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The problem Combinatory strong reduction

Combinatory strong reduction

Primitive combinators: I , K , S

t � t ρ It � t I Kts� t K Stsr � tr(sr) S

t � s
rt � rs µ

t � s
tr � sr ν

t � r r � s
t � s τ

t � s
λ∗x.t � λ∗x.s ξ

Abstraction is defined according to the strong algorithm.
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The problem Combinatory strong reduction

Abstraction

(a) λ∗x.x := I

(b) λ∗x.t := Kt, if x /∈ V(t)

(c) λ∗x.sx := s, if x /∈ V(s)

(d) λ∗x.ts := S(λ∗x.t)(λ∗x.s), if (b) and (c) do not apply

Remark
The combinator I is taken as primitive just to avoid having a trivial
example of a term in strong normal form which is not strongly
irreducible.
Indeed, notice that SK � KI. So, by defining I := SKK, we would have:

I ≡ SKK � KIK � K(KIK)K � . . .
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The problem Combinatory strong reduction

Notwithstanding its bad reputation of being quite messy, much is
known about the metatheory of strong reduction

1 >− is Church-Rosser [Curry, 1958]

2 strongly irreducible terms are in strong normal form [Curry 1958,
Hindley & Lercher 1970]

3 . . . and conversely [Lercher 1967]

4 there is a recursive set of axiom schemas axiomatizing >− over
weak reduction �w [Hindley 1967, Lercher 1967]

We shall be concerned with point 1, or better with the proof of CR(�).
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The problem Curry’s indirect confluence proof

Curry’s proof of the confluence of strong reduction

( )λ : T{I,K,S} −→ Λ and ( )H : Λ −→ T{I,K,S}

Standard translations between combinatory terms and λ-terms.

These satisfy:

(P1) for t ∈ T{I,K,S} : (tλ)H ≡ t ,

(P2) for t, s∈ Λ : t �βη s ⇒ tH � sH ,

(P3) for t, s∈ T{I,K,S} : t =cβη s ⇒ tλ =βη sλ .

Then:

t =cβη s ⇒ tλ =βη sλ by (P3)

⇒ ∃r ∈ Λ : tλ �βη r βη� sλ by CR(�βη)

⇒ t � rH � s by (P2) and (P1)
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The problem Statement of the problem

Curry’s statement of the problem

H. B. Curry and R. Feys, Combinatory Logic, Vol. I, 1958
List of “Unsolved problems” in § 6 F.5

“c. Is it possible to prove the Church-Rosser property directly
for strong reduction, without having recourse to
transformations between that theory and the theory of
λ-conversion? . . . ”

Remark
A solution was advanced by K. Loewen in 1968.
His proof, however, seems to contain an error — as pointed out in
Hindley’s MR review (1970).
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The problem Statement of the problem

Hindley’s statement of the problem

Problem #1 — TLCA List of Open Problems, http://tlca.di.unito.it/opltlca/

Submitted by Roger Hindley Date: Known since 1958!
Statement. Is there a direct proof of the confluence of βη-strong reduction?

Problem Origin. First posed by Haskell Curry and Roger Hindley.

The βη-strong reduction is the combinatory analogue of
βη-reduction in λ-calculus. It is confluent. Its only known
confluence-proof is very easy, [Curry and Feys, 1958, 6F, p.
221 Theorem 3], but it depends on the having already proved
the confluence of λβη-reduction. Thus the theory of
combinators is not self-contained at present. Is there a
confluence proof independent of λ-calculus?
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Analytic proof systems for combinatory logic and λ-calculus
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Analytic proof systems for combinatory logic and λ-calculus Synthetic vs analytic equational proof systems

Motivations

Standard presentations of equational proof systems:

specific axioms (a set of equation schemas)
the usual inference rules for equality (reflexivity, symmetry,
transitivity and congruence)

The transitivity rule
t = r r = s

t = s

(which cannot be dispensed with, except that in trivial cases) has
an inherently synthetic character in combining derivations, like
modus ponens in Hilbert-style proof systems
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Analytic proof systems for combinatory logic and λ-calculus Synthetic vs analytic equational proof systems

Naive proof-theoretic arguments are usually impossible (e.g.:
syntactic consistency proofs by induction on the length of
derivations)

No kind of “subterm property”

In general, derivations lack any significant mathematical structure

As a consequence, ‘synthetic’ equational calculi do not lend
themselves directly to proof-theoretical analysis
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Analytic proof systems for combinatory logic and λ-calculus Synthetic vs analytic equational proof systems

Question
Are there significant cases in which it is both possible and useful

to turn a ‘synthetic’ equational proof system into

an equivalent ‘analytic’ proof system,

where the transitivity rule is provably redundant ?
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Recent work

Combinatory logic : CL (& generalizations)

P. M., Analytic combinatory calculi and the elimination of transitivity,
Arch. Math. Logic 43 (2004), 159-191.

Lambda-Calculus : λβ, λβη

P. M., Analytic proof systems for λ-calculus: the elimination of transitivity,
and why it matters, Arch. Math. Logic 46 (2007), 385-424.

Extensional Combinatory logic : CLext (& generalizations)

P. M., A solution to Curry and Hindley’s problem on combinatory strong
reduction, submitted.
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Analytic proof systems for combinatory logic and λ-calculus G-systems

Overwiew

�� ��synthetic proof-systems

⇓�� ��equivalent (candidate) analytic proof-systems (“G-systems”)
⇓

(effective) transitivity elimination for G-systems ⇒ consistency

⇓
“normalizability” of transitivity-free derivations

⇓
applications to combinatory / lambda reductions
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Analytic proof systems for combinatory logic and λ-calculus G-systems

Main features of G-systems

combinatory axiom schemas / β-conversion schema
I turned into pairs of suitable introduction rules C β

symmetry rule I dropped

reflexivity (0-premises) rule I restricted to atomic terms

monotony rule(s)

I taken in the parallel version
t = s p= q

tp = sq App

extensionality rule (if any)

I taken in the version
tx = sx
t = s Ext {x/∈V(ts)}
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Analytic proof systems for combinatory logic and λ-calculus G-systems

G-systems for full combinatory logic: G[C] / Gext[C]

G[C] (corresponding to CL )

“structural rules”:

t = t ρ′ (t atomic)
t = s p= q

tp = sq App
t = r r = s

t = s τ

left and right combinatory introduction rules for I, K, S

Gext[C] (corresponding to CLext)

+ the extensionality rule [Ext]
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Analytic proof systems for combinatory logic and λ-calculus G-systems

and for arbitrary combinatory systems X: G[X] / Gext[X]

A combinatory system X is a map, defined on a non-empty set
X = dom(X) of primitive combinators (F, G . . . ), which associates to
each F ∈ X a pair 〈kF, dF〉 s.t.:

kF, the index of F under X, is a non negative integer;

dF, the definition of F under X, is a term with V(dF) ⊆ {v1, . . . , vkF}.

Intuitively, for each primitive combinator F ∈ X:

X : F 7−→ Ft1 . . . tkF = dF[v1/t1, . . . , vkF/tkF ] (AX F)X

G[X] / Gext[X]

are defined exactly as G[C] / Gext[C], except that the introduction rules
for I, K, S are replaced by the rules [Fl ]X, [Fr ]X, for each F ∈ X
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Analytic proof systems for combinatory logic and λ-calculus G-systems

G-systems for λ-calculus: G[β] / Gext[β]

G[β] (corresponding to λβ)

“structural rules”:

x = x ρ′
t = s p= q

tp = sq App
t = s

λx.t = λx.s ξ
t = r r = s

t = s τ

left and right β-introduction rules

Gext[β] (corresponding to λβη)

+ the extensionality rule [Ext]
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Analytic proof systems for combinatory logic and λ-calculus Main results

Transitivity elimination

Lemma [Equivalence]
G-systems are equivalent to the corresponding synthetic systems

Main Theorem [τ -elimination]
G-systems admit (effective) transitivity elimination

Proof (in order of increasing complexity):

G[X] (X arbitrary) [PM 04]

Gext[X] (X linear) [PM 04]

G[β] and Gext[β] [PM 07]

Gext[X] (X arbitrary) [PM 08]
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Analytic proof systems for combinatory logic and λ-calculus Main results

Consequences & applications of τ -elimination

τ -free G-derivations enjoy a kind of subterm property
This gives, as an immediate consequence

the unprovability of x = y (with x distinct from y)
so the consistency of G-systems and of the corresponding
synthetic systems

Owing to the nice structural properties of τ -free derivations, we
can provide a unified framework in which new very short
demonstrations of central results concerning reductions can be
given, including:

Church-Rosser
Standardization
Leftmost reduction (in particular for λβη-reduction)
. . .
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Solution to the problem Extraction Lemma

Common �-reduct extraction Lemma

Lemma
From any given τ -free Gext[C]-derivation

D −̀ t = s

one can effectively extract a term rD such that t � rD � s

Proof: by straightforward induction on the length of D.
• D ≡ t = t [t atomic] rD := t
• D ≡ App(D1,D2) rD := rD1

rD2

• D ≡ R(D1) [R a combinatory rule] rD := rD1

• D ≡ Extx(D1) rD := λ∗x.rD1

As to the last case, indeed:

tx � r � sx [x /∈ V(ts)] ⇒rule ξ t ≡ λ∗x.tx � λ∗x.r � λ∗x.sx≡ s
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Solution to the problem A direct confluence proof

A direct proof of the confluence of strong reduction

Suppose t =cβη s, i.e.
CLext ` t = s.

Then, by the equivalence Lemma and the τ -elimination Theorem, we
get a transitivity-free Gext[C]-derivation

D −̀ t = s.

A final application of the extraction Lemma to D yields a common
�-reduct rD of t and s:

t � rD � s

This confluence proof for � is independent of λ-calculus!
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Proving transitivity elimination for Gext[X] systems

1 The problem

2 Analytic proof systems for combinatory logic and λ-calculus

3 Solution to the problem

4 Proving transitivity elimination for Gext[X] systems
Preliminaries
The strategy
Steps 1 – 4
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Proving transitivity elimination for Gext[X] systems Preliminaries

Terminology and notations

‖t‖ := the depth of t

Φ,Ψ, . . . : contexts (terms with some holes ∗)
t,Φ 7→ Φ[[t]]

D,D′ . . . : Gext[X]-derivations

D −̀ t = s : D is a τ -free derivation of t = s

Left derivation (`L): no right combinatory inferences

Right derivation (`R): dually

s(D) := # of combinatory and [Ext] inferences in D
h(D) := tree-height of D
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D −̀ t = s : D is a τ -free derivation of t = s

Left derivation (`L): no right combinatory inferences

Right derivation (`R): dually

s(D) := # of combinatory and [Ext] inferences in D
h(D) := tree-height of D
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Proving transitivity elimination for Gext[X] systems The strategy

Proof strategy — G[X] systems

We show how to eliminate a topmost application of τ :

D1
−̀ t = s, D2

−̀ s = r 7−→ D∗ −̀ t = r

The proof runs by ω3-induction:

main: h′(D1) + h′(D2)

secondary: s(D1) + s(D2)

ternary: ‖s‖

This strategy doesn’t work when the extensionality rule is present,
coupled with non linear combinators.
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Proving transitivity elimination for Gext[X] systems The strategy

Proof strategy — Gext[X] systems

We show that the following generalized transitivity rule

t = s Φ[[s]] = r
Φ[[t]] = r τ∗

is eliminable.

The proof consists of four main steps (in this order):

generalized F-inversion

left τ -elimination

generalized F-introduction

elimination of a topmost occurrence of [τ∗]
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Step 1: generalized F-inversion Lemma

For any F ∈ X, with k = kF, and any context Φ:
Every τ -free derivation

D −̀ Φ[[Ft1 . . . tkp1 . . . pn]] = s

can effectively be transformed into a τ -free derivation

D∗ −̀ Φ[[dF[t1, . . . , tk]p1 . . . pn]] = s

which, moreover, is a right derivation provided D is a right derivation

This follows from the following:
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Lemma

Given

a τ -free derivation D −̀ t = s

a set Sof F-redexes occurrences in t

we can construct a τ -free derivation

D] −̀ t] = s,

where t] is the term obtained from t by minimal-redex-first complete
development of S.

Moreover, D] is a right derivation provided D is such.

Proof.
By main induction on s(D) and secondary induction on ‖t‖.
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Step 2: left τ -elimination Lemma

Lemma

To any given pair

D1
−̀
L t = s and D2

−̀ s = r

of τ -free derivations, such that D1 is a left derivation, we can effectively
associate a τ -free derivation

D∗ −̀ t = r

which is a left derivation provided D2 is such.

Proof.
Main induction on s(D2), secondary induction on s(D1), ternary
induction on ‖s‖, using F-inversion.
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Step 3: generalized F-introduction Lemma

For any F ∈ X, with k = kF, and any context Φ:
The following generalized combinatory introduction rules are τ -free
admissible:

Φ[[dF[t1, . . . , tk]p1 . . . pn]] = s
Φ[[Ft1 . . . tkp1 . . . pn]] = s [F+

l ]

s = Φ[[dF[t1, . . . , tk]p1 . . . pn]]

s = Φ[[Ft1 . . . tkp1 . . . pn]]
[F+

r ]

Moreover, [F+
l ] and [F+

r ] preserve left-handedness, resp.
right-handedness.

Proof.
By left τ -elimination.

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 32 / 49



Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Step 3: generalized F-introduction Lemma

For any F ∈ X, with k = kF, and any context Φ:
The following generalized combinatory introduction rules are τ -free
admissible:

Φ[[dF[t1, . . . , tk]p1 . . . pn]] = s
Φ[[Ft1 . . . tkp1 . . . pn]] = s [F+

l ]

s = Φ[[dF[t1, . . . , tk]p1 . . . pn]]

s = Φ[[Ft1 . . . tkp1 . . . pn]]
[F+

r ]

Moreover, [F+
l ] and [F+

r ] preserve left-handedness, resp.
right-handedness.

Proof.
By left τ -elimination.

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 32 / 49



Proving transitivity elimination for Gext[X] systems Steps 1 – 4

>
...

Φ[[Ft1 . . . tkp]] = Φ[[dF[t1, . . . , tk]p]]

...
Φ[[dF[t1, . . . , tk]p]] = s

Φ[[Ft1 . . . tkp]] = s Left elim.

> : structural rules + applications of [Fl ]
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Final step: main elimination Lemma

For any context Φ:
To each pair of τ -free derivations

D1
−̀ t = s and D2

−̀ Φ[[s]] = r

we can effectively associate a τ -free derivation

D∗ −̀ Φ[[t]] = r

The proof runs by ω3-induction

main: s(D1)

secondary: ‖s‖
ternary: h(D2)

taking main cases according to the last inference R of D1.
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Case R = [Fr ]

M.I.H. + generalized F-inversion
...

t = s′

t = s Fr

...
Φ[[s]] = r

Φ[[t]] = r τ∗

H

...
t = s′

...
Φ[[s]] = r
Φ[[s′]] = r Finv

Φ[[t]] = r M.I .H
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Case R = [Fl ]

M.I.H. + generalized F-introduction
...

t′ = s
t = s Fl

...
Φ[[s]] = r

Φ[[t]] = r τ∗

H
...

t′ = s

...
Φ[[s]] = r

Φ[[t′]] = r M.I .H.

Φ[[t]] = r F+
l
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Case R = [App]

S.I.H. + context shifts
...

t1 = s1

...
t2 = s2

t1t2 = s1s2
App

...
Φ[[s1s2]] = r

Φ[[t1t2]] = r τ∗

H
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

Case R = [Ext]

This is the most complex case.
We have now to look both at

the last inference R′ of D2

the form of the context Φ
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

The case Φ ≡ ∗ is easily disposed off by the M.I.H.

...
tx = sx
t = s Ext

...
s = r

t = r τ∗

H

...
tx = sx

...
s = r x = x

sx= rx App

tx = rx M.I .H.

t = r Ext
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Proving transitivity elimination for Gext[X] systems Steps 1 – 4

If Φ is distinct from ∗ we look at R′

R′ = [App] / [Fr ] / [Ext]

Easy, by the ternary I.H.

R′ = [Fl]

More delicate: a “cross-cut” is required.

We use the ternary I.H. followed by an application of the M.I.H.
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Combinatory introduction rules for the combinator S :

Stsr = tr(sr) [AX S]

ww� ww�
tr(sr)p1 . . . pn = q
Stsrp1 . . . pn = q [Sl ]

q = tr(sr)p1 . . . pn

q = Stsrp1 . . . pn
[Sr ]

where n≥ 0, i.e.: the “side terms” p1, . . . , pn may be missing

Combinatory introduction rules for other primitive combinators F:
[Fl ] and [Fr ] are defined similarly

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 45 / 49



Combinatory introduction rules for the combinator S :

Stsr = tr(sr) [AX S]

ww� ww�
tr(sr)p1 . . . pn = q
Stsrp1 . . . pn = q [Sl ]

q = tr(sr)p1 . . . pn

q = Stsrp1 . . . pn
[Sr ]

where n≥ 0, i.e.: the “side terms” p1, . . . , pn may be missing

Combinatory introduction rules for other primitive combinators F:
[Fl ] and [Fr ] are defined similarly

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 45 / 49



Combinatory introduction rules for the combinator S :

Stsr = tr(sr) [AX S]

ww� ww�
tr(sr)p1 . . . pn = q
Stsrp1 . . . pn = q [Sl ]

q = tr(sr)p1 . . . pn

q = Stsrp1 . . . pn
[Sr ]

where n≥ 0, i.e.: the “side terms” p1, . . . , pn may be missing

Combinatory introduction rules for other primitive combinators F:
[Fl ] and [Fr ] are defined similarly

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 45 / 49



Combinatory introduction rules for the combinator S :

Stsr = tr(sr) [AX S]

ww� ww�
tr(sr)p1 . . . pn = q
Stsrp1 . . . pn = q [Sl ]

q = tr(sr)p1 . . . pn

q = Stsrp1 . . . pn
[Sr ]

where n≥ 0, i.e.: the “side terms” p1, . . . , pn may be missing

Combinatory introduction rules for other primitive combinators F:
[Fl ] and [Fr ] are defined similarly

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 45 / 49



Combinatory introduction rules for the combinator S :

Stsr = tr(sr) [AX S]

ww� ww�
tr(sr)p1 . . . pn = q
Stsrp1 . . . pn = q [Sl ]

q = tr(sr)p1 . . . pn

q = Stsrp1 . . . pn
[Sr ]

where n≥ 0, i.e.: the “side terms” p1, . . . , pn may be missing

Combinatory introduction rules for other primitive combinators F:
[Fl ] and [Fr ] are defined similarly

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 45 / 49



β-introduction rules:

(λx.t)r = t[x/r] [β−conv]

ww� ww�
t[x/r]p1 . . . pn = q
(λx.t)rp1 . . . pn = q [βl ]

q = t[x/r]p1 . . . pn

q = (λx.t)rp1 . . . pn
[βr ]

where n≥ 0, i.e.: the “side terms” p1, . . . , pn may be missing
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tp1 . . . pn = s
Itp1 . . . pn = s [Il ]

s = tp1 . . . pn

s = Itp1 . . . pn
[Ir ] (n≥ 0)

tp1 . . . pn = s
Ktrp1 . . . pn = s [Kl ]

s = tp1 . . . pn

s = Ktrp1 . . . pn
[Kr ] (n≥ 0)

tq(rq)p1 . . . pn = s
Strqp1 . . . pn = s [Sl ]

s = tq(rq)p1 . . . pn

s = Strqp1 . . . pn
[Sr ] (n≥ 0)
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Convention
We write t[s1, . . . , sn] short for t[v1/s1, . . . , vn/sn]

Ft1 . . . tkF = dF[t1, . . . , tkF ] (AX F)X

ww� ww�

dF[t1, . . . , tkF ]p1 . . . pn = s
Ft1 . . . tkFp1 . . . pn = s [Fl ]X

s = dF[t1, . . . , tkF ]p1 . . . pn

s = Ft1 . . . tkFp1 . . . pn
[Fr ]X
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