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Abstract. A relation between two secrets, known in the literature as nondeducibility,

was originally introduced by Sutherland. We extend it to a relation between sets of

secrets that we call independence. This paper proposes a formal logical system for the

independence relation, proves the completeness of the system with respect to a semantics

of secrets, and shows that all axioms of the system are logically independent.
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1. Introduction

In this paper we study interdependence between secrets. For example, if
b1, b2, and b3 are secrets with boolean values, then b1 ⊕ b2 ⊕ b3 = 0 is an
example of interdependence. If an interdependence between secrets is fixed
and is publicly known, then knowledge of one secret may reveal something
about the other secrets. In the above example, knowing the value of secret
b1 reveals whether or not secrets b2 and b3 are equal. Note however that it
does not reveal the exact value of either b2 or b1. Thus, interdependence is
not the same as functional dependence.

Let us now suppose that A = {a1, . . . , an} and B = {b1, . . . , bk} are
two sets of secrets that are not interdependent. That is, the knowledge
of values a1, . . . , an reveals no information about values b1, . . . , bk. In this
case, we say that the sets of secrets A and B are independent. We use the
notation A ‖ B to denote the independence of A and B. If n = k = 1, then
the independence predicate is essentially equivalent to the “no information
flow” relation introduced by Sutherland [11].

In this work, we study properties of the independence predicate that are
true regardless of the publicly-known interdependencies between secrets that
may exist. For example, for any three secrets a, b, and c, if secrets a and b
together reveal no information about secret c, then secret a alone will also
reveal no information about secret c:

a, b ‖ c→ a ‖ c

A less obvious property of independence, which is true regardless of the set
of interdependencies that exist, is:

a, b ‖ c→ (a ‖ b→ a ‖ b, c) (1)
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Below, we introduce a set of axioms for the independence predicate and
prove the completeness of our logical system with respect to a semantics of
secrets. In particular, property (1) above will follow from these axioms. We
call this logical system Logic of Secrets.

The word independence is also used in probability theory to describe
two events A and B such that P (A ∩ B) = P (A) · P (B). The complete
axiomatization for a relation capturing independence in the probabilistic
sense was given by Geiger, Paz and Pearl in [3]. Surprisingly, their logical
system is essentially equivalent to ours. We compare these two systems in
the conclusion.

Our work is also related to the study of information flow. Most of the
literature in this area, however, studies information flow from the language-
based [10, 1] or probabilistic [6] points of view. Historically ([7], page 185),
one of the first attempts to capture independence in our sense was under-
taken by Goguen and Meseguer [4] through their notion of noninterference
between two computing devices. Later, Sutherland [11] introduced his no
information flow relation, which is essentially our independence relation re-
stricted to single-element sets. This relation has since become known in the
literature as nondeducibility. Cohen [2] presented a related notion called
strong dependence. Unlike nondeducibility, however, the strong dependence
relation is not symmetric. More recently, Halpern and O’Neill [6] introduced
f -secrecy to reason about multiparty protocols. In our notation, f -secrecy
is a version of the nondeducibility predicate whose left or right side contains
a certain function of the secret rather than the secret itself. However, all
of these works focus on the application of the independence relation in the
analysis of secure protocols, whereas the main focus of our work is on logical
properties of the relation itself.

A preliminary version of this work was presented at [8]. In a related work
[9], we consider an independence relation between single secrets distributed
over a collaboration network with a fixed topology.

2. Semantics of Secrets

In this section, we define a formal semantics for the independence relation.
Throughout the rest of this paper we assume that there is a fixed infinite

set of “secret variables”: a, b, c, . . . . Intuitively, these variables can be viewed
as names of secrets. A structure that serves as a model of the Logic of Secrets
will be called a protocol. A protocol specifies the names of the secret variables
used, their possible values, and all publicly known interdependencies between
secrets. The last of these is given as an explicit specification of all legitimate
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combinations of secret values, which we call “runs”. Occasionally, we will
refer to secret variables as just “secrets”.

Definition 1. A protocol is an arbitrary triple P = 〈S,V,R〉, where

1. S is a subset of the set of secret variables.

2. V is an arbitrary function that maps a secret variable s ∈ S into an
arbitrary “set of values” of this secret V(s).

3. R is a set of functions, called runs of the protocol, such that each run r
assigns a value r(s) ∈ V(s) to each secret variable s ∈ S.

For any protocol P, by R(P) we mean the set of all runs of this protocol.

Definition 2. A protocol P = 〈S,V,R〉 is finite if set S is finite and V(s)
is finite for all s ∈ S.

In the following definition, and in the remainder of the paper, we write
f =X g if f(x) = g(x) for all x ∈ X.

Definition 3. A set of secret variables A ⊆ S is independent from a set of
secret variables B ⊆ S under protocol P, if for all runs r1, r2 ∈ R(P) there
is a run r ∈ R(P) such that r =A r1 and r =B r2.

A special case of the independence predicate is the statement “the set of
variables A is independent from the set of variables A”. This statement, by
definition, means that r1 =A r2 for all runs r1, r2 ∈ R(P). In other words,
for any a ∈ A, value r(a) is the same for all runs r ∈ R(P). Thus, all secrets
in A have fixed known values, and we will say that A is “public knowledge”.

Definition 4. The language of secrets consists of secret variables a, b, c . . . ,
the independence predicate ‖, implication →, and false constant ⊥. The set
of formulas in this language is recursively defined as follows:

1. ⊥ is a formula,

2. X ‖ Y is a formula, for any two finite sets of secret variables X and Y ,

3. if φ and ψ are formulas, then φ→ ψ is a formula.

The language of secrets is similar to the universal fragment of proposi-
tional logic where a1, . . . , an ‖ b1, . . . , bk is a predicate of arity n + k. The
difference, however, is that predicates in first order logic have a fixed arity,
while our predicate ‖ does not.

Definition 5. We define a binary relation � between a protocol P and a
formula φ by induction on the structural complexity of φ as follows:
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1. P 2 ⊥,

2. P � X ‖ Y if and only if X and Y are independent under P,

3. P � φ→ ψ if and only if P 2 φ or P � ψ.

3. Logic of Secrets

Definition 6. The Logic of Secrets is defined by the following axioms and
inference rule:

1. All propositional tautologies in the language of secrets,

2. Empty Set Axiom: ∅ ‖ A,

3. Monotonicity Axiom: A,B ‖ C → A ‖ C,

4. Public Knowledge Axiom: A ‖ A→ (B ‖ C → A,B ‖ C),

5. Exchange Axiom: A,B ‖ C,D → (A ‖ B → (D ‖ C → A,C ‖ B,D)),

6. Modus Ponens inference rule.

Above and everywhere below, by A,B we mean A∪B. As usual, we will
write X ` φ if formula φ can be derived in the Logic of Secrets, possibly
using additional hypotheses from set X.

Lemma 1 (symmetry). For all finite sets of secrets A and B,

` A ‖ B → B ‖ A.

Proof. By the Exchange Axiom, ∅, A ‖ B,∅ → (∅ ‖ A → (∅ ‖ B →
∅, B ‖ A,∅)). Taking into account the Empty Set Axiom, ∅, A ‖ B,∅ →
∅, B ‖ A,∅. Thus, A ‖ B → B ‖ A.

As an example, let us now prove property (1) from these axioms. For
convenience, we repeat the property below:

a, b ‖ c→ (a ‖ b→ a ‖ b, c)

By assuming A = {a}, B = {b}, C = ∅, and D = {c} in the Exchange
Axiom, we get a, b ‖ c → (a ‖ b → (c ‖ ∅ → a ‖ b, c)). Thus, it will be
sufficient to prove that c ‖ ∅. This, in turn, follows from the Empty Set
Axiom and Lemma 1.

Lemma 2. If X ` A ‖ B, then X ` A′ ‖ B′ for all A′ ⊆ A and B′ ⊆ B.

Proof. This follows from the Monotonicity Axiom and Lemma 1.
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4. Soundness

Theorem 1. If ` φ, then P � φ for any protocol P.

Proof. It will be sufficient to verify that P � φ for each axiom φ of the
Logic of Secrets. Soundness of the Modus Ponens rule is trivial.

Empty Set Axiom. Consider any two runs r1, r2 ∈ R(P). Let r = r2. It is
easy to see that r =∅ r1 and r =A r2.

Monotonicity Axiom. Consider any two runs r1, r2 ∈ R(P). If r =A,B r1
and r =C r2, then r =A r1 and r =C r2.

Public Knowledge Axiom. Assume that A ‖ A and B ‖ C. Consider any
two runs r1, r2 ∈ R(P). By the assumption that B ‖ C, there is a run
r ∈ R(P) such that r =B r1 and r =C r2. It will be sufficient to show that
r =A r1. Indeed, by the assumption A ‖ A, there is a run r′ ∈ R(P) such
that r =A r′ =A r1. Therefore, r =A r1.

Exchange Axiom. Consider any two runs r1, r2 ∈ R(P). By the assumption
that A ‖ B, there is a run r3 ∈ R(P) such that r3 =A r1 and r3 =B r2. Since
D ‖ C, there is a run r4 ∈ P such that r4 =D r2 and r4 =C r1. Finally, by
the assumption the A,B ‖ C,D, there is a run r ∈ R(P) such that r =A,B r3
and r =C,D r4. Thus, r =A r3 =A r1, r =C r4 =C r1, r =B r3 =B r2, and
r =D r4 =D r2. Therefore, r =A,C r1 and r =B,D r2.

5. Completeness

Theorem 2. If P � φ for all finite protocols P, then ` φ.

The rest of the section contains the proof of this theorem. Assume that
0 φ. We will construct a protocol P such that P 2 φ. The key to this
construction is the notion of a critical set given in Definition 10. We later
use critical sets to distinguish valid runs from all other combinations of values
of secrets.

Definition 7. Let S be the set of all secret variables appearing in φ.

Definition 8. Let Ψ be the least set that includes

1. all subformulas of φ and their negations,

2. A ‖ B and (A ‖ B)→ ⊥ for all A,B ⊆ S.
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Let X be a maximal consistent subset of Ψ that contains φ → ⊥. As
usual, by consistency we mean that X 0 ⊥. We proceed now to define a
finite protocol P = 〈S,V,R〉 such that S is the defined above set of secret
variables. Later we will show that P 2 φ.

Definition 9. For any secret s ∈ S, we define set of values V(s) as follows:

1. if X ` s ‖ s, then V(s) = {0},
2. if X 0 s ‖ s, then V(s) = {−1, 0, 1}.

Next, we introduce terminology that allows us to define the set R of valid
runs on protocol P.

Definition 10. A pair (A,B) ∈ 2S × 2S is called critical if

1. X 0 A ‖ B,

2. if X 0 A′ ‖ B′, then A = A′ and B = B′, for all A′ ⊆ A and B′ ⊆ B.

For example, suppose X 0 a ‖ b, c, but X ` a ‖ b and X ` a ‖ c.
Note that by the Empty Set Axiom we also have X ` ∅ ‖ b, c. Therefore,
({a}, {b, c}) is a critical pair for set X.

Lemma 3. For any pair (A,B) ∈ 2S × 2S such that X 0 A ‖ B, there is a
critical pair (A′, B′) such that A′ ⊆ A and B′ ⊆ B.

Proof. This follows from the finiteness of sets A and B. Indeed, start with
pair (A,B) and remove elements from sets A and B as long as condition
X 0 A ‖ B is satisfied.

Lemma 4. If (C,D) is a critical pair, then X 0 s ‖ s for all s ∈ C ∪D.

Proof. Assume that X ` s ‖ s for some s ∈ C. By the Public Knowledge
Axiom, X ` C\{s} ‖ D → C ‖ D. On the other hand, by the definition of
critical pair, X 0 C ‖ D. Thus, X 0 C\{s} ‖ D, which is a contradiction
with the definition of critical pair. Therefore, X 0 s ‖ s. Case s ∈ D is
similar, due to Lemma 1.

Definition 11. A run r is called void if there are sets of secrets C,D such
that

1. pair (C,D) is critical,

2. r(s) = 1, for all s ∈ C,

3. r(s) = −1, for all s ∈ D.
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Definition 12. Let R be the set of all runs that are not void.

This concludes the definition of the finite protocol P = 〈S,V,R〉.

Lemma 5. If P � A ‖ B, then X ` A ‖ B, for all A,B ⊆ S.

Proof. Assume that X 0 A ‖ B. By Lemma 3, there is a critical pair
(A′, B′) such that A′ ⊆ A and B′ ⊆ B. Consider runs r+ and r− such that
for any secret s:

r+(s) =
{

+1 if X 0 s ‖ s
0 otherwise

r−(s) =
{
−1 if X 0 s ‖ s
0 otherwise

We will show that r+, r− ∈ R. Let us start by showing that r+ ∈ R.
Indeed, assume the opposite. Then there are C,D ⊆ S such that, taking
into account Lemma 4 and Definition 11,

1. pair (C,D) is critical,

2. +1 = r+(s) = +1, for all s ∈ C,

3. +1 = r+(s) = −1, for all s ∈ D.

Note that the last statement implies that D is empty. Thus, by the Empty
Set Axiom, ` D ‖ C. By Lemma 1, ` C ‖ D. This contradicts the fact that
(C,D) is a critical pair.

We now will prove that r− ∈ R. As in the previous case, assume the
opposite. Hence, there are sets of secrets C,D such that, taking into account
Lemma 4 and Definition 11,

1. pair (C,D) is critical,

2. −1 = r−(s) = +1, for all s ∈ C,

3. −1 = r−(s) = −1, for all s ∈ D.

Note that the second statement implies C is empty. Thus, by the Empty Set
Axiom, ` C ‖ D, which contradicts the fact that (C,D) is a critical pair.

We are ready to show that P 1 A ‖ B. Indeed, by Definition 11, there
is no run r ∈ R such that ∀s ∈ A′ (r(s) = +1) and ∀s ∈ B′ (r(s) = −1).
Hence, there is no run r ∈ R such that ∀s ∈ A′ (r(s) = r+(s)) and ∀s ∈
B′ (r(s) = r−(s)). Finally, since A′ ⊆ A and B′ ⊆ B, there is no run r ∈ R
such that ∀s ∈ A (r(s) = r+(s)) and ∀s ∈ B (r(s) = r−(s)). Therefore,
P 1 A ‖ B.
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Lemma 6. If X ` A ‖ B, then P � A ‖ B.

Proof. Assume that X ` A ‖ B. Consider any two runs r1, r2 ∈ R. We
need to find a run r ∈ R such that ∀s ∈ A (r(s) = r1(s)) and ∀s ∈ B (r(s) =
r2(s)). Consider a run r, defined as

r(s) =


r1(s) if s ∈ A
r2(s) if s ∈ B
0 otherwise

We will start by proving that run r is well-defined. For this, we need to
show that r1(s) = r2(s) if s ∈ A ∩B. Indeed, consider any s ∈ A ∩B. Note
that X ` A ‖ B. Thus, by Lemma 2, X ` s ‖ s. Hence, by Definition 9,
V(s) = {0}. Therefore, r1(s) = r2(s).

We now only need to show that r ∈ R. In other words, we need to show
that run r is not void. Assume the opposite. Hence, there are sets of secrets
C,D ⊆ S such that

1. (C,D) is a critical pair,

2. r(s) = +1, for all s ∈ C,

3. r(s) = −1, for all s ∈ D.

Note that r(s) = 0 for all s /∈ A ∪ B. Thus, sets C and D must be subsets
of A ∪B. In other words,

C = (C ∩A) ∪ (C ∩B) (2)

D = (D ∩A) ∪ (D ∩B) (3)

Case 1: (C ∩ A,D ∩ A) = (C,D). Thus, C ⊆ A and D ⊆ A. Hence
r1(s) = r(s) = +1, for all s ∈ C, and r1(s) = r(s) = −1, for all s ∈ D.
Therefore, r1 is void, which is a contradiction.
Case 2: (C ∩B,D ∩B) = (C,D). Similar to Case 1.
Case 3: (C∩A,D∩A) 6= (C,D) and (C∩B,D∩B) 6= (C,D). Hence, either
C ∩A is a proper subset of C or D∩A is a proper subset of D. Since (C,D)
is a critical pair,

X ` C ∩A ‖ D ∩A. (4)

Similarly, (C ∩ B,D ∩ B) 6= (C,D) implies that either C ∩ B is a proper
subset of C or D ∩ B is a proper subset of D. Again due to the fact that
(C,D) is a critical pair,

X ` C ∩B ‖ D ∩B. (5)
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Note that by the assumption of the theorem, X ` A ‖ B. Thus, by Lemma 2,

X ` C ∩A,D ∩A ‖ C ∩B,D ∩B.

By the Exchange Axiom, using (4), (5), and Lemma 1,

X ` C ∩A,C ∩B ‖ D ∩A,D ∩B.

Taking into account (2) and (3), X ` C ‖ D, which contradicts the fact that
the pair (C,D) is critical.

Lemma 7. For all ψ ∈ Ψ, P � ψ if and only if X ` ψ.

Proof. We use induction on the structural complexity of ψ and rely on the
fact that X is a maximal consistent set of formulas.

1. If ψ ≡ ⊥, then P 2 ⊥ and, since X is consistent, X 0 ⊥.

2. If ψ ≡ ψ1 → ψ2, then P 2 ψ if and only if P � ψ1 and P 2 ψ2. Thus,
by the induction hypothesis, P 2 ψ if and only if X ` ψ1 and X 0 ψ2.
Hence, since X is a maximal consistent set of formulas, P � ψ if and
only if X ` ψ.

3. ψ ≡ A ‖ B. See Lemma 5 and Lemma 6.

Finally, we note that Lemma 7 implies that P 2 φ because, by our
original assumption, X 0 φ. This completes the proof of Theorem 2.

6. Axiom Independence

In this section we will prove that each of the axioms of the Logic of Secrets is
independent from the other axioms. This is done by defining non-standard
semantics for the independence predicate.

Theorem 3. The Empty Set Axiom is not provable from the other axioms.

Proof. Consider a new semantics of the independence predicate under
which A ‖ B is false for all sets of secret variables A and B. Under this non-
standard semantics, the Empty Set Axiom is false, but the Monotonicity,
Public Knowledge, and Exchange Axioms are true. Therefore, the Empty
Set Axiom is independent from the other axioms.

Theorem 4. The Monotonicity Axiom is not provable from the other ax-
ioms.
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Proof. Fix an arbitrary secret variable s0. Consider a new semantics of
the independence predicate under which A ‖ B is true if and only if at least
one of the following conditions is true:

1. A is empty,

2. B is empty,

3. s0 ∈ A ∪B.

Let us show that this definition satisfies the Empty Set, Public Knowledge,
and Exchange Axioms, and does not satisfy the Monotonicity Axiom.
The Empty Set Axiom. ∅ ‖ A because ∅ is an empty set.
The Public Knowledge Axiom. Assume that A ‖ A and B ‖ C. The first of
these statements implies that either A is empty or s0 ∈ A. If A is empty,
then A,B = B. Hence, B ‖ C implies A,B ‖ C. Suppose s0 ∈ A. Thus,
s0 ∈ A ∪B ∪ C, and therefore, A,B ‖ C.
The Exchange Axiom. Assume that A,B ‖ C,D as well as A ‖ B and
D ‖ C. If s0 ∈ A ∪ B ∪ C ∪ D, then A,C ‖ B,D is true. Suppose that
s /∈ A ∪ B ∪ C ∪ D. Thus, A ‖ B and D ‖ C imply that one set out of A
and B and one set out of C and D are empty. If empty sets are A and C or
B and D, then A,C ‖ B,D is true. So, it will be sufficient to consider the
case when A and D are empty or B and C are empty.

First, consider the case where A and D are empty. Assumption A,B ‖
C,D implies that B ‖ C. Hence, either B or C is empty, so either B ∪D or
A ∪ C is empty. Thus, A,C ‖ B,D. The case where B and C are empty is
similar.
The Monotonicity Axiom. Let t and u be secret variables different from
variable s0. Consider any protocol P and sets A = {t}, B = {s0}, and
C = {u}. By definition, P � A,B ‖ C, but P 2 A ‖ C.

Theorem 5. The Public Knowledge Axiom is not provable from the other
axioms.

Proof. Consider a new semantics of the independence predicate under
which secret variables are interpreted as nodes of a certain undirected graph.
Independence predicate A ‖ B is true if and only if there is no crossing edge
that connects a node from set A with a node from set B. It is easy to see that
the Empty Set and Monotonicity Axioms are true under this interpretation.
The Exchange Axiom. Suppose that A,B ‖ C,D, and A ‖ B, as well as
D ‖ C. We will need to show that A,C ‖ B,D. Assume the opposite: there
is a crossing edge e from A ∪ C to B ∪D. There are four cases to consider:
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(a) if e goes from A to B, then A ‖ B is false, (b) if e goes from A to D, then
A,B ‖ C,D is false, (c) if e goes from C to B, then A,B ‖ C,D is false, (d)
if e goes from C to D, then D ‖ C is false.
The Public Knowledge Axiom. Finally, we will show that there is a graph
G and sets of nodes A, B, and C, for which A ‖ A → (B ‖ C → A,B ‖ C)
is false. Let graph G consist of only three nodes a, b, and c. Assume that
(a, c) is the only edge in this graph. Note that a ‖ a and b ‖ b are true, but
a, b ‖ c is false.

Theorem 6. The Exchange Axiom is not provable from the other axioms.

Proof. Consider a non-standard semantics for independence predicate un-
der which A ‖ B stands for “set A is empty”. It is easy to see that the
Empty Set, Monotonicity, and Public Knowledge Axioms are true under
this interpretation. At the same time, if sets A, B, and D are empty and
set C is not, then the Exchange Axiom is false.

7. Conclusions

7.1. Probabilistic Interpretation

As mentioned in the introduction, Geiger, Paz, and Pearl [3] developed a
complete logical system for a relation describing probabilistic independence.
In their system, variables are interpreted as events and a1, . . . , an ‖ b1, . . . , bn
as the statement that events a1, . . . , an are probabilistically independent
from events b1, . . . , bn. Their system and our system are essentially equiv-
alent, with two technical exceptions. First, they explicitly assume that the
same event cannot appear on both sides of the independence predicate.
Thus, their language lacks a notion equivalent to our “public knowledge”
and, as a result, their system does not include our Public Knowledge Ax-
iom. If one modified their system by allowing the same event to appear on
both sides of the independence predicate, than a ‖ a would have the meaning
“the probability of event a is either 0 or 1”. Our Public Knowledge Axiom
is clearly valid under this interpretation.

The second difference between the system of Geiger, Paz and Pearl and
our system is that they use a weaker form of our Exchange Axiom:

A,B ‖ C → (A ‖ B → A ‖ B,C). (6)

Our Exchange Axiom does not follow from principle (6) alone, but our axiom
does follow from (6), our Monotonicity Axiom, and a Symmetry Axiom
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(which is Lemma 1 in our system and a stand-alone new axiom in theirs).
To see this, assume A,B ‖ C,D and A ‖ B, as well as D ‖ C. We will prove
that A,C ‖ B,D. First, by the Monotonicity Axiom, A,B ‖ C,D implies
B ‖ C,D. By the Symmetry Axiom, C,D ‖ B. From assumption D ‖ C,
the Symmetry Axiom, and (6),

C ‖ D,B. (7)

Next, let us return to assumption A,B ‖ C,D. Taking into account A ‖ B
and (6), we have A ‖ B,C,D. By Symmetry, B,C,D ‖ A. Again by (6),
and using (7), we have B,D ‖ A,C. Finally, by Symmetry, A,C ‖ B,D.

7.2. Multiple Independence

In this paper, we introduced a logical system that describes properties of
independence between two sets of secret variables. Naturally, one can ask
about an independence predicate for three or more sets of secret variables
as is done for single secrets in [9]. For example, an independence predicate
for three sets A, B, and C could be defined as

A ‖ B ‖ C ⇐⇒ ∀r1, r2, r3 ∃r (r =A r1 ∧ r =B r2 ∧ r =C r3).

We conclude with the observation that independence predicates which have
more than two sets of arguments can be expressed through the two-argument
independence predicate studied in this paper. For example, it is easy to see
that A ‖ B ‖ C is logically equivalent to the conjunction (A ‖ B) ∧ (A,B ‖
C).
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