A solution to Curry and Hindley's problem on combinatory strong reduction

Pierluigi Minari

Department of Philosophy, University of Florence minari@unifi.it

WORKSHOP ON RECENT TRENDS IN PROOF THEORY (University of Bern, July 9-11, 2008)

The problem

- The problem
- 2 Analytic proof systems for combinatory logic and λ -calculus

- The problem
- 2 Analytic proof systems for combinatory logic and λ -calculus
- Solution to the problem

- The problem
- 2 Analytic proof systems for combinatory logic and λ -calculus
- Solution to the problem
- $oldsymbol{4}$ Proving transitivity elimination for $G_{ext}[\mathbb{X}]$ systems

- The problem
 - Combinatory strong reduction
 - Curry's indirect confluence proof
 - Statement of the problem
- 2 Analytic proof systems for combinatory logic and λ -calculus
- Solution to the problem
- 4 Proving transitivity elimination for $G_{ext}[X]$ systems

Combinatory strong reduction

Primitive combinators: I, K, S

$$\frac{t \succ t}{rt \succ rs} \mu \qquad \frac{t \succ s}{tr \succ sr} \nu \qquad \frac{t \succ r}{t \succ s} \tau$$

$$\frac{t \succ s}{tr \succ rs} \psi \qquad \frac{t \succ r}{t \succ s} \tau$$

$$\frac{t \succ s}{\lambda^* x. t \succ \lambda^* x. s} \xi$$

Combinatory strong reduction

Primitive combinators: I, K, S

$$\frac{t \succ t}{rt \succ rs} \mu \qquad \frac{t \succ s}{tr \succ sr} \nu \qquad \frac{t \succ r}{t \succ s} \tau$$

$$\frac{t \succ s}{tr \succ rs} \psi \qquad \frac{t \succ r}{t \succ s} \tau$$

$$\frac{t \succ s}{\lambda^* x. t \succ \lambda^* x. s} \xi$$

Combinatory strong reduction

Primitive combinators: I, K, S

$$\frac{t \succ s}{rt \succ rs} \mu \qquad \frac{t \succ s}{tr \succ sr} \nu \qquad \frac{t \succ r \qquad r \succ s}{t \succ s} \tau$$

$$\frac{t \succ s}{\lambda^* x. t \succ \lambda^* x. s} \xi$$

Abstraction is defined according to the strong algorithm.

(a) $\lambda^* x.x := 1$

- (a) $\lambda^* x.x := 1$
- (b) $\lambda^* x.t := \mathsf{K} t$, if $x \notin V(t)$

- (a) $\lambda^* x.x := 1$
- (b) $\lambda^* x.t := \mathsf{K} t$, if $x \notin V(t)$
- (c) $\lambda^* x.sx := s$, if $x \notin V(s)$

- (a) $\lambda^* x.x := 1$
- (b) $\lambda^* x.t := \mathsf{K} t$, if $x \notin V(t)$
- (c) $\lambda^* x.sx := s$, if $x \notin V(s)$
- (d) $\lambda^* x.ts := S(\lambda^* x.t)(\lambda^* x.s)$, if (b) and (c) do not apply

- (a) $\lambda^* x.x := 1$
- (b) $\lambda^* x.t := \mathsf{K} t$, if $x \notin V(t)$
- (c) $\lambda^* x.sx := s$, if $x \notin V(s)$
- (d) $\lambda^* x.ts := S(\lambda^* x.t)(\lambda^* x.s)$, if (b) and (c) do not apply

Remark

The combinator I is taken as primitive just to avoid having a *trivial* example of a term in strong normal form which is not strongly irreducible.

Indeed, notice that SK > KI. So, by defining I := SKK, we would have:

$$I \equiv \mathsf{SKK} \succ \mathsf{KIK} \succ \mathsf{K}(\mathsf{KIK})\mathsf{K} \succ \dots$$

- is Church-Rosser [Curry, 1958]
- strongly irreducible terms are in strong normal form [Curry 1958, Hindley & Lercher 1970]

- is Church-Rosser [Curry, 1958]
- strongly irreducible terms are in strong normal form [Curry 1958, Hindley & Lercher 1970]
- 3 ... and conversely [Lercher 1967]

- is Church-Rosser [Curry, 1958]
- strongly irreducible terms are in strong normal form [Curry 1958, Hindley & Lercher 1970]
- 3 ... and conversely [Lercher 1967]
- there is a recursive set of axiom schemas axiomatizing > over weak reduction -> w [Hindley 1967, Lercher 1967]

- is Church-Rosser [Curry, 1958]
- strongly irreducible terms are in strong normal form [Curry 1958, Hindley & Lercher 1970]
- 3 ... and conversely [Lercher 1967]
- there is a recursive set of axiom schemas axiomatizing > over weak reduction -> w [Hindley 1967, Lercher 1967]

We shall be concerned with point 1, or better with the proof of $CR(\succ)$.

$$(\)_{\lambda}: \mathbf{T}_{\{\mathsf{l},\mathsf{K},\mathsf{S}\}} \longrightarrow \mathsf{\Lambda} \qquad \mathsf{and} \qquad (\)_{H}: \mathsf{\Lambda} \longrightarrow \mathbf{T}_{\{\mathsf{l},\mathsf{K},\mathsf{S}\}}$$

Standard translations between combinatory terms and λ -terms.

$$(\)_{\lambda}: \mathbf{T}_{\{\mathsf{I},\mathsf{K},\mathsf{S}\}} \longrightarrow \mathsf{\Lambda} \qquad \mathsf{and} \qquad (\)_{H}: \mathsf{\Lambda} \longrightarrow \mathbf{T}_{\{\mathsf{I},\mathsf{K},\mathsf{S}\}}$$

Standard translations between combinatory terms and λ -terms.

$$(\)_{\lambda}: \mathbf{T}_{\{\mathsf{l},\mathsf{K},\mathsf{S}\}} \longrightarrow \mathsf{\Lambda} \qquad \mathsf{and} \qquad (\)_{H}: \mathsf{\Lambda} \longrightarrow \mathbf{T}_{\{\mathsf{l},\mathsf{K},\mathsf{S}\}}$$

Standard translations between combinatory terms and λ -terms.

(P1) for
$$t \in \mathbf{T}_{\{\mathsf{I},\mathsf{K},\mathsf{S}\}}$$
: $(t_{\lambda})_H \equiv t$,

$$(\)_{\lambda}: \mathbf{T}_{\{\mathsf{l},\mathsf{K},\mathsf{S}\}} \longrightarrow \mathsf{\Lambda} \qquad \mathsf{and} \qquad (\)_{H}: \mathsf{\Lambda} \longrightarrow \mathbf{T}_{\{\mathsf{l},\mathsf{K},\mathsf{S}\}}$$

Standard translations between combinatory terms and λ -terms.

(P1) for
$$t \in \mathbf{T}_{\{1,K,S\}}$$
: $(t_{\lambda})_H \equiv t$,

(P2) for
$$t, s \in \Lambda$$
: $t \rightarrow_{\beta \eta} s \Rightarrow t_H \succ s_H$,

$$(\)_{\lambda}: \mathbf{T}_{\{\mathsf{I},\mathsf{K},\mathsf{S}\}} \longrightarrow \mathsf{\Lambda} \qquad \mathsf{and} \qquad (\)_{H}: \mathsf{\Lambda} \longrightarrow \mathbf{T}_{\{\mathsf{I},\mathsf{K},\mathsf{S}\}}$$

Standard translations between combinatory terms and λ -terms.

- (P1) for $t \in \mathbf{T}_{\{1,K,S\}}$: $(t_{\lambda})_H \equiv t$,
- (P2) for $t, s \in \Lambda$: $t \rightarrow_{\beta \eta} s \Rightarrow t_H \succ s_H$,
- (P3) for $t, s \in \mathbf{T}_{\{\mathsf{I.K.S}\}}$: $t =_{c\beta\eta} s \Rightarrow t_{\lambda} =_{\beta\eta} s_{\lambda}$.

$$(\)_{\lambda}: \mathbf{T}_{\{\mathsf{I},\mathsf{K},\mathsf{S}\}} \longrightarrow \mathsf{\Lambda} \qquad \text{and} \qquad (\)_{H}: \mathsf{\Lambda} \longrightarrow \mathbf{T}_{\{\mathsf{I},\mathsf{K},\mathsf{S}\}}$$

Standard translations between combinatory terms and λ -terms.

These satisfy:

(P1) for
$$t \in \mathbf{T}_{\{1,K,S\}}$$
: $(t_{\lambda})_H \equiv t$,

(P2) for
$$t, s \in \Lambda$$
: $t \rightarrow_{\beta\eta} s \Rightarrow t_H \succ s_H$,

(P3) for
$$t, s \in \mathbf{T}_{\{\mathsf{I},\mathsf{K},\mathsf{S}\}}$$
: $t =_{c\beta\eta} s \Rightarrow t_{\lambda} =_{\beta\eta} s_{\lambda}$.

Then:

$$\begin{array}{cccc} t =_{c\beta\eta} s & \Rightarrow & t_{\lambda} =_{\beta\eta} s_{\lambda} & \text{by (P3)} \\ & \Rightarrow & \exists r \in \Lambda : \ t_{\lambda} \twoheadrightarrow_{\beta\eta} r \ _{\beta\eta} \twoheadleftarrow s_{\lambda} & \text{by CR}(\twoheadrightarrow_{\beta\eta}) \\ & \Rightarrow & t \succ r_{H} \prec s & \text{by (P2) and (P1)} \end{array}$$

H.B. Curry and R. Feys, Combinatory Logic, Vol. I, 1958

List of "Unsolved problems" in § 6 F.5

H.B. Curry and R. Feys, Combinatory Logic, Vol. I, 1958

List of "Unsolved problems" in § 6 F.5

H.B. Curry and R. Feys, Combinatory Logic, Vol. I, 1958

List of "Unsolved problems" in § 6 F.5

"c. Is it possible to prove the Church-Rosser property directly for strong reduction, without having recourse to transformations between that theory and the theory of λ-conversion? ..."

H.B. Curry and R. Feys, Combinatory Logic, Vol. I, 1958

List of "Unsolved problems" in § 6 F.5

"c. Is it possible to prove the Church-Rosser property directly for strong reduction, without having recourse to transformations between that theory and the theory of λ-conversion? ..."

Remark

A solution was advanced by K. Loewen in 1968. His proof, however, seems to contain an error — as pointed out in Hindley's MR review (1970).

Hindley's statement of the problem

Problem #1 — TLCA List of Open Problems, http://tlca.di.unito.it/opltlca/

Submitted by Roger Hindley Date: Known since 1958!

Statement. Is there a direct proof of the confluence of $\beta\eta$ -strong reduction?

Problem Origin. First posed by Haskell Curry and Roger Hindley.

Hindley's statement of the problem

Problem #1 — TLCA List of Open Problems, http://tlca.di.unito.it/opltlca/

Submitted by Roger Hindley Date: Known since 1958!

Statement. Is there a direct proof of the confluence of $\beta\eta$ -strong reduction?

Problem Origin. First posed by Haskell Curry and Roger Hindley.

Hindley's statement of the problem

Problem #1 — TLCA List of Open Problems, http://tlca.di.unito.it/opltlca/

Submitted by Roger Hindley Date: Known since 1958! Statement. Is there a direct proof of the confluence of $\beta\eta$ -strong reduction? **Problem Origin.** First posed by Haskell Curry and Roger Hindley.

The $\beta\eta$ -strong reduction is the combinatory analogue of $\beta\eta$ -reduction in λ -calculus. It is confluent. Its only known confluence-proof is very easy, [Curry and Feys, 1958, 6F, p. 221 Theorem 3], but it depends on the having already proved the confluence of $\lambda\beta\eta$ -reduction. Thus the theory of combinators is not self-contained at present. Is there a confluence proof independent of λ -calculus?

- The problem
- 2 Analytic proof systems for combinatory logic and λ -calculus
 - Synthetic vs analytic equational proof systems
 - G-systems
 - Main results
- 3 Solution to the problem
- igl(4) Proving transitivity elimination for $G_{ext}[\mathbb{X}]$ systems

• Standard presentations of equational proof systems:

- Standard presentations of equational proof systems:
 - specific axioms (a set of equation schemas)

- Standard presentations of equational proof systems:
 - specific axioms (a set of equation schemas)
 - the usual inference rules for equality (*reflexivity*, *symmetry*, *transitivity* and *congruence*)

- Standard presentations of equational proof systems:
 - specific axioms (a set of equation schemas)
 - the usual inference rules for equality (*reflexivity*, *symmetry*, *transitivity* and *congruence*)

- Standard presentations of equational proof systems:
 - specific axioms (a set of equation schemas)
 - the usual inference rules for equality (reflexivity, symmetry, transitivity and congruence)
- The transitivity rule

$$\frac{t = r \quad r = s}{t = s}$$

- Standard presentations of equational proof systems:
 - specific axioms (a set of equation schemas)
 - the usual inference rules for equality (reflexivity, symmetry, transitivity and congruence)
- The transitivity rule

$$\frac{t = r \quad r = s}{t = s}$$

- Standard presentations of equational proof systems:
 - specific axioms (a set of equation schemas)
 - the usual inference rules for equality (*reflexivity*, *symmetry*, *transitivity* and *congruence*)
- The transitivity rule

$$\frac{t = r \quad r = s}{t = s}$$

(which cannot be dispensed with, except that in trivial cases) **has an inherently synthetic character** in combining derivations, like *modus* **ponens** in Hilbert-style proof systems

 Naive proof-theoretic arguments are usually impossible (e.g.: syntactic consistency proofs by induction on the length of derivations) Naive proof-theoretic arguments are usually impossible (e.g.: syntactic consistency proofs by induction on the length of derivations)

- Naive proof-theoretic arguments are usually impossible (e.g.: syntactic consistency proofs by induction on the length of derivations)
- No kind of "subterm property"

- Naive proof-theoretic arguments are usually impossible (e.g.: syntactic consistency proofs by induction on the length of derivations)
- No kind of "subterm property"

- Naive proof-theoretic arguments are usually impossible (e.g.: syntactic consistency proofs by induction on the length of derivations)
- No kind of "subterm property"
- In general, derivations lack any significant mathematical structure

- Naive proof-theoretic arguments are usually impossible (e.g.: syntactic consistency proofs by induction on the length of derivations)
- No kind of "subterm property"
- In general, derivations lack any significant mathematical structure

- Naive proof-theoretic arguments are usually impossible (e.g.: syntactic consistency proofs by induction on the length of derivations)
- No kind of "subterm property"
- In general, derivations lack any significant mathematical structure
- As a consequence, 'synthetic' equational calculi do not lend themselves directly to proof-theoretical analysis

Question

Are there significant cases in which it is both *possible* and *useful* to turn a 'synthetic' equational proof system into an **equivalent** 'analytic' proof system,

where the transitivity rule is provably redundant?

Combinatory logic: CL (& generalizations)

P. M., Analytic combinatory calculi and the elimination of transitivity, Arch. Math. Logic 43 (2004), 159-191.

Combinatory logic: CL (& generalizations)

P. M., Analytic combinatory calculi and the elimination of transitivity, Arch. Math. Logic 43 (2004), 159-191.

Combinatory logic: CL (& generalizations)

P. M., Analytic combinatory calculi and the elimination of transitivity, Arch. Math. Logic 43 (2004), 159-191.

• Lambda-Calculus: $\lambda \beta$, $\lambda \beta \eta$

P. M., Analytic proof systems for λ -calculus: the elimination of transitivity, and why it matters, Arch. Math. Logic 46 (2007), 385-424.

Combinatory logic: CL (& generalizations)

P. M., Analytic combinatory calculi and the elimination of transitivity, Arch. Math. Logic 43 (2004), 159-191.

• Lambda-Calculus: $\lambda \beta$, $\lambda \beta \eta$

P. M., Analytic proof systems for λ -calculus: the elimination of transitivity, and why it matters, Arch. Math. Logic 46 (2007), 385-424.

Combinatory logic: CL (& generalizations)

P. M., Analytic combinatory calculi and the elimination of transitivity, Arch. Math. Logic 43 (2004), 159-191.

• Lambda-Calculus: $\lambda \beta$, $\lambda \beta \eta$

P. M., Analytic proof systems for λ -calculus: the elimination of transitivity, and why it matters, Arch. Math. Logic 46 (2007), 385-424.

Extensional Combinatory logic: CL_{ext} (& generalizations)

P. M., A solution to Curry and Hindley's problem on combinatory strong reduction, submitted.

G-systems

Overwiew

synthetic proof-systems

synthetic proof-systems

synthetic proof-systems

equivalent (candidate) analytic proof-systems ("G-systems")

synthetic proof-systems

IL

equivalent (candidate) analytic proof-systems ("G-systems")

(effective) transitivity elimination for G-systems

synthetic proof-systems

↓

(equivalent (candidate) analytic proof-systems ("G-systems")

↓

(effective) transitivity elimination for G-systems

⇒ consistency

- combinatory axiom schemas $I \beta$ -conversion schema
 - ▶ turned into pairs of suitable introduction rules ▶ □ ▶ □

- combinatory axiom schemas $I \beta$ -conversion schema
 - ▶ turned into pairs of suitable introduction rules ▶ □ ▶ □

- combinatory axiom schemas $I \beta$ -conversion schema
 - ▶ turned into pairs of suitable introduction rules ▶ □ ▶ □

symmetry rule

dropped

- combinatory axiom schemas $I \beta$ -conversion schema
 - ▶ turned into pairs of suitable introduction rules ▶ □ ▶ □

symmetry rule

dropped

- combinatory axiom schemas I β -conversion schema
 - ▶ turned into pairs of suitable introduction rules ▶ □ ▶ □

symmetry rule

- dropped
- reflexivity (0-premises) rule
- restricted to atomic terms

- combinatory axiom schemas I β -conversion schema
 - ▶ turned into pairs of suitable introduction rules ▶ □ ▶ □

- dropped
- reflexivity (0-premises) rule
- restricted to atomic terms

- combinatory axiom schemas / β-conversion schema
 - ▶ turned into pairs of suitable introduction rules ••• •• ••

- dropped
- reflexivity (0-premises) rule
- restricted to atomic terms

- monotony rule(s)
 - ▶ taken in the parallel version

$$\frac{t = s \quad p = q}{tp = sq}_{App}$$

- combinatory axiom schemas / β-conversion schema
 - ▶ turned into pairs of suitable introduction rules ••• •• ••

- dropped
- reflexivity (0-premises) rule
- restricted to atomic terms

- monotony rule(s)
 - ▶ taken in the parallel version

$$\frac{t = s \quad p = q}{tp = sq}_{App}$$

- combinatory axiom schemas / β-conversion schema
 - ▶ turned into pairs of suitable introduction rules ••• •• ••

- dropped
- reflexivity (0-premises) rule
- restricted to atomic terms

- monotony rule(s)
 - ▶ taken in the parallel version

$$\frac{t = s \quad p = q}{tp = sq}_{App}$$

- extensionality rule (if any)
 - taken in the version

$$\frac{tx = sx}{t = s} E_{xt} \quad \{x \notin V(ts)\}$$

G-systems for full combinatory logic: $\mathbf{G}[\mathbb{C}]$ / $\mathbf{G}_{\mathrm{ext}}[\mathbb{C}]$

```
\mathbf{G}[\mathbb{C}] (corresponding to \mathbf{CL})
```

G-systems for full combinatory logic: $\mathbf{G}[\mathbb{C}]$ / $\mathbf{G}_{\mathrm{ext}}[\mathbb{C}]$

```
\mathbf{G}[\mathbb{C}] (corresponding to \mathbf{CL})
```

G-systems for full combinatory logic: $\mathbf{G}[\mathbb{C}]$ / $\mathbf{G}_{ext}[\mathbb{C}]$

$\mathbf{G}[\mathbb{C}]$ (corresponding to \mathbf{CL})

"structural rules":

$$\overline{t=t}^{\;\rho'}$$
 (t atomic)

$$\frac{t = s \quad p = q}{tp = sq}_{App}$$

$$\frac{t=r \quad r=s}{t=s} \, \tau$$

G-systems for full combinatory logic: $\mathbf{G}[\mathbb{C}]$ / $\mathbf{G}_{ext}[\mathbb{C}]$

$\mathbf{G}[\mathbb{C}]$ (corresponding to \mathbf{CL})

"structural rules":

$$\frac{1}{t=t} \rho'$$
 (t atomic)

$$\frac{t = s \quad p = q}{tp = sq} App$$

$$\frac{t=r \quad r=s}{t=s} \, \tau$$

left and right combinatory introduction rules for I, K, S

G-systems for full combinatory logic: $\mathbf{G}[\mathbb{C}] \ / \ \mathbf{G}_{ext}[\mathbb{C}]$

$G[\mathbb{C}]$ (corresponding to CL)

"structural rules":

$$\overline{t=t}^{\;\rho'}$$
 (t atomic)

$$\frac{t = s \quad p = q}{tp = sq} App$$

$$\frac{t=r \quad r=s}{t=s} \, \tau$$

left and right combinatory introduction rules for I, K, S

 $G_{ext}[\mathbb{C}]$ (corresponding to CL_{ext})

G-systems for full combinatory logic: $\mathbf{G}[\mathbb{C}] \ / \ \mathbf{G}_{ext}[\mathbb{C}]$

$G[\mathbb{C}]$ (corresponding to CL)

"structural rules":

$$\frac{1}{t=t} \rho'$$
 (t atomic)

$$\frac{t = s \quad p = q}{tp = sq}_{App}$$

$$\frac{t=r \quad r=s}{t=s} \, \tau$$

left and right combinatory introduction rules for I, K, S

$G_{ext}[\mathbb{C}]$ (corresponding to CL_{ext})

+ the extensionality rule [Ext]

and for arbitrary combinatory systems $\mathbb{X} \colon G[\mathbb{X}] \: / \: G_{ext}[\mathbb{X}]$

A **combinatory system** \mathbb{X} is a map, defined on a non-empty set $\mathbf{X} = dom(\mathbb{X})$ of primitive combinators $(\mathsf{F},\mathsf{G}\dots)$, which associates to each $\mathsf{F} \in \mathbf{X}$ a pair $\langle k_\mathsf{F}, d_\mathsf{F} \rangle$ s.t.:

and for arbitrary combinatory systems \mathbb{X} : $G[\mathbb{X}]$ / $G_{ext}[\mathbb{X}]$

A **combinatory system** \mathbb{X} is a map, defined on a non-empty set $\mathbf{X} = dom(\mathbb{X})$ of primitive combinators $(\mathsf{F},\mathsf{G}\dots)$, which associates to each $\mathsf{F} \in \mathbf{X}$ a pair $\langle k_\mathsf{F}, d_\mathsf{F} \rangle$ s.t.:

• k_F , the *index* of F under X, is a non negative integer;

and for arbitrary combinatory systems \mathbb{X} : $\mathbf{G}[\mathbb{X}]$ / $\mathbf{G}_{ext}[\mathbb{X}]$

A **combinatory system** \mathbb{X} is a map, defined on a non-empty set $\mathbf{X} = dom(\mathbb{X})$ of primitive combinators $(\mathsf{F},\mathsf{G}\dots)$, which associates to each $\mathsf{F} \in \mathbf{X}$ a pair $\langle k_\mathsf{F}, d_\mathsf{F} \rangle$ s.t.:

- k_{F} , the *index* of F under \mathbb{X} , is a non negative integer;
- d_F , the definition of F under \mathbb{X} , is a term with $V(d_F) \subseteq \{v_1, \dots, v_{k_F}\}$.

and for arbitrary combinatory systems \mathbb{X} : $\mathbf{G}[\mathbb{X}]$ / $\mathbf{G}_{ext}[\mathbb{X}]$

A **combinatory system** \mathbb{X} is a map, defined on a non-empty set $\mathbf{X} = dom(\mathbb{X})$ of primitive combinators $(\mathsf{F},\mathsf{G}\dots)$, which associates to each $\mathsf{F} \in \mathbf{X}$ a pair $\langle k_\mathsf{F}, d_\mathsf{F} \rangle$ s.t.:

- k_F , the *index* of F under X, is a non negative integer;
- d_F , the *definition* of F under \mathbb{X} , is a term with $V(d_F) \subseteq \{v_1, \dots, v_{k_F}\}$.

Intuitively, for each primitive combinator $F \in X$:

$$X : F \longmapsto Ft_1 \dots t_{k_F} = d_F[v_1/t_1, \dots, v_{k_F}/t_{k_F}]$$
 (AX F)

and for arbitrary combinatory systems $\mathbb{X} \colon \mathbf{G}[\mathbb{X}] \: / \: \mathbf{G}_{ext}[\mathbb{X}]$

A **combinatory system** \mathbb{X} is a map, defined on a non-empty set $\mathbf{X} = dom(\mathbb{X})$ of primitive combinators $(\mathsf{F},\mathsf{G}\dots)$, which associates to each $\mathsf{F} \in \mathbf{X}$ a pair $\langle k_\mathsf{F}, d_\mathsf{F} \rangle$ s.t.:

- k_F , the *index* of F under \mathbb{X} , is a non negative integer;
- d_F , the *definition* of F under \mathbb{X} , is a term with $V(d_F) \subseteq \{v_1, \dots, v_{k_F}\}$.

Intuitively, for each primitive combinator $F \in X$:

$$\mathbb{X}: \mathsf{F} \longmapsto \mathsf{F} t_1 \dots t_{k_\mathsf{F}} = d_\mathsf{F}[v_1/t_1, \dots, v_{k_\mathsf{F}}/t_{k_\mathsf{F}}] \qquad (\mathsf{AX}\,\mathsf{F})_{\mathbb{X}}$$

$\left[\mathbf{G}[\mathbb{X}] \, / \, \mathbf{G}_{\mathsf{ext}}[\mathbb{X}] \right]$

are defined exactly as $G[\mathbb{C}]/G_{ext}[\mathbb{C}]$, except that the introduction rules for I, K, S are replaced by the rules $[F_I]_{\mathbb{X}}$, $[F_r]_{\mathbb{X}}$, for each $F \in \mathbb{X}$

 $G[\beta]$ (corresponding to $\lambda\beta$)

 $G[\beta]$ (corresponding to $\lambda\beta$)

$G[\beta]$ (corresponding to $\lambda\beta$)

"structural rules":

$$\frac{1}{x=x} \rho' \qquad \frac{t=s \quad p=q}{tp=sq} App \qquad \frac{t=s}{\lambda x.t=\lambda x.s} \xi \qquad \frac{t=r \quad r=s}{t=s} \tau$$

$G[\beta]$ (corresponding to $\lambda\beta$)

"structural rules":

$$\frac{1}{x=x} \rho' \qquad \frac{t=s \quad p=q}{tp=sq} App \qquad \frac{t=s}{\lambda x.t=\lambda x.s} \xi \qquad \frac{t=r \quad r=s}{t=s} \tau$$

$$\frac{t=s}{\lambda x.t = \lambda x.s} \,\xi$$

$$\frac{t=r \quad r=s}{t=s} \, \tau$$

left and right β-introduction rules

$G[\beta]$ (corresponding to $\lambda\beta$)

"structural rules":

$$\frac{1}{x = x} \rho' \qquad \frac{t = s \quad p = q}{tp = sq} App$$

$$\frac{1}{x=x} \rho' \qquad \frac{t=s \quad p=q}{tp=sq} App \qquad \frac{t=s}{\lambda x.t=\lambda x.s} \xi \qquad \frac{t=r \quad r=s}{t=s} \tau$$

left and right β-introduction rules

$$G_{\text{ext}}[\beta]$$
 (corresponding to $\lambda\beta\eta$)

$G[\beta]$ (corresponding to $\lambda\beta$)

"structural rules":

$$\frac{1}{x=x} \rho' \qquad \frac{t=s \quad p=q}{tp=sq} App \qquad \frac{t=s}{\lambda x.t=\lambda x.s} \xi \qquad \frac{t=r \quad r=s}{t=s} \tau$$

$$\frac{t=s}{\lambda x.t = \lambda x.s} \, \xi \qquad \frac{t=r \quad r=s}{t=s}$$

left and right β-introduction rules

(corresponding to $\lambda\beta\eta$) $G_{\rm ext}[\beta]$

+ the extensionality rule [Ext]

Lemma [Equivalence]

G-systems are equivalent to the corresponding synthetic systems

Lemma [Equivalence]

G-systems are equivalent to the corresponding synthetic systems

Main Theorem [*⊤*-elimination]

G-systems admit (effective) transitivity elimination

Lemma [Equivalence]

G-systems are equivalent to the corresponding synthetic systems

Main Theorem [*⊤*-elimination]

G-systems admit (effective) transitivity elimination

Lemma [Equivalence]

G-systems are equivalent to the corresponding synthetic systems

Main Theorem [τ -elimination]

G-systems admit (effective) transitivity elimination

Proof (in order of increasing complexity):

• $\mathbf{G}[\mathbb{X}]$ (\mathbb{X} arbitrary)

[PM 04]

Lemma [Equivalence]

G-systems are equivalent to the corresponding synthetic systems

Main Theorem [τ -elimination]

G-systems admit (effective) transitivity elimination

Proof (in order of increasing complexity):

• G[X] (X arbitrary) [PM 04]

• $G_{ext}[X]$ (X linear) [PM 04]

Lemma [Equivalence]

G-systems are equivalent to the corresponding synthetic systems

Main Theorem [τ -elimination]

G-systems admit (effective) transitivity elimination

Proof (in order of increasing complexity):

• G[X] (X arbitrary) [PM 04]

• $G_{ext}[X]$ (X linear) [PM 04]

• $G[\beta]$ and $G_{ext}[\beta]$ [PM 07]

Lemma [Equivalence]

G-systems are equivalent to the corresponding synthetic systems

Main Theorem [τ -elimination]

G-systems admit (effective) transitivity elimination

Proof (in order of increasing complexity):

• G[X] (X arbitrary) [PM 04]

• $G_{ext}[X]$ (X linear) [PM 04]

• $G[\beta]$ and $G_{ext}[\beta]$ [PM 07]

• $G_{ext}[X]$ (X arbitrary) [PM 08]

• τ -free G-derivations enjoy a kind of **subterm property**

- τ-free G-derivations enjoy a kind of subterm property
- This gives, as an immediate consequence

- τ -free G-derivations enjoy a kind of **subterm property**
- This gives, as an immediate consequence
 - the unprovability of x = y (with x distinct from y)

- τ -free G-derivations enjoy a kind of **subterm property**
- This gives, as an immediate consequence
 - the unprovability of x = y (with x distinct from y)
 - so the consistency of G-systems and of the corresponding synthetic systems

- τ-free G-derivations enjoy a kind of subterm property
- This gives, as an immediate consequence
 - the unprovability of x = y (with x distinct from y)
 - so the consistency of G-systems and of the corresponding synthetic systems
- Owing to the nice structural properties of τ-free derivations, we can provide a unified framework in which new very short demonstrations of central results concerning reductions can be given, including:

- τ-free G-derivations enjoy a kind of subterm property
- This gives, as an immediate consequence
 - the unprovability of x = y (with x distinct from y)
 - so the consistency of G-systems and of the corresponding synthetic systems
- Owing to the nice structural properties of τ-free derivations, we can provide a unified framework in which new very short demonstrations of central results concerning reductions can be given, including:
 - Church-Rosser

Consequences & applications of τ -elimination

- τ-free G-derivations enjoy a kind of subterm property
- This gives, as an immediate consequence
 - the unprovability of x = y (with x distinct from y)
 - so the consistency of G-systems and of the corresponding synthetic systems
- Owing to the nice structural properties of τ -free derivations, we can provide a unified framework in which new very short demonstrations of central results concerning reductions can be given, including:
 - Church-Rosser
 - Standardization

Consequences & applications of τ -elimination

- τ-free G-derivations enjoy a kind of subterm property
- This gives, as an immediate consequence
 - the unprovability of x = y (with x distinct from y)
 - so the consistency of G-systems and of the corresponding synthetic systems
- Owing to the nice structural properties of τ-free derivations, we can provide a unified framework in which new very short demonstrations of central results concerning reductions can be given, including:
 - Church-Rosser
 - Standardization
 - Leftmost reduction (in particular for $\lambda\beta\eta$ -reduction)

Consequences & applications of τ -elimination

- τ-free G-derivations enjoy a kind of subterm property
- This gives, as an immediate consequence
 - the unprovability of x = y (with x distinct from y)
 - so the consistency of G-systems and of the corresponding synthetic systems
- Owing to the nice structural properties of τ-free derivations, we can provide a unified framework in which new very short demonstrations of central results concerning reductions can be given, including:
 - Church-Rosser
 - Standardization
 - Leftmost reduction (in particular for $\lambda\beta\eta$ -reduction)
 - ...

- The problem
- 2 Analytic proof systems for combinatory logic and λ -calculus
- Solution to the problem
 - Extraction Lemma
 - A direct confluence proof
- 4 Proving transitivity elimination for $G_{ext}[X]$ systems

Lemma

From any given au-free $G_{ext}[\mathbb{C}]$ -derivation

$$\mathcal{D} \vdash^{-} t = s$$

one can effectively extract a term r_D such that $t \succ r_D \prec s$

Lemma

From any given au-free $G_{ext}[\mathbb{C}]$ -derivation

$$\mathcal{D} \vdash^{-} t = s$$

one can effectively extract a term r_D such that $t \succ r_D \prec s$

Lemma

From any given au-free $G_{ext}[\mathbb{C}]$ -derivation

$$\mathcal{D} \vdash t = s$$

one can effectively extract a term r_D such that $t \succ r_D \prec s$

Proof: by straightforward induction on the length of \mathcal{D} .

Lemma

From any given au-free $G_{ext}[\mathbb{C}]$ -derivation

$$\mathcal{D} \vdash^{-} t = s$$

one can effectively extract a term r_D such that $t \succ r_D \prec s$

Proof: by straightforward induction on the length of \mathcal{D} .

- $\mathcal{D} \equiv t = t$ [t atomic]
- $\mathcal{D} \equiv App(\mathcal{D}_1, \mathcal{D}_2)$
- $\mathcal{D} \equiv R(\mathcal{D}_1)$ [R a combinatory rule]
- $\mathcal{D} \equiv Ext_x(\mathcal{D}_1)$

$$r_{\mathcal{D}} := t$$

$$r_{\mathcal{D}} := r_{\mathcal{D}_1} r_{\mathcal{D}_2}$$

$$r_{\mathcal{D}} := r_{\mathcal{D}_1}$$

$$r_{\mathcal{D}} := \lambda^* x. r_{\mathcal{D}_1}$$

Lemma

From any given au-free $G_{ext}[\mathbb{C}]$ -derivation

$$\mathcal{D} \vdash t = s$$

one can effectively extract a term r_D such that $t \succ r_D \prec s$

Proof: by straightforward induction on the length of \mathcal{D} .

- $\mathcal{D} \equiv t = t$ [t atomic]
- $\mathcal{D} \equiv App(\mathcal{D}_1, \mathcal{D}_2)$
- $\mathcal{D} \equiv R(\mathcal{D}_1)$ [R a combinatory rule]
- $\mathcal{D} \equiv Ext_x(\mathcal{D}_1)$

- $r_{\mathcal{D}} := t$
- $r_{\mathcal{D}} := r_{\mathcal{D}_1} r_{\mathcal{D}_2}$
- $r_{\mathcal{D}} := r_{\mathcal{D}_1}$
- $r_{\mathcal{D}} := \lambda^* x. r_{\mathcal{D}_1}$

As to the last case, indeed:

$$tx \succ r \prec sx \ [x \notin V(ts)] \Rightarrow_{\mathsf{rule}\ \xi} t \equiv \lambda^* x.tx \succ \lambda^* x.r \prec \lambda^* x.sx \equiv s$$

Suppose
$$t =_{c\beta\eta} s$$
, i.e.

$$\mathbf{CL_{ext}} \vdash t = s$$
.

Suppose
$$t =_{c\beta\eta} s$$
, i.e.

$$\mathbf{CL_{ext}} \vdash t = s$$
.

Suppose $t =_{c\beta\eta} s$, i.e.

$$\mathbf{CL_{ext}} \vdash t = s$$
.

Then, by the *equivalence* Lemma and the τ -elimination Theorem, we get a transitivity-free $G_{ext}[\mathbb{C}]$ -derivation

$$\mathcal{D} \vdash^{-} t = s$$
.

Suppose $t =_{c\beta\eta} s$, i.e.

$$\mathbf{CL_{ext}} \vdash t = s$$
.

Then, by the *equivalence* Lemma and the τ -elimination Theorem, we get a transitivity-free $G_{ext}[\mathbb{C}]$ -derivation

$$\mathcal{D} \vdash^{-} t = s$$
.

A final application of the *extraction* Lemma to \mathcal{D} yields a **common** \succ **-reduct** $r_{\mathcal{D}}$ of t and s:

$$t \succ r_{\mathcal{D}} \prec s$$

Suppose $t =_{c\beta\eta} s$, i.e.

$$\mathbf{CL_{ext}} \vdash t = s$$
.

Then, by the *equivalence* Lemma and the τ -elimination Theorem, we get a transitivity-free $G_{ext}[\mathbb{C}]$ -derivation

$$\mathcal{D} \vdash^{-} t = s$$
.

A final application of the *extraction* Lemma to \mathcal{D} yields a **common** \succ **-reduct** $r_{\mathcal{D}}$ of t and s:

$$t \succ r_{\mathcal{D}} \prec s$$

This confluence proof for \succ is independent of λ -calculus!

- The problem
- 2 Analytic proof systems for combinatory logic and λ -calculus
- Solution to the problem
- $iggle{4}$ Proving transitivity elimination for $\mathbf{G}_{\mathsf{ext}}[\mathbb{X}]$ systems
 - Preliminaries
 - The strategy
 - Steps 1-4

• ||t|| := the depth of t

- ||t|| := the depth of t
- Φ, Ψ, \ldots : contexts (terms with some holes *)

- ||t|| := the depth of t
- Φ, Ψ, \ldots : contexts (terms with some holes *)
- $t, \Phi \mapsto \Phi[t]$

- ||t|| := the depth of t
- ullet Φ, Ψ, \dots : contexts (terms with some holes *)
- $t, \Phi \mapsto \Phi[t]$

- ||t|| := the depth of t
- Φ, Ψ, \ldots : contexts (terms with some holes *)
- $t, \Phi \mapsto \Phi[t]$
- $\mathcal{D}, \mathcal{D}' \dots$: $\mathbf{G}_{ext}[\mathbb{X}]$ -derivations

- ||t|| := the depth of t
- Φ, Ψ, \ldots : contexts (terms with some holes *)
- $t, \Phi \mapsto \Phi[t]$
- ullet $\mathcal{D}, \mathcal{D}' \ldots : \quad \mathbf{G}_{ext}[\mathbb{X}]$ -derivations
- $\mathcal{D} \vdash^{-} t = s$: \mathcal{D} is a τ -free derivation of t = s

- ||t|| := the depth of t
- Φ, Ψ, \ldots : contexts (terms with some holes *)
- $t, \Phi \mapsto \Phi[t]$
- ullet $\mathcal{D}, \mathcal{D}' \ldots : \quad \mathbf{G}_{ext}[\mathbb{X}]$ -derivations
- $\mathcal{D} \vdash^{-} t = s$: \mathcal{D} is a τ -free derivation of t = s
- Left derivation (\vdash_L): no **right** combinatory inferences

- ||t|| := the depth of t
- Φ, Ψ, \ldots : contexts (terms with some holes *)
- $t, \Phi \mapsto \Phi[t]$
- ullet $\mathcal{D}, \mathcal{D}' \ldots : \quad \mathbf{G}_{ext}[\mathbb{X}]$ -derivations
- $\mathcal{D} \vdash^{-} t = s$: \mathcal{D} is a τ -free derivation of t = s
- Left derivation (\vdash_L): no **right** combinatory inferences
- *Right* derivation (\vdash_R): dually

- ||t|| := the depth of t
- Φ, Ψ, \ldots : contexts (terms with some holes *)
- $t, \Phi \mapsto \Phi[t]$
- ullet $\mathcal{D}, \mathcal{D}' \ldots : \quad \mathbf{G}_{ext}[\mathbb{X}]$ -derivations
- $\mathcal{D} \vdash^{-} t = s$: \mathcal{D} is a τ -free derivation of t = s
- Left derivation (\vdash_L): no **right** combinatory inferences
- Right derivation (\vdash_R): dually

- ||t|| := the depth of t
- Φ, Ψ, \ldots : contexts (terms with some holes *)
- $t, \Phi \mapsto \Phi[t]$
- $\mathcal{D}, \mathcal{D}' \dots$: $\mathbf{G}_{ext}[\mathbb{X}]$ -derivations
- $\mathcal{D} \vdash^{-} t = s$: \mathcal{D} is a τ -free derivation of t = s
- *Left* derivation (\vdash_L): no **right** combinatory inferences
- Right derivation (\vdash_R): dually
- $s(\mathcal{D}) := \#$ of combinatory and [Ext] inferences in \mathcal{D}

- ||t|| := the depth of t
- Φ, Ψ, \ldots : contexts (terms with some holes *)
- $t, \Phi \mapsto \Phi[t]$
- ullet $\mathcal{D}, \mathcal{D}' \ldots : \quad \mathbf{G}_{ext}[\mathbb{X}]$ -derivations
- $\mathcal{D} \vdash^{-} t = s$: \mathcal{D} is a τ -free derivation of t = s
- *Left* derivation (\vdash_L): no **right** combinatory inferences
- Right derivation (\vdash_R): dually
- $s(\mathcal{D}) := \#$ of combinatory and [Ext] inferences in \mathcal{D}
- $h(\mathcal{D}) := \text{tree-height of } \mathcal{D}$

We show how to eliminate a topmost application of τ :

$$\mathcal{D}_1 \vdash^- t = s$$
, $\mathcal{D}_2 \vdash^- s = r \longmapsto \mathcal{D}^* \vdash^- t = r$

We show how to eliminate a topmost application of τ :

$$\mathcal{D}_1 \vdash^- t = s$$
, $\mathcal{D}_2 \vdash^- s = r \longmapsto \mathcal{D}^* \vdash^- t = r$

The *proof* runs by ω^3 -induction:

We show how to eliminate a topmost application of τ :

$$\mathcal{D}_1 \vdash^- t = s$$
, $\mathcal{D}_2 \vdash^- s = r \longmapsto \mathcal{D}^* \vdash^- t = r$

The *proof* runs by ω^3 -induction:

main:
$$h'(\mathcal{D}_1) + h'(\mathcal{D}_2)$$

We show how to eliminate a topmost application of τ :

$$\mathcal{D}_1 \vdash^- t = s$$
, $\mathcal{D}_2 \vdash^- s = r \longmapsto \mathcal{D}^* \vdash^- t = r$

The *proof* runs by ω^3 -induction:

main: $h'(\mathcal{D}_1) + h'(\mathcal{D}_2)$

secondary: $s(\mathcal{D}_1) + s(\mathcal{D}_2)$

We show how to eliminate a topmost application of τ :

$$\mathcal{D}_1 \vdash^- t = s$$
, $\mathcal{D}_2 \vdash^- s = r \longmapsto \mathcal{D}^* \vdash^- t = r$

The *proof* runs by ω^3 -induction:

main: $h'(\mathcal{D}_1) + h'(\mathcal{D}_2)$

secondary: $s(\mathcal{D}_1) + s(\mathcal{D}_2)$

ternary: ||s||

We show how to eliminate a topmost application of τ :

$$\mathcal{D}_1 \vdash^- t = s$$
, $\mathcal{D}_2 \vdash^- s = r \longmapsto \mathcal{D}^* \vdash^- t = r$

The *proof* runs by ω^3 -induction:

main: $h'(\mathcal{D}_1) + h'(\mathcal{D}_2)$

secondary: $s(\mathcal{D}_1) + s(\mathcal{D}_2)$

ternary: ||s||

This strategy doesn't work when the **extensionality rule** is present, coupled with **non linear** combinators.

We show that the following **generalized transitivity rule**

$$\frac{t = \mathbf{s} \quad \Phi[\mathbf{s}] = r}{\Phi[\mathbf{t}] = r} \tau^*$$

is eliminable.

We show that the following **generalized transitivity rule**

$$\frac{t = \mathbf{s} \quad \Phi[\mathbf{s}] = r}{\Phi[\mathbf{t}] = r} \tau^*$$

is eliminable.

We show that the following **generalized transitivity rule**

$$\frac{t = \mathbf{s} \quad \Phi[\![\mathbf{s}]\!] = r}{\Phi[\![t]\!] = r} \tau^*$$

is eliminable.

We show that the following **generalized transitivity rule**

$$\frac{t = s \quad \Phi[\![s]\!] = r}{\Phi[\![t]\!] = r} \tau^*$$

is eliminable.

The proof consists of four main steps (in this order):

generalized F-inversion

We show that the following **generalized transitivity rule**

$$\frac{t = s \quad \Phi[\![s]\!] = r}{\Phi[\![t]\!] = r} \tau^*$$

is eliminable.

- generalized F-inversion
- left τ-elimination

We show that the following generalized transitivity rule

$$\frac{t = s \quad \Phi[\![s]\!] = r}{\Phi[\![t]\!] = r} \tau^*$$

is eliminable.

- generalized F-inversion
- left τ-elimination
- generalized F-introduction

We show that the following generalized transitivity rule

$$\frac{t = s \quad \Phi[\![s]\!] = r}{\Phi[\![t]\!] = r} \tau^*$$

is eliminable.

- generalized F-inversion
- left τ-elimination
- generalized F-introduction
- elimination of a topmost occurrence of $[\tau^*]$

Step 1: generalized F-inversion Lemma

For any $F \in X$, with $k = k_F$, and any context Φ :

Every τ -free derivation

$$\mathcal{D} \vdash^{-} \Phi \llbracket \mathsf{F} t_1 \dots t_k p_1 \dots p_n \rrbracket = s$$

can effectively be transformed into a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi \llbracket d_{\mathsf{F}}[t_1, \dots, t_k] p_1 \dots p_n \rrbracket = s$$

which, moreover, is a *right* derivation provided \mathcal{D} is a *right* derivation

Step 1: generalized F-inversion Lemma

For any $F \in X$, with $k = k_F$, and any context Φ :

Every τ -free derivation

$$\mathcal{D} \vdash^{-} \Phi \llbracket \mathsf{F} t_1 \dots t_k p_1 \dots p_n \rrbracket = s$$

can effectively be transformed into a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi \llbracket d_{\mathsf{F}}[t_1, \dots, t_k] p_1 \dots p_n \rrbracket = s$$

which, moreover, is a *right* derivation provided \mathcal{D} is a *right* derivation

Step 1: generalized F-inversion Lemma

For any $F \in X$, with $k = k_F$, and any context Φ :

Every τ -free derivation

$$\mathcal{D} \vdash^{-} \Phi \llbracket \mathsf{F} t_1 \dots t_k p_1 \dots p_n \rrbracket = s$$

can effectively be transformed into a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi \llbracket d_{\mathsf{F}}[t_1, \dots, t_k] p_1 \dots p_n \rrbracket = s$$

which, moreover, is a *right* derivation provided \mathcal{D} is a *right* derivation

This follows from the following:

Given

• a τ -free derivation $\mathcal{D} \vdash^{-} t = s$

Given

- a τ -free derivation $\mathcal{D} \vdash^{-} t = s$
- a set S of F-redexes occurrences in t

Given

- a τ -free derivation $\mathcal{D} \vdash^{-} t = s$
- a set S of F-redexes occurrences in t

Given

- a τ -free derivation $\mathcal{D} \vdash^{-} t = s$
- a set S of F-redexes occurrences in t

we can construct a τ -free derivation

$$\mathcal{D}^{\sharp} \vdash^{-} t^{\sharp} = s,$$

Given

- a τ -free derivation $\mathcal{D} \vdash^{-} t = s$
- a set S of F-redexes occurrences in t

we can construct a τ -free derivation

$$\mathcal{D}^{\sharp} \vdash^{-} t^{\sharp} = s,$$

where t^{\sharp} is the term obtained from t by minimal-redex-first complete development of S.

Moreover, \mathcal{D}^{\sharp} is a right derivation provided \mathcal{D} is such.

Given

- a τ -free derivation $\mathcal{D} \vdash^{-} t = s$
- a set S of F-redexes occurrences in t

we can construct a τ -free derivation

$$\mathcal{D}^{\sharp} \vdash^{-} t^{\sharp} = s,$$

where t^{\sharp} is the term obtained from t by minimal-redex-first complete development of S.

Moreover, \mathcal{D}^{\sharp} is a right derivation provided \mathcal{D} is such.

Proof.

By main induction on $s(\mathcal{D})$ and secondary induction on ||t||.

Lemma

Lemma

Lemma

To any given pair

$$\mathcal{D}_1 \vdash_L^- t = s$$
 and $\mathcal{D}_2 \vdash_-^- s = r$

of τ -free derivations, such that \mathcal{D}_1 is a left derivation, we can effectively associate a τ -free derivation

$$\mathcal{D}^* \vdash^- t = r$$

which is a left derivation provided \mathcal{D}_2 is such.

Lemma

To any given pair

$$\mathcal{D}_1 \vdash_L^- t = s$$
 and $\mathcal{D}_2 \vdash_-^- s = r$

of τ -free derivations, such that \mathcal{D}_1 is a left derivation, we can effectively associate a τ -free derivation

$$\mathcal{D}^* \vdash^- t = r$$

which is a **left** derivation provided \mathcal{D}_2 is such.

Proof.

Main induction on $s(\mathcal{D}_2)$, secondary induction on $s(\mathcal{D}_1)$, ternary induction on ||s||, using F-inversion.

Step 3: generalized F-introduction Lemma

For any $F \in X$, with $k = k_F$, and any context Φ :

The following generalized combinatory introduction rules are τ -free admissible:

$$\frac{\Phi\llbracket d_{\mathsf{F}}[t_1,\ldots,t_k]p_1\ldots p_n\rrbracket = s}{\Phi\llbracket \mathsf{F}t_1\ldots t_k p_1\ldots p_n\rrbracket = s} \, {}_{[\mathsf{F}_l^+]} \qquad \frac{s = \Phi\llbracket d_{\mathsf{F}}[t_1,\ldots,t_k]p_1\ldots p_n\rrbracket}{s = \Phi\llbracket \mathsf{F}t_1\ldots t_k p_1\ldots p_n\rrbracket} \, {}_{[\mathsf{F}_r^+]}$$

Moreover, $[F_l^+]$ and $[F_r^+]$ preserve *left-handedness*, resp. *right-handedness*.

Step 3: generalized F-introduction Lemma

For any $F \in X$, with $k = k_F$, and any context Φ :

The following generalized combinatory introduction rules are τ -free admissible:

$$\frac{\Phi\llbracket d_{\mathsf{F}}[t_1,\ldots,t_k]p_1\ldots p_n\rrbracket = s}{\Phi\llbracket \mathsf{F}t_1\ldots t_kp_1\ldots p_n\rrbracket = s} \,_{[\mathsf{F}_l^+]} \qquad \frac{s = \Phi\llbracket d_{\mathsf{F}}[t_1,\ldots,t_k]p_1\ldots p_n\rrbracket}{s = \Phi\llbracket \mathsf{F}t_1\ldots t_kp_1\ldots p_n\rrbracket} \,_{[\mathsf{F}_r^+]}$$

Moreover, $[F_l^+]$ and $[F_r^+]$ preserve *left-handedness*, resp. *right-handedness*.

Proof.

By left τ -elimination.

$$\frac{\Phi[\![\mathsf{F}t_1\dots t_k\overline{p}]\!] = \Phi[\![d_\mathsf{F}[t_1,\dots,t_k]\overline{p}]\!]}{\Phi[\![\mathsf{F}t_1\dots t_k\overline{p}]\!] = s} \Phi[\![d_\mathsf{F}[t_1,\dots,t_k]\overline{p}]\!] = s}{\Phi[\![\mathsf{F}t_1\dots t_k\overline{p}]\!] = s} \text{ Left elim.}$$

*: structural rules + applications of $[F_l]$

For any context Φ:

To each pair of τ -free derivations

$$\mathcal{D}_1 \vdash^- t = \mathbf{s}$$
 and $\mathcal{D}_2 \vdash^- \Phi[\mathbf{s}] = r$

we can effectively associate a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi \llbracket t \rrbracket = r$$

For any context Φ:

To each pair of τ -free derivations

$$\mathcal{D}_1 \vdash^- t = \mathbf{s}$$
 and $\mathcal{D}_2 \vdash^- \Phi[\mathbf{s}] = r$

we can effectively associate a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi[\![t]\!] = r$$

For any context Φ:

To each pair of τ -free derivations

$$\mathcal{D}_1 \vdash^- t = \mathbf{s}$$
 and $\mathcal{D}_2 \vdash^- \Phi[\mathbf{s}] = r$

we can effectively associate a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi \llbracket t \rrbracket = r$$

The proof runs by ω^3 -induction

• main: $s(\mathcal{D}_1)$

For any context Φ:

To each pair of τ -free derivations

$$\mathcal{D}_1 \vdash^- t = \mathbf{s}$$
 and $\mathcal{D}_2 \vdash^- \Phi[\mathbf{s}] = r$

we can effectively associate a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi \llbracket t \rrbracket = r$$

- main: $s(\mathcal{D}_1)$
- secondary: ||s||

For any context Φ:

To each pair of τ -free derivations

$$\mathcal{D}_1 \vdash^- t = \mathbf{s}$$
 and $\mathcal{D}_2 \vdash^- \Phi[\mathbf{s}] = r$

we can effectively associate a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi \llbracket t \rrbracket = r$$

- main: $s(\mathcal{D}_1)$
- secondary: ||s||
- ternary: $h(\mathcal{D}_2)$

For any context Φ:

To each pair of τ -free derivations

$$\mathcal{D}_1 \vdash^- t = \mathbf{s}$$
 and $\mathcal{D}_2 \vdash^- \Phi[\mathbf{s}] = r$

we can effectively associate a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi \llbracket t \rrbracket = r$$

- main: $s(\mathcal{D}_1)$
- secondary: ||s||
- ternary: $h(\mathcal{D}_2)$

For any context Φ:

To each pair of τ -free derivations

$$\mathcal{D}_1 \vdash^- t = \mathbf{s}$$
 and $\mathcal{D}_2 \vdash^- \Phi \llbracket \mathbf{s} \rrbracket = r$

we can effectively associate a τ -free derivation

$$\mathcal{D}^* \vdash^- \Phi \llbracket t \rrbracket = r$$

The proof runs by ω^3 -induction

- main: $s(\mathcal{D}_1)$
- secondary: ||s||
- ternary: h(D₂)

taking main cases according to the last inference R of \mathcal{D}_1 .

Case
$$R = [F_r]$$

Case $R = [F_r]$

M.I.H. + generalized F-inversion

Case $R = [F_r]$

M.I.H. + generalized F-inversion

Case
$$R = [F_r]$$

M.I.H. + generalized F-inversion

$$\frac{t = s'}{t = s} \operatorname{F}_{r} \qquad \vdots \\
\frac{\Phi[\![s]\!] = r}{\Phi[\![t]\!] = r} \tau^{*}$$

Case
$$R = [F_r]$$

M.I.H. + generalized F-inversion

M.I.H. + generalized F-introduction

M.I.H. + generalized F-introduction

Case
$$R = [F_l]$$

M.I.H. + generalized F-introduction

$$\frac{\frac{t'=s}{t=s} \mathsf{F}_l \qquad \vdots}{\Phi[\![s]\!]=r} \\
\frac{\Phi[\![t]\!]=r}{\tau^*}$$

M.I.H. + generalized F-introduction

$$\frac{\underline{t'=s}}{t=s} F_{l} \qquad \vdots \\
\Phi[\![s]\!] = r \\
\tau*$$

 $\Phi[\![t]\!] = r$

Case
$$R = [App]$$

Case
$$R = [App]$$

Case
$$R = [App]$$

Case
$$R = [App]$$

$$\frac{t_{1} = s_{1} \quad t_{2} = s_{2}}{t_{1}t_{2} = s_{1}s_{2}} \xrightarrow{App} \Phi[s_{1}s_{2}] = r} \tau^{*}$$

S.I.H. + context shifts

$$\frac{\underbrace{t_1 = s_1 \quad t_2 = s_2}_{t_1 t_2 = s_1 s_2} App}_{\Phi[\![t_1 t_2]\!] = r} \oplus \underbrace{\Phi[\![s_1 s_2]\!] = r}_{\tau^*}$$

 $\begin{array}{ccc}
\vdots & & \vdots & \vdots \\
t_1 = s_1 & \Phi[s_1 s_2] = r \\
 & \Phi[t_1 s_2] = r
\end{array}$ S.I.H.

 $\frac{\Phi\llbracket t_1 s_2 \rrbracket = r}{\Phi\llbracket t_1 t_2 \rrbracket = r} S.I.H.$

$$\frac{t_{1} = s_{1} \quad t_{2} = s_{2}}{t_{1}t_{2} = s_{1}s_{2}} \xrightarrow{App} \Phi[s_{1}s_{2}] = r} \tau^{*}$$

$$\begin{array}{ccc}
\vdots & \vdots & \vdots \\
\underline{t_1 = s_1} & \Psi \llbracket s_1 \rrbracket = r \\
\hline
\Phi \llbracket t_1 s_2 \rrbracket = r & S.I.H. \\
\hline
\Phi \llbracket t_1 t_2 \rrbracket = r & S.I.H.
\end{array}$$

S.I.H. + context shifts

$$\frac{t_1 = s_1 \quad t_2 = s_2}{t_1 t_2 = s_1 s_2} \underset{App}{App} \quad \vdots \\
\Phi[\![s_1 s_2]\!] = r \\
\tau^*$$

 $\vdots \qquad \vdots \qquad \vdots \\
\underline{t_1 = s_1 \quad \Phi[s_1 s_2] = r} \\
\underline{\Phi[s_2] = r} \quad S.I.H.$ $\Phi[t_1 t_2] = r \quad S.I.H.$

Case
$$R = [Ext]$$

Case
$$R = [Ext]$$

Case
$$R = [Ext]$$

Case
$$R = [Ext]$$

We have now to look both at

• the last inference R' of \mathcal{D}_2

Case
$$R = [Ext]$$

We have now to look both at

- the last inference R' of \mathcal{D}_2
- the form of the context Φ

$$\begin{array}{ccc}
\vdots \\
\underline{tx = sx}_{Ext} & \vdots \\
\underline{t = s}_{Ext} & \underline{s = r}_{\tau^*}
\end{array}$$

$$\begin{array}{ccc}
\vdots \\
\underline{tx = sx}_{Ext} & \vdots \\
\underline{t = s}_{Ext} & \underline{s = r}_{\tau^*}
\end{array}$$

If Φ is distinct from * we look at R'

If Φ is distinct from * we look at R'

$$R' = [App] / [F_r] / [Ext]$$

Easy, by the ternary I.H.

If Φ is distinct from * we look at R'

$$R' = [App] / [F_r] / [Ext]$$

Easy, by the ternary I.H.

$$R' = [\mathsf{F}_l]$$

More delicate: a "cross-cut" is required.

We use the ternary I.H. followed by an application of the M.I.H.

$$Stsr = tr(sr)$$
 [AXS]

$$Stsr = tr(sr)$$
 [AXS]

$$Stsr = tr(sr)$$
 [AXS]

$$\frac{tr(sr)p_1 \dots p_n = q}{\mathsf{S}tsrp_1 \dots p_n = q} [\mathsf{S}_l]$$

$$\frac{q = tr(sr)p_1 \dots p_n}{q = \mathsf{S}tsrp_1 \dots p_n} [\mathsf{S}_r]$$

where $n \ge 0$, i.e.: the "side terms" p_1, \ldots, p_n may be missing

$$Stsr = tr(sr)$$
 [AXS]

$$\frac{tr(sr)p_1 \dots p_n = q}{\mathsf{S}tsrp_1 \dots p_n = q} [\mathsf{S}_l]$$

$$\frac{q = tr(sr)p_1 \dots p_n}{q = \mathsf{S}tsrp_1 \dots p_n} [\mathsf{S}_r]$$

where $n \ge 0$, i.e.: the "side terms" p_1, \ldots, p_n may be missing

Combinatory introduction rules for other primitive combinators F:

 $[F_l]$ and $[F_r]$ are defined similarly

 β -introduction rules:

$$(\lambda x.t)r = t[x/r]$$
 [β -conv]

$$(\lambda x.t)r = t[x/r]$$
 [β -conv]

$$(\lambda x.t)r = t[x/r]$$
 [β -conv]

$$\frac{t[x/r]p_1 \dots p_n = q}{(\lambda x.t)rp_1 \dots p_n = q} {}_{[\beta_l]} \qquad \frac{q = t[x/r]p_1 \dots p_n}{q = (\lambda x.t)rp_1 \dots p_n} {}_{[\beta_r]}$$

where $n \ge 0$, i.e.: the "side terms" p_1, \ldots, p_n may be missing

$$(\lambda x.t)r = t[x/r]$$
 [β -conv]

$$(\lambda x.t)r = t[x/r]$$
 [β -conv]

$$(\lambda x.t)r = t[x/r]$$
 [β -conv]

$$\frac{t[x/r]p_1 \dots p_n = q}{(\lambda x.t)rp_1 \dots p_n = q} {}_{[\beta_l]} \qquad \frac{q = t[x/r]p_1 \dots p_n}{q = (\lambda x.t)rp_1 \dots p_n} {}_{[\beta_r]}$$

where $n \ge 0$, i.e.: the "side terms" p_1, \ldots, p_n may be missing

$$\frac{tp_1 \dots p_n = s}{\mathsf{I}tp_1 \dots p_n = s} [\mathsf{I}_l] \qquad \qquad \frac{s = tp_1 \dots p_n}{s = \mathsf{I}tp_1 \dots p_n} [\mathsf{I}_r] \qquad (n \ge 0)$$

$$\frac{tp_1 \dots p_n = s}{\mathsf{K}trp_1 \dots p_n = s} \left[\mathsf{K}_l \right] \qquad \frac{s = tp_1 \dots p_n}{s = \mathsf{K}trp_1 \dots p_n} \left[\mathsf{K}_r \right] \qquad (n \ge 0)$$

$$\frac{tq(rq)p_1 \dots p_n = s}{\mathsf{S}trqp_1 \dots p_n = s} [\mathsf{S}_l] \qquad \frac{s = tq(rq)p_1 \dots p_n}{s = \mathsf{S}trqp_1 \dots p_n} [\mathsf{S}_r] \qquad (n \ge 0)$$

$$\mathsf{F} t_1 \dots t_{k_\mathsf{F}} = d_\mathsf{F} [t_1, \dots, t_{k_\mathsf{F}}] \quad (\mathsf{AX}\,\mathsf{F})_\mathbb{X}$$

$$\mathsf{F} t_1 \dots t_{k_\mathsf{F}} = d_\mathsf{F} [t_1, \dots, t_{k_\mathsf{F}}] \quad (\mathsf{AX}\,\mathsf{F})_\mathbb{X}$$

$$\mathsf{F} t_1 \dots t_{k_\mathsf{F}} = d_\mathsf{F}[t_1, \dots, t_{k_\mathsf{F}}] \quad (\mathsf{AX}\,\mathsf{F})_\mathbb{X}$$

$$\frac{d_{\mathsf{F}}[t_1,\ldots,t_{k_{\mathsf{F}}}]p_1\ldots p_n=s}{\mathsf{F}t_1\ldots t_{k_{\mathsf{F}}}p_1\ldots p_n=s}\,_{\mathsf{F}t_1} \qquad \frac{s=d_{\mathsf{F}}[t_1,\ldots,t_{k_{\mathsf{F}}}]p_1\ldots p_n}{s=\mathsf{F}t_1\ldots t_{k_{\mathsf{F}}}p_1\ldots p_n}\,_{\mathsf{F}r]_{\mathbb{X}}}$$

