ; (ii) �α 	� B � s and �α 	� B � t ; (iii) �α 	� B � s and
�α � B � t ; (iv) �α � B � s and �α 	� B � t . (i) contradicts �α � s �� t . For
(ii), by the definitions of I�α,B(s) and I�α,B(t), we have �α � u � s and �α �
u � t , which contradict �α � s �� t . For (iii), by the definition of I�α,B(s),
we have �α � u � s. By the definition of I�α,B(t), we have (iii-1) �α � u � t
or (iii-2) �α 	� u�B. (iii-1), together with �α � u � s, contradicts �α � s �� t .
For (iii-2), �α � u � s, �α � s �� t , and �α � B � t imply, by Lemma 3.4(3),
that �α � u �� B, which contradicts �α 	� u�B. (iv) is similar to (iii). ��
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Using the two kinds of canonical models introduced so far, we prove the following
atomic completeness, from which completeness (Theorem 3.14) of GDS is derived.

When � is a set D1, . . . ,Dn of diagrams, we sometimes write M |� � for the
formula ∀1≤i≤n(M |� Di ).

Proposition 3.13 (Atomic completeness) Let D1, . . . ,Dn be a set of EUL-diagrams
which is semantically consistent. Let β be a minimal diagram. If D1, . . . ,Dn |� β,
then D1, . . . ,Dn � β in GDS.

Proof We first consider the case where the premise diagrams D1, . . . ,Dn are restricted
to minimal diagrams α1, . . . , αn . Then we extend to the general case. We denote by �α
the set of given minimal diagrams. Assume �α |� β. When β is s �� t , we immediately
have �α � s �� t since it is an axiom. Otherwise, we divide into the following two
cases according to the form of β.

(1) When β is of the form s � t , by the assumption �α |� s � t , we have, in particular
for the canonical model of Definition 3.8, M�α |� �α ⇒ M�α |� s � t . Then by
Lemma 3.9, we have M�α |� s � t , i.e., I�α(s) ⊆ I�α(t). Since s ∈ I�α(s) by
Definition 3.8, we have s ∈ I�α(t), that is, �α � s � t in GDS.

(2) When β is of the form s �� t , observe that if s and t are both points, then the asser-
tion is trivial since β is an axiom in that case. Otherwise, we assume, without loss
of generality, that t is a named circle B. By the assumption �α |� s �� B, we have,
in particular for the canonical model of Definition 3.11, M�α,B |� �α ⇒ M�α,B |�
s �� B. Then by Lemma 3.12, we have M�α,B |� s �� B, i.e., I�α,B(s)∩ I�α,B(B) =
∅. Hence we have s 	∈ I�α,B(B) and B 	∈ I�α,B(s). Then by the definition of
I�α,B(B) and I�α,B(s) of Definition 3.11, we have �α 	� s � B, and �α 	� B � s and
�α � s�B for some � ∈ {�,�,��}. Therefore, we have �α � s �� B in GDS.

Next, we extend the premises to general diagrams D1, . . . ,Dn instead of minimal
diagrams �α. Let D1, . . . ,Dn |� β. Then, by the definition of our semantics, it is equiv-
alent to the fact that, for any model M, M |� �1 ∧· · ·∧ M |� �n ⇒ M |� β, where �i

is a set of all minimal diagrams whose relations hold on Di . Thus there is a sequence
α1, . . . , αk of minimal diagrams such that each relation holding on α j (1 ≤ j ≤ k)
holds on some Di (1 ≤ i ≤ n) and α1, . . . , αk |� β. Then there is a d-proof from
α1, . . . , αk to β in GDS. Since each α j is derived from some Di by some applications
of Deletion rule, we have D1, . . . ,Dn � β. ��

By extending the conclusion diagram β of atomic completeness to a general (not
restricted to minimal) diagram E , we establish the completeness of GDS.

Theorem 3.14 (Completeness of GDS) Let D1, . . . ,Dn, E be EUL-diagrams. Let
D1, . . . ,Dn be semantically consistent. If D1, . . . ,Dn |� E , then D1, . . . ,Dn � E in
GDS.

Proof Using the atomic completeness theorem, we construct a d-proof of E from the
given premise diagrams D1, . . . ,Dn in a canonical way (see also Example 3.15 given
after this proof):
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(I) From the premise diagrams D1, . . . ,Dn , by using atomic completeness and U1,
U2-rules, we first construct EUL-diagrams such that each of them consists of
a point and all circles of E , and in each of them A �� B holds for any pair of
circles.
A diagram is called a Venn-like diagram when A �� B holds for any pair of
circles in it.

(II) Then, by unifying all Venn-like diagrams of (I) with the Point Insertion rule,
we construct a Venn-like diagram consisting of all points and circles of E .

(III) By using atomic completeness, we construct d-proofs for all point-free minimal
diagrams in each of which a relation A � B or A �� B of E holds.

(IV) We then construct a diagram F , by unifying the minimal diagrams of (III) and
the Venn-like diagram of (II) with U9 and U10-rules.

(V) Finally, we check that the diagram F of (IV) coincides with the conclusion E .

A diagrammatic proof is called a canonical diagrammatic proof when it is con-
structed in accordance with the above canonical construction.

We now formalize the above (I)–(V). We denote by � the set D1, . . . ,Dn of the
given premise diagrams.

(I) For each point a ∈ pt (E), let Pa = {a�X | a�X ∈ rel(E), � ∈ {�,��}}. Then
the set Pa gives rise to an EUL-diagram Pa such that � � Pa in GDS.

Proof of (I) Let R1, . . . , Rn be an enumeration of the elements of Pa , and
β1, . . . , βn be the corresponding minimal diagrams where Ri holds on βi .
Note that all βi share the same point a and they differ only in their circles.
The assumption � |� E of completeness implies � |� βi since Ri ∈ rel(E).
Hence we have � � βi in GDS by Proposition 3.13. Then starting from β1, by
successively applying U1-rule (when βi is a � Bi for 1 < i ≤ n) or U2-rule
(when βi is a �� Bi for 1 < i ≤ n), we have a d-proof of Pa from � in GDS.

��
(II) Let {a1, . . . , am} = pt (E). Let P be the union of the relations of all Pai (1 ≤

i ≤ m) of (I), i.e. P = ⋃
1≤i≤m Pai . Then P gives rise to an EUL-diagram P

such that � � P in GDS.

Proof of (II) We have � � P in GDS by successively applying the Point
Insertion rule for all diagrams Pai (1 ≤ i ≤ m) of (I). ��

Note that when E does not contain any point, the set
⋃

1≤i≤m Pai becomes empty.
In such a case, we construct a Venn-like diagram P (without any point) which
consists of all circles of E . This is possible by successively applying U8-rule to
axioms of the form X �� Y for X, Y ∈ cr(E).

(III) Let β be a minimal diagram such that A � B or A �� B of rel(E) holds. Then
we have � � β in GDS.

Proof of (III) Immediate by atomic completeness (Proposition 3.13). ��
(IV) Let R1, . . . , Rl be all relations of the form A � B or A �� B holding on E , and

let β1, . . . , βl be the corresponding minimal diagrams, where Ri holds on βi for
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1 ≤ i ≤ l. Let P be the set of relations of (II). Then the set P ∪ {R1, . . . , Rl}
of relations gives rise to an EUL-diagram (· · · (P + β1) + · · · ) + βl which is
provable from � in GDS.

Proof of (IV) By induction on l. Let P + Bl denote the diagram (· · · (P +
β1) + · · · ) + βl . We show the induction step (l > 1) since the same applies to
the base step (l = 1).
We divide into the following two cases according to whether (1) A �� B or (2)
A � B holds on βl .
Case (1): Since cr(E) = cr(P + Bl−1) by the construction (II) of P and (III),
we have A, B ∈ cr(P + Bl−1). We claim that A �� B or A �� B holds on the
diagram P + Bl−1. Assume to the contrary that A � B or B � A holds. If
A � B holds on P + Bl−1, since � � P + Bl−1 by the induction hypothesis,
we have � |� P + Bl−1, which implies � |� A � B. This contradicts the
assumption that � is semantically consistent because we have � |� A �� B.
The same applies in case B � A. Thus exactly one of A �� B and A �� B
holds on the diagram P + Bl−1 by Proposition 2.4.
Now we prove � � (P+Bl−1)+βl . When A �� B holds on P+Bl−1, we obtain
the assertion immediately by the induction hypothesis since (P + Bl−1) + βl

is P + Bl−1 itself. When A �� B holds on P + Bl−1, by applying U10-rule
to βl and P + Bl−1, we have � � (P + Bl−1) + βl in GDS. The application
of U10-rule is possible because there is no object s such that both s � A and
s � B hold on P + Bl−1: If there were such an object s, since � � P + Bl−1,
we have � � s � A and � � s � B by applying a series of Deletion. Then
we would have � |� s � A and � |� s � B. This contradicts the assumption
that � is semantically consistent because we have � |� A �� B.
Case (2) where A � B holds on βl is similar. ��

(V) For any EUL-relation R, R ∈ rel((· · · (P + β1) + · · · ) + βl) if and only if
R ∈ rel(E).

Proof of (V) We denote by P + Bl the diagram (· · · (P + β1) + · · · ) + βl .
⇐) rel(E) ⊆ rel(P + Bl) is immediate by the constructions (II) and (IV).
⇒) Let R ∈ rel(P + Bl). We divide into the following two cases depending
on whether or not R is of the form s �� t :

(1) When R = s �� t , assume to the contrary that s �� t 	∈ rel(E). Since
E is a diagram, for some � ∈ {�,�,��}, s�t ∈ rel(E) by Proposi-
tion 2.4. Then, by definition, for some j, β j is of the form s�t , which
implies that s�t ∈ rel(P + Bl). This contradicts Proposition 2.4 since
s �� t ∈ rel(P + Bl) by the assumption.

(2) In case, R 	= s �� t , we show that R ∈ rel(P + Bl) ⇒ R ∈ rel(E)

by induction on l. We prove the induction step (l > 1) since the same
applies to the base step. Assume to the contrary that R 	∈ rel(E). Then,
since rel(P) \ {X �� Y | X, Y ∈ cr(P)} ⊆ rel(E) by the construction
(II), R should be a relation between circles (not points), and R 	= βi for
any i . Hence, there is some 1 ≤ i ≤ l such that R 	∈ rel(P + Bi−1) but
R ∈ rel((P +Bi−1)+βi ). We show the case (P +Bi−1)+βi is obtained
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by U10-rule. (The case of U9-rule is shown similarly.) Assume A �� B
holds on βi . By the definition of U10-rule, there are the following three
cases according to the form of R: (i) R = X �� B such that X � A ∈
rel(P + Bi−1); (ii) R = X �� A such that X � B ∈ rel(P + Bi−1);
(iii) R = X �� Y such that X � A, Y � B ∈ rel(P + Bi−1). For case
(i), by the induction hypothesis, we have X � A ∈ rel(E). Then, since
A �� B ∈ rel(E), we have X �� B ∈ rel(E), contrary to the assump-
tion R = X �� B 	∈ rel(E). Similarly, cases (ii) and (iii) also lead to
contradictions. Therefore, we have R ∈ rel(E). ��

Example 3.15 (Canonical d-proof of GDS) As an illustration of the canonical con-
struction of d-proofs, let us consider the following diagrams D1,D2,D3, and E :

A
a

D1

,

B
a

b

D2

,

A B

D3

� A B
a

b

E
We have a canonical d-proof of E from D1,D2,D3 as in Fig. 15:

We first derive, by using atomic completeness, all pointed minimal diagrams
D1,D4,D5, and D6 each of which corresponds to an EUL-relation holding on the
conclusion E . Next, following the construction (I) with U1 and U2 rules, we construct
Venn-like diagrams D7 and D8 each of which consists of a point a (resp. b) and all
circles A and B of E . Then, following the construction (II) with Point Insertion rule,
we unify them to obtain a Venn-like diagram D9 consisting of all points a and b and
all circles A and B of E . Finally, following the construction (IV) with U10 rule, we
obtain the conclusion E .

Fig. 15 Canonical d-proof
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3.4 Some Consequences of Completeness of GDS

In this section, we discuss some consequences of our completeness (Theorem 3.14)
of GDS.

3.4.1 Unification of Any (Two) Diagrams

Let D1,D2 and E be EUL-diagrams such that for any model M, M |� E if and only if
M |� D1 and M |� D2, that is, E is semantically equivalent to the conjunction of D1
and D2. We may write such E as D1 +D2. Our completeness (Theorem 3.14) ensures
that D1,D2 � D1 + D2 in GDS. This shows that the general notion of unification of
two diagrams (cf. Hammer and Shin 1998) is completely characterized by our formal-
ization of unification of two diagrams, where one of them is restricted to a minimal
diagram.

3.4.2 Normal Diagrammatic Proofs

In order to prove a normal form theorem of GDS, we shall modify the semantic method
introduced in our completeness proof, by adopting a semantic normal form proof for
the linguistic proofs found in, for example, Okada (1999).

Let us define a class of normal diagrammatic proofs of GDS, called the ±-normal
d-proofs:

Definition 3.16 (±-normal d-proofs) A d-proof π is in ±-normal form if a unification
(+) and a deletion (−) appear alternately in π .

In Definition 3.8 and 3.11 of our canonical models, it is possible to modify the
interpretation of each object by restricting the provability with a ±-normal d-proof as
follows:

• For Definition 3.8, I ′
�α(t) = {s | �α � s � t with a ±-normal d-proof } ∪ {t}

• For Definition 3.11, when t ≡ B or �α � B � t with a ±-normal d-proof,
I ′
�α,B(t) = I ′

�α(t) ∪ {s | �α 	� B � s and �α 	� s � B and �α 	� s �� B}
These slight modifications of canonical models also enable us to prove the essential

part of atomic completeness (Proposition 3.13); because any d-proof appearing in our
proofs of Lemmas 3.9 and 3.12 is in ±-normal form. Hence we obtain the following
version of atomic completeness:

Corollary 3.17 Let �α be a set of minimal diagrams which is semantically consistent.
Let β be a minimal diagram. If �α |� β, then �α � β in GDS with a ±-normal d-proof.

Then, together with soundness of GDS, we obtain the following normal form the-
orem:

Theorem 3.18 (±-normal form for minimal diagrams) Let �α be a set of minimal dia-
grams which is semantically consistent. Let β be a minimal diagram. If �α � β in
GDS, then �α � β in GDS with a ±-normal d-proof.
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Proof Let �α � β in GDS. Then, by soundness (Theorem 3.5) of GDS, we
have �α |� β, which implies that �α � β in GDS with a ±-normal d-proof by
Corollary 3.17. ��

Although the above normal form theorem states only the existence of normal d-
proofs, by defining a procedure to rewrite d-proofs, the theorem can be extended to
a normalization theorem: Any d-proof is rewritten into a ±-normal d-proof in a finite
number of steps.

3.4.3 Structure of Canonical Diagrammatic Proofs

In order to investigate the structure of canonical d-proofs of completeness (Theo-
rem 3.14), we give a proposition, which is proved in a way similar to that of ±-normal
form Theorem 3.18.

In our Definitions 3.8 and 3.11 of canonical models, it is possible to modify the
interpretation of each object by restricting the provability using only U3–U7 and
Deletion rules:

• For Definition 3.8, I ′′
�α (t) = {s | �α � s � t with U3–U7 and Deletion rules}∪{t}

• For Definition 3.11, when t ≡ B or �α � B � t with U3–U7 and Deletion rules,
I ′′
�α,B(t) = I ′′

�α (t) ∪ {s | �α 	� B � s and �α 	� s � B and �α 	� s �� B}.
Recall that U3–U7 rules are unification where exactly one named circle (not point)

is shared between the two premise diagrams.
These slight modifications of canonical models also enables us, in a way similar to

that in Corollary 3.17, to prove atomic completeness. Thus we obtain the following
slightly stronger version of atomic completeness:

Corollary 3.19 Let � be a set of EUL-diagrams which is semantically consistent. Let
β be a minimal diagram. If � |� β, then � � β in GDS with U3–U7 and Deletion
rules.

Thus soundness (Theorem 3.5) and Corollary 3.19 imply that any minimal diagram
is provable by using only U3–U7 and Deletion rules:

Proposition 3.20 (U3–U7 rules) Let � be a set of EUL-diagrams which is semanti-
cally consistent. Let β be a minimal diagram. If � � β in GDS, then � � β in GDS
with U3–U7 and Deletion rules.

Completeness (Theorem 3.14), the ±-normal form theorem (Theorem 3.18), and
the above Proposition 3.20 give a more precise classification of inference rules of
GDS in terms of proof-construction as follows:

• U3–U7 and Deletion rules for derivation of a minimal diagram.
• U1, U2 (resp. U8) rules for construction of a Venn-like diagram consisting of a

single point (resp. no point).
• Point Insertion rule for construction of a Venn-like diagram consisting of multiple

points.
• U9, U10 rules for construction of the conclusion.
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See also the canonical d-proof given in Example 3.15.
Based on the classification of inference rules and the canonical construction of

d-proofs, we showed a correspondence between our Euler diagrammatic proofs and
Gentzen’s natural deduction proofs. See Mineshima et al. (2010) for a detailed dis-
cussion.
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