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t>t” It>-t' Kts> t € Stsr > tr(sr) °
t>s t>s t>r r>s
rt>rs* tr > sr” ts 7
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x> Axs®

Abstraction is defined according to the strong algorithm.
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The problem Combinatory strong reduction

Abstraction

(@) Mxx:=I

(b) A*x.t:=Kt, if x ¢ V(t)

() A*x.sx:= s, if x ¢ V(s)

(d) AM*x.ts:= S(A*x.t)(A*x.s), if (b) and (c) do not apply

The combinator | is taken as primitive just to avoid having a trivial
example of a term in strong normal form which is not strongly
irreducible.

Indeed, notice that SK > KI. So, by defining | := SKK, we would have:

| = SKK > KIK > K(KIK)K > . ..
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The problem Combinatory strong reduction

Notwithstanding its bad reputation of being quite messy, much is

known about the metatheory of strong reduction
© > is Church-Rosser [Curry, 1958]

@ strongly irreducible terms are in strong normal form [Curry 1958,
Hindley & Lercher 1970]

@ ...and conversely [Lercher 1967]

Q there is a recursive set of axiom schemas axiomatizing >— over
weak reduction —,, [Hindley 1967, Lercher 1967]

v

We shall be concerned with point 1, or better with the proof of CR(>-). ]
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Curry’s proof of the confluence of strong reduction

( ))\ : T{I,K,S} —s A and ( )H N — T{I.K.S}
Standard translations between combinatory terms and A-terms.
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The problem Curry’s indirect confluence proof

Curry’s proof of the confluence of strong reduction

( ))\ : T{I.K.S} — A and ( )H N — T{LK.S}
Standard translations between combinatory terms and A-terms.

These satisfy:

(P1) for te Taksy: (Wn =t,
(P2) for t,se A: t—sg,s = th>sy,
(P3) for t,se Tksy: t=csS = th=p, S

= A EN: ty gy, g« S\ by CR(—g,)
= t>ry<s by (P2) and (P1)
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Curry’s statement of the problem

H. B. Curry and R. Feys, Combinatory Logic, Vol. I, 1958
List of “Unsolved problems” in 8 6 F.5
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“c. Is it possible to prove the Church-Rosser property directly
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The problem Statement of the problem

Curry’s statement of the problem

H. B. Curry and R. Feys, Combinatory Logic, Vol. I, 1958
List of “Unsolved problems” in 8 6 F.5

“c. Is it possible to prove the Church-Rosser property directly
for strong reduction, without having recourse to
transformations between that theory and the theory of
A-conversion? ...”"

A solution was advanced by K. Loewen in 1968.
His proof, however, seems to contain an error — as pointed out in
Hindley’s MR review (1970).
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The problem Statement of the problem

Hindley’'s statement of the problem

Problem #1 — TLCA List of Open Problems, http://tica.di.unito.it/opltica/
Submitted by Roger Hindley Date: Known since 1958!
Statement. Is there a direct proof of the confluence of 8n-strong reduction?
Problem Origin. First posed by Haskell Curry and Roger Hindley.
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The problem Statement of the problem

Hindley’'s statement of the problem

Problem #1 — TLCA List of Open Problems, http://tica.di.unito.it/opltica/

Submitted by Roger Hindley Date: Known since 1958!
Statement. Is there a direct proof of the confluence of 8n-strong reduction?
Problem Origin. First posed by Haskell Curry and Roger Hindley.

The pn-strong reduction is the combinatory analogue of
OBn-reduction in A-calculus. It is confluent. Its only known
confluence-proof is very easy, [Curry and Feys, 1958, 6F, p.
221 Theorem 3], but it depends on the having already proved
the confluence of A\gn-reduction. Thus the theory of
combinators is not self-contained at present. Is there a
confluence proof independent of  A-calculus?
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e Analytic proof systems for combinatory logic and \-calculus

@ Synthetic vs analytic equational proof systems
@ G-systems
@ Main results
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Analytic proof systems for combinatory logic and A-calculus Synthetic vs analytic equational proof systems

Motivations

@ Standard presentations of equational proof systems:

@ specific axioms (a set of equation schemas)
e the usual inference rules for equality (reflexivity, symmetry,
transitivity and congruence)

@ The transitivity rule
t=r r=s

t=s
(which cannot be dispensed with, except that in trivial cases) has
an inherently synthetic character in combining derivations, like
modus ponens in Hilbert-style proof systems
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@ Naive proof-theoretic arguments are usually impossible (e.g.:
syntactic consistency proofs by induction on the length of
derivations)
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Analytic proof systems for combinatory logic and A-calculus Synthetic vs analytic equational proof systems

@ Naive proof-theoretic arguments are usually impossible (e.g.:
syntactic consistency proofs by induction on the length of
derivations)

@ No kind of “subterm property”
@ In general, derivations lack any significant mathematical structure

@ As a consequence, ‘synthetic’ equational calculi do not lend
themselves directly to proof-theoretical analysis
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Analytic proof systems for combinatory logic and A-calculus Synthetic vs analytic equational proof systems

Question
Are there significant cases in which it is both possible and useful

to turn a ‘synthetic’ equational proof system into

an equivalent ‘analytic’ proof system,

where the transitivity rule is provably redundant ?
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@ Combinatory logic : CL (& generalizations)

P. M., Analytic combinatory calculi and the elimination of transitivity,
Arch. Math. Logic 43 (2004), 159-191.
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Analytic proof systems for combinatory logic and A-calculus Synthetic vs analytic equational proof systems

Recent work
@ Combinatory logic : CL (& generalizations)

P. M., Analytic combinatory calculi and the elimination of transitivity,
Arch. Math. Logic 43 (2004), 159-191.

@ Lambda-Calculus : A8, A\Gn

P. M., Analytic proof systems for A-calculus: the elimination of transitivity,
and why it matters, Arch. Math. Logic 46 (2007), 385-424.

@ Extensional Combinatory logic : ClLey (& generalizations)

P. M., A solution to Curry and Hindley’s problem on combinatory strong
reduction, submitted.
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Analytic proof systems for combinatory logic and A-calculus G-systems

Overwiew

[synthetic proof-systemsj
4
[equivalent (candidate) analytic proof-systems (“G-systems”)]
J
(effective) transitivity elimination for G-systems || =
J
“normalizability” of transitivity-free derivations
4
applications to combinatory /lambda reductions
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Main features of G-systems
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Analytic proof systems for combinatory logic and A-calculus G-systems

Main features of G-systems

@ combinatory axiom schemas/ (3-conversion schema
» turned into pairs of suitable introduction rules € €D

@ symmetry rule » dropped
@ reflexivity (O-premises) rule » restricted to atomic terms

@ monotony rule(s)

» taken in the parallel version -

@ extensionality rule (if any)
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Analytic proof systems for combinatory logic and A-calculus G-systems

G-systems for full combinatory logic: G[C] / Gex[C]

G[C] (corresponding to CL)
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Analytic proof systems for combinatory logic and A-calculus G-systems

G-systems for full combinatory logic:

G[C] (corresponding to CL)
@ “structural rules”:

G[C] I Gexi[C]

(t atomic) t=s p=g t=r r=s
—_— atomic

t=t* tp=sq /PP t=s
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X = dom(X) of primitive combinators (F,G...), which associates to
each F € X a pair (kg, dr) s.t.:

@ kg, the index of F under X, is a non negative integer;
@ d, the definition of F under X, is a term with V(dg) C {v1,...,Vic }.

Intuitively, for each primitive combinator F € X:

X:F — Ft1...t =de[vi/t1,. .., Vi /tic] (AX F)x

G[X] / Gext[X]

are defined exactly as G[C] / Gex[C], except that the introduction rules
for I, K, S are replaced by the rules [F|x. [F/]x, for each F € X

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 18/49



Analytic proof systems for combinatory logic and A-calculus G-systems

G-systems for A-calculus: G[3] / Gex[B]

G[B] (corresponding to AQ3)

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 19/49



Analytic proof systems for combinatory logic and A-calculus G-systems

G-systems for A-calculus: G[3] / Gex[B]

G[B] (corresponding to AQ3)

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 19/49



Analytic proof systems for combinatory logic and A-calculus G-systems

G-systems for A-calculus: G[3] / Gex[B]

G[B] (corresponding to AQ3)
@ “structural rules”:
t=s p=q t=s t=r r=s
x=x"”  tp=sq "  xt=ixs® t=s

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 19/49



Analytic proof systems for combinatory logic and A-calculus G-systems

G-systems for A-calculus: G[3] / Gex[B]

G[B] (corresponding to AB)
@ “structural rules”:

t=s p=q t=s t=r r=s
-, T2 P—H
x=x" tp=sq ™  xt=ixs® t=s
@ left and right S-introduction rules @»
P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 19/49



Analytic proof systems for combinatory logic and A-calculus G-systems

G-systems for A-calculus: G[3] / Gex[B]

G[B] (corresponding to A\3)
@ “structural rules”:
t=s p=q t=s t=r r=s
x=x"”  tp=sq "  xt=ixs® t=s

@ left and right S-introduction rules @»

Gex|3] (corresponding to A3n)

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 19/49



Analytic proof systems for combinatory logic and A-calculus G-systems

G-systems for A-calculus: G[3] / Gex[B]

G[B] (corresponding to A\3)
@ “structural rules”:
t=s p=q t=s t=r r=s
x=x"”  tp=sq "  xt=ixs® t=s

@ left and right g-introduction rules

Gex|3] (corresponding to A3n)

@ + the extensionality rule [Ex{]

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 19/49



Analytic proof systems for combinatory logic and A-calculus EMNEHTIS

Transitivity elimination

Lemma [Equivalence]
G-systems are equivalent to the corresponding synthetic systems

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 20/ 49



Analytic proof systems for combinatory logic and A-calculus EMNEHTIS

Transitivity elimination

Lemma [Equivalence]
G-systems are equivalent to the corresponding synthetic systems

Main Theorem [r-elimination]

G-systems admit (effective) transitivity elimination

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 20/49



Analytic proof systems for combinatory logic and A-calculus EMNEHTIS

Transitivity elimination

Lemma [Equivalence]
G-systems are equivalent to the corresponding synthetic systems

Main Theorem [r-elimination]

G-systems admit (effective) transitivity elimination

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 20/49



Analytic proof systems for combinatory logic and A-calculus EMNEHTIS

Transitivity elimination

Lemma [Equivalence]
G-systems are equivalent to the corresponding synthetic systems

Main Theorem [r-elimination]
G-systems admit (effective) transitivity elimination

Proof (in order of increasing complexity):
@ G[X] (X arbitrary) [PM 04]

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 20/49



Analytic proof systems for combinatory logic and A-calculus EMNEHTIS

Transitivity elimination

Lemma [Equivalence]
G-systems are equivalent to the corresponding synthetic systems

Main Theorem [r-elimination]
G-systems admit (effective) transitivity elimination

Proof (in order of increasing complexity):
@ G[X] (X arbitrary) [PM 04]
@ Gex[X] (X linear) [PM 04]

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 20/49



Analytic proof systems for combinatory logic and A-calculus EMNEHTIS

Transitivity elimination

Lemma [Equivalence]
G-systems are equivalent to the corresponding synthetic systems

Main Theorem [r-elimination]
G-systems admit (effective) transitivity elimination

Proof (in order of increasing complexity):

@ G[X] (X arbitrary) [PM 04]
@ Gex[X] (X linear) [PM 04]
@ G[A] and Gex(S] [PM 07]

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 20/49



Analytic proof systems for combinatory logic and A-calculus EMNEHTIS

Transitivity elimination

Lemma [Equivalence]
G-systems are equivalent to the corresponding synthetic systems

Main Theorem [r-elimination]
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Proof (in order of increasing complexity):

@ G[X] (X arbitrary) [PM 04]
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o 7-free G-derivations enjoy a kind of subterm property
@ This gives, as an immediate consequence

o the unprovability of x = y (with x distinct from y)
@ so the consistency of G-systems and of the corresponding
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demonstrations of central results concerning reductions can be
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@ Extraction Lemma
@ A direct confluence proof
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one can effectively extract atermr, suchthat t>rp, <s

P. Minari (UNIFI) Curry and Hindley’s Problem

WRTPT 2008

23/49



Solution to the problem Extraction Lemma

Common >-reduct extraction Lemma

From any given 7-free Gey[C]-derivation
DFEt=s

one can effectively extract atermr, suchthat t>rp, <s

P. Minari (UNIFI) Curry and Hindley’s Problem

WRTPT 2008

23/49



Solution to the problem Extraction Lemma

Common >-reduct extraction Lemma

From any given 7-free Gey[C]-derivation
DFEt=s

one can effectively extract atermr, suchthat t>rp, <s

Proof: by straightforward induction on the length of D.

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 23/49



Solution to the problem Extraction Lemma
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From any given 7-free Gey[C]-derivation
DFEt=s

one can effectively extract atermr, suchthat t>rp, <s

Proof: by straightforward induction on the length of D.

e D= t=t [tatomic] rp =
e D= AppDi,D>) rp =="Ip,lp,
e D = R(D;) [Racombinatory rule] lp:=TIp,
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Common >-reduct extraction Lemma

From any given 7-free Gey[C]-derivation
DFEt=s

one can effectively extract atermr, suchthat t>rp, <s

Proof: by straightforward induction on the length of D.

e D= t=t [tatomic] rp:=t

e D= AppDi,D>) rp =="Ip,lp,
e D = R(D;) [Racombinatory rule] lp:=TIp,

e D= Ext(D1) r'p = A"X.Ip,

As to the last case, indeed:
X1 <SX [XEV(IS)] =ruee = AXX- A™XTI < A'XSX=8
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A direct proof of the confluence of strong reduction

Suppose t =g, S, i.e.
CLextHFt=s.
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A direct proof of the confluence of strong reduction

Suppose t =g, S, i.e.
CLextHFt=s.

Then, by the equivalence Lemma and the 7-elimination Theorem, we
get a transitivity-free Gex[C]-derivation

DkFE t=s.

A final application of the extraction Lemma to D yields a common
»-reduct rp oftands:

t>rp<s

This confluence proof for > is independent of \-calculus! )
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e Proving transitivity elimination for Gey[X] systems
@ Preliminaries
@ The strategy
@ Steps1-4
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@ D t=s: Disar-free derivationoft=-s

@ Left derivation (-.): no right combinatory inferences
@ Right derivation (-g): dually

@ s(D) := # of combinatory and [Ex{ inferences in D
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Proving transitivity elimination for Gey[X] systems The strategy

Proof strategy — G[X] systems

We show how to eliminate a topmost application of 7 : J

DiE t=s, Do s=r — D*F t=r

The proof runs by wi-induction:
main: h’(D1) + h'(D2)
secondary: s(D1) + s(D2)
ternary: |||

This strategy doesn’t work when the extensionality rule is present,
coupled with non linear combinators. J
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Proving transitivity elimination for Gey[X] systems The strategy

Proof strategy — Gex[X] systems

We show that the following generalized transitivity rule

t=s o[ =r
of=r 7

is eliminable.

The proof consists of four main steps (in this order):
@ generalized F-inversion
@ left 7-elimination
@ generalized F-introduction
@ elimination of a topmost occurrence of [7%]
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Step 1: generalized F-inversion Lemma

For any F € X, with k = kg, and any context ¢:
Every 7-free derivation

DE O[Fty... tkp1...pn] =S
can effectively be transformed into a 7-free derivation

D* = O[defty, ..., tpr...pa] =S

which, moreover, is a right derivation provided D is a right derivation

v
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Step 1: generalized F-inversion Lemma

For any F € X, with k = kg, and any context ¢:
Every 7-free derivation

DE O[Fty... tkp1...pn] =S
can effectively be transformed into a 7-free derivation

D* = O[defty, ..., tpr...pa] =S

which, moreover, is a right derivation provided D is a right derivation

v

This follows from the following:
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we can construct a 7-free derivation
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where t? is the term obtained from t by minimal-redex-first complete
development of S.

Moreover, D! is a right derivation provided D is such.
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Lemma
Given

@ a r-free derivation D t=s
@ a set Sof F-redexes occurrences in t
we can construct a 7-free derivation

D th=s,

where t? is the term obtained from t by minimal-redex-first complete
development of S.

Moreover, D! is a right derivation provided D is such.

By main induction on s(D) and secondary induction on ||t||. O
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Step 2: left 7-elimination Lemma

Lemma

To any given pair

D1 t=s and Dol s=r

of r-free derivations, such that D is a left derivation, we can effectively
associate a 7-free derivation

D t=r

which is a left derivation provided D5 is such.
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Step 2: left 7-elimination Lemma

Lemma
To any given pair

Dk t=s and Do s=r

of r-free derivations, such that D is a left derivation, we can effectively
associate a 7-free derivation

D'F t=r

which is a left derivation provided D5 is such.

Proof.

Main induction on s(D,), secondary induction on s(D1), ternary
induction on ||s||, using F-inversion. O

| A

v
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Step 3: generalized F-introduction Lemma

For any F € X, with k = kg, and any context ¢:
The following generalized combinatory introduction rules are 7-free
admissible:

O[delts, .-, tdpr. .. p] = S 5= ®[delty, . tdpy. . Pl
O[Fty... &pyr...pn] = i s= O[Fty.. . tp1...pn] 7

Moreover, [F,"] and [F,"] preserve left-handedness, resp.
right-handedness.
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For any F € X, with k = kg, and any context ¢:
The following generalized combinatory introduction rules are 7-free
admissible:

O[delts, .-, tdpr. .. p] = S 5= ®[delty, . tdpy. . Pl
O[Fty... &pyr...pn] = i s= O[Fty.. . tp1...pn] 7

Moreover, [F,"] and [F,"] preserve left-handedness, resp.
right-handedness.

By left 7-elimination. O]
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Proving transitivity elimination for Gey[X] systems Steps 1-4

*

O[Fty .. tp] = O[ck[ty, ... tJp]  Ploltn,....tdpl=s
OFty...tp] = s Left elim.

% : structural rules + applications of [F]
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Final step: main elimination Lemma

For any context ¢:

To each pair of 7-free derivations

D1 t=s and Dyt @[] =r

we can effectively associate a 7-free derivation

D O] =t
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Final step: main elimination Lemma

For any context ¢:

To each pair of 7-free derivations

D1 t=s and Dyt @[] =r
we can effectively associate a 7-free derivation

D O] =t

The proof runs by w3-induction
@ main: s(D)
@ secondary: ||s]|
@ ternary: h(Dy)
taking main cases according to the last inference R of D;.

v
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Case R= [F]
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Case R= [F]
M.I.H. + generalized F-inversion
t=g9g :
t=s O[] =r
Ot = i
v
: Ofs] =r
t=5  o[]=r™
(Dl[t]] —r M.lI.H
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Case R= [F]

M.I.H. + generalized F-introduction

=s :
t=s " ds] =r
Ot = i

v

t'=s Ofs] =r

M.I.H.
Ot =r
+
Ot = R
v
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Case R= [App

S.I.H. + context shifts

h=s5 b=9%
it = 51 .
Stats] =r 4

App
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Case R= [App

S.I.H. + context shifts

=8 BL=%

b= P ofus]=r
Stats] =r 4
v

5 t1 =51 Pfs1s2] =
bh=9s Oft1s] =
Otaty] =

SI.H.
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Case R= [App

S.I.H. + context shifts

=8 BL=%

b= P ofus]=r
Stats] =r 4
v

t _ S1 W[[Sﬂ] =r
Oft1s] =
Otaty] =

SI.H.

I
@

SI.H.
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Case R= [App

S.I.H. + context shifts

=8 BL=%

b= P ofus]=r
Stats] =r 4
v

5 t1 =51 Pfs1s2] =
bh=9s Ofs] =r
¢|[t1t2]] =r

SI.H.
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Proving transitivity elimination for Gey[X] systems Steps 1-4

Case R = [Exi]

This is the most complex case.
We have now to look both at

@ the last inference R of D,
@ the form of the context ¢
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Proving transitivity elimination for Gey[X] systems Steps 1-4

The case ¢ = x is easily disposed off by the M.I.H.
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Proving transitivity elimination for Gey[X] systems

Steps 1-4

The case ¢ = x is easily disposed off by the M.I.H.

tX=sx_
t=s s=r
t= ”
v
s= X=X
tX = SX SX= IX ppMIH
tX = rx -
t=r
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Proving transitivity elimination for Gey[X] systems Steps 1-4

If & is distinct from * we look at R
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If & is distinct from * we look at R

R = [Apd / [F] / [EX{
Easy, by the ternary I.H.
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Proving transitivity elimination for Gey[X] systems Steps 1-4

If & is distinct from * we look at R

R = [Apd / [F] / [EX{
Easy, by the ternary I.H.

More delicate: a “cross-cut” is required.

We use the ternary |.H. followed by an application of the M.I.H.
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Combinatory introduction rules for the combinator S :
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Combinatory introduction rules for the combinator S :

Stsr=tr(sr) [AxS]

I

tr(sr)pi...pn=19 g=tr(sr)p1...pn
Stsipr...pn=q ! = Stsrpy . .. pn

[Sr]

where n > 0, i.e.: the “side terms” py, ..., pn may be missing
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Combinatory introduction rules for the combinator S :

Stsr=tr(sr) [AxS]

I

tr(sr)pi...pn=19 g=tr(sr)p1...pn
Stsipr...pn=q ! = Stsrpy . .. pn

[Sr]

where n > 0, i.e.: the “side terms” p, ..., pn may be missing

Combinatory introduction rules for other primitive combinators F:
[F1] and [F,] are defined similarly
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I
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(Ox)rps...pn = q q= (\xt)rp;...pn P

where n > 0, i.e.: the “side terms” pq, ..., py may be missing
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tp1...ph=S S=1tp:.
P Pr=s =l (n>0)
Itpy...pn =S s=Itpy...p

tpr...pn =S S=1tp1...pPn
LR o >

Ktrps ... pn = s s = Ktrpy (n=0)
tq(rg)p1---Pn =S s = tq(rq)py

>
Strgpy...pn =S [Si] s = Strgp; (n=0)
WRTPT 2008 48 /49
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We write t[sy, ..., sy shortfor t[vi/sq, ..., Vh/S|
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We write t[sy, ..., sy shortfor t[vi/sq, ..., Vh/S|

Fty ..t =defts, ... ] (AXF)x J
Oefts, . ti]pr--.pn=Ss S=dr[t,..., t]P1...Pn
Fti...tp1i...pn=S [Filx s=Ft;...t,P1...Pn [Frlx

P. Minari (UNIFI) Curry and Hindley’s Problem WRTPT 2008 49/ 49



	The problem
	Combinatory strong reduction
	Curry's indirect confluence proof
	Statement of the problem

	Analytic proof systems for combinatory logic and -calculus
	Synthetic vs analytic equational proof systems
	G-systems
	Main results

	Solution to the problem
	Extraction Lemma
	A direct confluence proof

	Proving transitivity elimination for Gext[X] systems
	Preliminaries
	The strategy
	Steps 1--4

	

