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Abstract We study whether it is possible to generalise Seidenfeld et al.’s repre-
sentation result for coherent choice functions in terms of sets of probability/utility
pairs when we let go of Archimedeanity. We show that the convexity property is
necessary but not sufficient for a choice function to be an infimum of a class of lexi-
cographic ones. For the special case of two-dimensional option spaces, we determine
the necessary and sufficient conditions by weakening the Archimedean axiom.

1 Introduction

In a problem of decision making under uncertainty, a subject’s preferences between a
set of alternatives can naturally be modelled by means of a so-called choice function,
that determines those options that are considered admissible to the subject. The
rationality of the subject’s preferences was studied by Arrow [2] and Uzawa [19],
and later axiomatised by Rubin [12]. A feature of this axiomatisation is that a rational
choice function always returns a single admissible option, or multiple admissible
options that are indifferent to each other.

Nevertheless, when faced with a set of options a choice function may give more
than one optimal alternative, and this does not necessarily imply that all these chosen
options are indifferent to our subject: they may instead be considered incomparable.
Coherent choice functions were extended to allow for incomparability between the
options by Seidenfeld et al. [15]. Under their axiomatisation, they proved a represen-
tation theorem in terms of probability/utility pairs: a choice function� is coherent if
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and only if there is an arbitrary non-empty set ( of probability/utility pairs such that
5 ∈ �(�) whenever 5 maximises ?-expected D-utility over � for some (?, D) in (.

In [23], we extended the above-mentioned axiomatisation by Seidenfeld et al. [15]
to choice functions defined on (abstract) options that form a vector space, rather than
horse lotteries, and also let go of two of their axioms: (i) the Archimedean one,
because it prevents choice functions from modelling the typically non-Archimedean
preferences captured by coherent sets of desirable gambles; and (ii) the convexity
axiom, because it turns out to be hard to reconcile with Walley–Sen maximality as
a decision rule. By doing this, we obtained a theory of coherent choice functions
that includes coherent sets of desirable gambles, and therefore most other imprecise
probability models, as particular cases; and that is at the same time more general,
because they are not necessarily completely determined by pairwise comparisons
between the options.

In spite of these advantages, our coherent choice functions also have the drawback
of not leading to a strong belief structure [6]. Such a representation is nevertheless
interesting, because it allows choice functions to be constructed using basic building
blocks. In [23], we did discuss a few interesting examples of special ‘representable’
choice functions, such as the ones from a coherent set of desirable gambles via
maximality, or those determined by a set of probability measures via E-admissibility.

In the present paper, we add more detail to our previous findings by investigating
in more detail the implications of the convexity axiom, while still letting go of
Archimedeanity. We show that, if a representation theorem under convexity were
indeed possible, it would necessarily involve lexicographic probabilities, as studied
by Blume et al. [3], Fishburn [8] and Seidenfeld et al. [14], but that unfortunately
such representation is not generally guaranteed. In order to establish this, we derive
some interesting properties of coherent choice functions in terms of their so-called
rejection sets. Our argument leads us to introduce an additional axiom, which we
call weak Archimedeanity, which guarantees representation, at least in the case of
two-dimensional option spaces.

Our paper is organised as follows. In Section 2, we recall the basics of coherent
choice functions on vector spaces of options as introduced in our earlier work [23],
and establish a number of properties that will be useful later on. In Section 3, we
recall our definition of lexicographic choice functions from [22] and the properties
of their associated binary preferences. Then we bring up the representation question
of whether a convex coherent choice function is always the infimum of a family of
lexicographic choice functions. Our motivation for focusing on them is that (i) they
have been connected to a representation of preferences in the context of choices over
horse lotteries in [14]; and (ii) that, as we shall show, the subset of maximal choice
functions, that play a similar role in the case of binary preferences, are not sufficient
in the case of choice functions. In order to present our results, we study in quite
some detail the particular case of coherent choice functions on a binary possibility
space, and show in Section 4 that these can be characterised by means of a so-
called rejection set. Based on our results, we are able to answer the representation
question by showing (i) that convexity is necessary but not sufficient for a coherent
choice function to be the infimum of lexicographic choice functions; and (ii) that
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a necessary and sufficient condition can be obtained, at least in the case of two-
dimensional option spaces, by adding what we call weak Archimedeanity. The paper
concludes with some additional discussion in Section 6. In order to facilitate the
reading, we have gathered all the proofs in an Appendix.

2 Coherent choice functions on vector spaces

Consider a real vector space V provided with the vector addition + and scalar
multiplication. We denote by 0 the additive identity. For any subsets �1 and �2 of V
and any_ inR, we let_�1 B {_D ∶ D ∈ �1} and �1+�2 B {D+E ∶ D ∈ �1 and E ∈ �2}.

Given any subset � of an option space V , we define its positive hull posi(�) as
the set of all positive finite linear combinations of elements of �:

posi(�) B {
=

∑
:=1

_:D: ∶ = ∈ N, _: ∈ R>0, D: ∈ �} ⊆ V ,

and its convex hull CH(�) as the set of convex combinations of elements of �:

CH(�) B {
=

∑
:=1

U:D: ∶ = ∈ N, U: ∈ R≥0,
=

∑
:=1

U: = 1, D: ∈ �} ⊆ posi(�) ⊆ V .

A subset � of V is called a convex cone if it is closed under positive finite linear
combinations, i.e. if posi(�) = �. A convex coneK is called proper ifK∩−K = {0}.
With any proper convex cone K ⊆ V , we associate an ordering ⪯K on V , defined for
all D and E in V by D ⪯K E⇔ E − D ∈ K.

The vector space of options V , ordered by the vector ordering ⪯K, is called an
ordered vector space ⟨V ,⪯K⟩. We will refrain from explicitly mentioning the actual
proper convex cone K we are using, and simply write V to mean the ordered vector
space, and use ⪯ as a generic notation for the associated vector ordering. Finally,
with any vector ordering ⪯, we associate the strict partial ordering ≺ as follows:

D ≺ E⇔ (D ⪯ E and D ≠ E)⇔ E − D ∈ K ∖ {0} for all D, E in V .

We call D positive if D ≻ 0, and collect all positive options in the convex cone V≻0 ∶=
K ∖ {0}.

One instance of particular interest for this paper is that where we fix a possibility
spaceX and let V be the set of gambles or bounded real-valued functions 5 ∶ X → R.
In that case, we will use L(X ) to denote this option set, or simply L when the
possibility space is clear from the outset. The vector ordering we shall consider then
will be the usual point-wise ordering, defined for any gambles 5 and 6 by:

(∀G ∈ X ) 5 ⪯ 6⇔ 5 (G) ≤ 6(G) (1)
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and, as before, 5 ≺ 6⇔ 5 ⪯ 6 and 5 ≠ 6. We will then denote L>0 B { 5 ∈ L(X ) ∶

0 ≺ 5 }.
From now on, we assume any ordering ⪯, generic but fixed. So we assume that

V is an ordered vector space, with vector ordering ⪯. We denote by Q(V) the set of
all non-empty finite subsets of V , a strict subset of the power set of V . When it is
clear what option space V we are considering, we will also use the simpler notation
Q. Elements � of Q are the option sets amongst which a subject can choose his
preferred options.

Definition 1 A choice function � on an option space V is a map

�∶Q→ Q ∪ {∅}∶ � ↦ �(�) such that �(�) ⊆ �.

We collect all the choice functions on V in C(V), often denoted as C when it is clear
from the context what the option space is.

The idea underlying this simple definition is that a choice function � selects the
set �(�) of ‘best’ options in the option set �. Our definition resembles the one
commonly used in the literature [1, 15, 17], except perhaps for an also not entirely
unusual restriction to finite option sets [9, 13, 16].

Equivalent to a choice function �, we may consider its corresponding rejection
function ', defined by '(�) B �∖�(�) for all � inQ. It returns the options '(�)
that are rejected—not selected—by �. We collect all the rejection functions on V in
the set R(V), often denoted as R when it is clear from the context what the option
space is.

We focus on a special class of rejection functions, which we will call coherent.

Definition 2 We call a rejection function ' on V coherent if for all �, �1 and �2 in
Q, all D and E in V , and all _ in R>0:

R1. '(�) ≠ �;
R2. if D ≺ E then D ∈ '({D, E});
R3. a. if �1 ⊆ '(�2) and �2 ⊆ � then �1 ⊆ '(�);

b. if �1 ⊆ '(�2) and � ⊆ �1 then �1 ∖ � ⊆ '(�2 ∖ �);
R4. a. if �1 ⊆ '(�2) then _�1 ⊆ '(_�2);

b. if �1 ⊆ '(�2) then �1 + {D} ⊆ '(�2 + {D}).

We collect all coherent rejection functions on V in the set R̄(V), often simply
denoted as R̄ when it is clear from the context which vector space we are using.

These axioms are a subset of the ones introduced in [15], which in our previous
work [22] we duly translated from horse lotteries to our abstract options. Our Ax-
iom R2 is slightly more restrictive than its counterpart for horse lotteries considered
by Seidenfeld et al. [15], but our other axioms are slightly less restrictive.

One axiom we omit from our coherence definition is the Archimedean one.
Typically the preference associated with coherent sets of desirable gambles does not
have the Archimedean property (see [23]), so letting go of this axiom is necessary if
we want to explore the connection with desirability.
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The second axiom that we do not consider as necessary for coherence is what we
will call the convexity axiom:
R5. if � ⊆ �1 ⊆ CH(�) then '(�1) ∩ � = '(�), for all � and �1 in Q.

The idea behind this axiom is that any gamble that is rejected within an option set
�1 should also be rejected from any smaller option set � resulting from removing
non-extreme points from �1. Albeit an interesting axiom, as noted by Seidenfeld et
al. [15] it is incompatible with Walley–Sen maximality [18, 25], in the manner that
we will make explicit later on.

An interesting rescaling property that we shall need further on is the following:
Proposition 1 Let ' be a rejection function onQ satisfying axiomsR3a,R4a andR5.
Then for all = in N, all D1, D2, . . . , D= in V and all `1, `2, . . . `= in R>0:

0 ∈ '({0, D1, D2, . . . , D=})⇔ 0 ∈ '({0, `1D1, `2D2, . . . , `=D=}). (2)

If we replace 0 by any non-zero option D, this result need no longer hold.
We have learned from dire experience that in verifying whether a rejection func-

tion is coherent, Axiom R3b is often hardest to check. But under various additional
conditions, it has a number of equivalent formulations that may simplify this task:
Proposition 2 Let ' be any rejection function on Q, and consider the following
statements:

(i) ' satisfies Axiom R3b;
(ii) (∀� ∈ Q)(∀D ∈ '(�))D ∈ '({D} ∪ � ∖ '(�));
(iii) (∀� ∈ Q)(∀E ∈ '(�) ∖ {0})(0 ∈ '(�)⇒ 0 ∈ '(� ∖ {E}));
Then (i) implies (ii) and (iii). If ' satisfies AxiomR3a, then (i) and (ii) are equivalent,
and if ' satisfies in addition Axiom R4b, then (i), (ii) and (iii) are equivalent.

Using Proposition 2, we can find an easy characterisation of Axiom R1.
Corollary 1 Consider any rejection function ' that satisfies Axioms R3b and R4b.
Then ' satisfies Axiom R1 if and only if 0 ∉ '({0}).
For two choice functions � and �′, we call � not more informative than �′—and
we write � ⊑ �′—if �(�) ⊇ �′(�) for all � in Q. The idea behind this is that
a more informative choice function selects the admissible options more selectively
from within the option set. The relation ⊑ is reflexive, antisymmetric and transitive,
so the set C of all choice functions ordered by ⊑ is a partial order. Moreover, it is
actually a complete lattice: given any set C′ ⊆ C of choice functions, its infimum
inf C′ and supremum supC′ exist in C, and are given by (inf C′)(�) = ⋃�∈C′ �(�)

and (supC′)(�) = ⋂�∈C′ �(�) for all � in Q. This translates naturally to rejection
functions.

3 The link with desirability

In [23], we have studied in some detail how the coherent choice functions in the sense
of Definition 2 can be related to coherent sets of desirable options (gambles). In the
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present section, we investigate what remains of this connection when we require in
addition that our choice functions should satisfy Axiom R5.

We recall that a set of desirable options � is simply a subset of the vector space
V . The underlying idea is that the subject strictly prefers each option D in this set to
the status quo 0. As we did for choice functions, we pay special attention to coherent
sets of desirable options.

Definition 3 A set of desirable options � is called coherent if for all D and E in V ,
and all _ in R>0:
D1. 0 ∉ � ;
D2. V≻0 ⊆ � ;
D3. if D ∈ � then _D ∈ � ;
D4. if D, E ∈ � then D + E ∈ � .
We collect all coherent sets of desirable options in the set D̄.

More details can be found in [25], [26], [11] and the references therein.
AxiomsD3 andD4 guarantee that a coherent� is a convex cone. This convex cone

induces a strict partial order ½� on V , by letting D ½� E⇔ 0 ½� E−D⇔ E−D ∈ � ,
so � = {D ∈ V ∶ 0 ½� D} [7, 11]. � and ½� are mathematically equivalent: given
one of � or ½� , we can determine the other unequivocally using the formulas above.
When it is clear from the context which set of desirable options � we are working
with, we often refrain from mentioning the explicit reference to � in ½� and then
we simply write ½. One of the axioms says that ≺ ⊆ ½� .

We can associate a set of desirable options �' with every given rejection function
' by focusing on its binary rejections:

D ½�' E⇔ D − E ∈ �' ⇔ D ∈ '({D, E}) for all D, E in V .

For more details, we refer to [23, Section 3]. �' is a coherent set of desirable options
if ' is a coherent rejection function. Conversely, if we start out with a coherent set
of desirable options � then the set {' ∈ R̄ ∶ �' = �} of all coherent rejection
functions whose binary choices are represented by � , is non-empty, and its smallest,
or least informative, element '� B inf{' ∈ R̄ ∶ �' = �} is given by:

'�(�) B {D ∈ � ∶ (∃E ∈ �)E − D ∈ �} = {D ∈ � ∶ (∃E ∈ �)D ½ E} for all � in Q.

It selects all options from � that are dominated under the ordering ½� , or in other
words, its corresponding choice function is based on Walley–Sen maximality.

Proposition 3 ([22, Proposition 11]) Given any coherent set of desirable options
� , then 0 ∈ '�({0} ∪ �)⇔ � ∩ � ≠ ∅ for all � in Q.

Although '� is coherent when � is, it does not necessarily satisfy the additional
Axiom R5, as shown in [22, Example 1]; the sets of desirable options � for which
'� does satisfy the convexity axiom are identified in the next proposition.

Proposition 4 ([22, Proposition 12])Consider any coherent set of desirable options
� . Then the rejection function '� satisfies Axiom R5 if and only if posi(�2) = �2 .
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This proposition seems to indicate that there is something special about coherent
sets of desirable options whose complement is a convex cone too. We give them a
special name that will be motivated and explained next.

Definition 4 A coherent set of desirable options � is called lexicographic if
posi(�2) = �2 or, equivalently, if posi(�2) ∩ � = ∅. We collect all the lexico-
graphic coherent sets of desirable options in D̄L.

The set D̄L of lexicographic sets of desirable options is non-empty. It includes,
for instance, the so-called maximal sets of desirable options, see [22], which is the
subclass of those coherent sets of desirable options satisfying

(∀D ∈ V ∖ {0})(D ∈ � or − D ∈ �). (3)

We collect all the coherent sets of desirable options that satisfy Equation (3) above
in the set D̂.
The reason why we call the elements of D̄L lexicographic lurks behind a close
connection with the well-studied lexicographic probability systems.

Definition 5 A lexicographic probability system is an ℓ-tuple ? B (?1, . . . , ?ℓ) of
probability mass functions on a possibility space X . We associate with this tuple ?
an expectation operator �? B (�?1 , . . . , �?ℓ ), and a (strict) preference relation ≺?
on L(X ), defined by: 5 ≺? 6⇔ �?( 5 ) <L �?(6) for all 5 and 6 in L, where, for
every ℎ in L, �?(ℎ) B (�?1(ℎ), . . . , �?ℓ (ℎ)), is an element of an ℓ-dimensional
vector space and <L denotes the lexicographic order, given for any ℓ-dimensional
vectors (G1, . . . , Gℓ) and (H1, . . . , Hℓ) by:

(G1, . . . , Gℓ) <L (H1, . . . , Hℓ)⇔ (∃ 9 ∈ {1, . . . , ℓ})(G 9 < H 9 and (∀8 ≤ 9 − 1)G8 = H8)

We call ℓ the number of layers of the lexicographic probability system.

An important property that a lexicographic probability system ?may ormay not have,
is that of having no non-trivial Savage-null events: ? has no non-trivial Savage-null
events if for every G in X , there is at least one : in {1, . . . , ℓ} for which ?:(G) > 0.

We have showed in [22, Section 5] that any lexicographic set of desirable options
� defines a lexicographic probability system with no non-trivial Savage-null events,
and vice versa. Lexicographic sets of desirable options are therefore an elegant and
simple representation of lexicographic probability systems.

To get some feeling for what these lexicographic models represent, we first look at
the special case of binary possibility spaces {H,T}, leading to a two-dimensional op-
tion spaceV = L({H,T}) provided with the point-wise order in Equation (1). It turns
out that lexicographic sets of desirable options (gambles) are easy to characterise
there.

Proposition 5 ([22, Proposition 16]) All lexicographic coherent sets of desirable
gambles on the binary possibility space {H,T} are given by:

D̄L ∶= {�d, �
H
d , �

T
d ∶ d ∈ (0, 1)} ∪ {�0, �1} = {�d ∶ d ∈ (0, 1)} ∪ D̂,



8 Enrique Miranda and Arthur Van Camp

where, for all d in (0, 1),

�d ∶= {_(d − I{H}) ∶ _ ∈ R} +L>0 = span({d − I{H}}) +L>0

�H
d ∶= �d ∪ {_(d − I{H}) ∶ _ ∈ R<0} = �d ∪ posi({I{H} − d})

�T
d ∶= �d ∪ {_(d − I{H}) ∶ _ ∈ R>0} = �d ∪ posi({d − I{H}})

�0 B { 5 ∈ L ∶ 5 (T) > 0} ∪L>0

�1 B { 5 ∈ L ∶ 5 (H) > 0} ∪L>0.

Definition 6 A coherent rejection function ' is called lexicographic if ' = '� for
some � in D̄L. We collect all the lexicographic coherent rejection functions in R̄L.

Proposition 6 ([22, Proposition 23])Consider an arbitrary coherent set of desirable
options � . Then

inf{' ∈ R̄ ∶ ' satisfies Axiom R5 and �' = �} = inf{'�′ ∶ �′
∈ D̄L and � ⊆ �′

}.

Therefore, they also represent the least informative coherent choice function that
satisfies Axiom R5, taking into account that Axiom R5 is preserved when taking
infima.

4 No representation of choice functions on a binary space

Lexicographic choice functions seem to fulfil the role of probability mass in our
theory without any Archimedean axiom. This is in contradistinction with the theory
of choice functions on horse lotteries with an Archimedean axiom [15], where the
most informative choice functions are those that are induced by probability mass
functions. Seidenfeld et al. [15] show that every coherent choice function on horse
lotteries (also satisfying their Archimedean axiom) is an infimum of such maximally
informative choice functions. This ensures that coherent choice functions with the
Archimedean axiom constitute a so-called strong belief structure [6]1. The relevance
of such strong belief structures is that they allow for a simple account of conservative
inference, as we can essentially work with the maximal models (that is, those that
are not dominated by any other model).

Since coherent sets of desirable options are represented by their dominating
maximal ones, it is natural to wonder if they fulfil the same representational role
for choice functions. Our next example shows that this is not the case. The main

1 A family of belief models is called a belief structure when it is a lattice with respect to some
partial order ⪯, it is closed under infima and it has no top. It is called a strong belief structure when
in addition any belief model can be obtained as the infima of the maximal models that dominate it.
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underlying idea is that maximal sets of desirable options are in some sense too
informative, and do not allow to encompass the interactions between the different
options that are sometimes embedded into a choice function.

Example 1 Consider the binary space {�,)} and let us define the coherent set
of desirable gambles � B { 5 ∈ L ∶ 5 (�) + 5 ()) > 0}. Clearly, �2 = { 5 ∈ L ∶

5 (�)+ 5 ()) ≤ 0} is a convex cone, so � is a lexicographic set of desirable gambles,
and hence, by Proposition 4, '� is coherent and satisfies Axiom R5.

Is '� representable by a subset of {'�̂ ∶ �̂ ∈ D̂}? To answer this in the negative,
consider the option set � in Q0 that consists of the gambles { 5 ,− 5 , 0}, where
5 (�) = 1, 5 ()) = −1. Then neither 5 nor− 5 belongs to� , whence by Proposition 3,
0 ∉ '�(�). However, � ∩ �̂ ≠ ∅, for every �̂ in D̂. To see this, it suffices to take
into account that any maximal set of desirable options shall include either 5 or − 5
because of Equation (3). This means that '� is not representable by subsets of D̂,
even though '� satisfies Axiom R5. ◊

Thus, a representation in terms of appropriately chosen {'�̂ ∶ �̂ ∈ D̂} is impos-
sible. But since we have seen in Proposition 6 that lexicographic rejection functions
seem to fulfil at least some representing role in our theory without Archimedeanity, it
seems at least possible that there might be a representation result in terms of R̄L—in
terms of lexicographic rejection functions. This brings us to the central question of
this section: is, in parallel with the result by Seidenfeld et al. [15], every coherent re-
jection function ' that satisfies the Axiom R5 an infimum of lexicographic rejection
functions, or in other words, is ' = inf{'′ ∈ R̄L ∶ ' ⊑ '′}, or equivalently,

'(�) =⋂{'′(�) ∶ '′ ∈ R̄L and ' ⊑ '′} for all � in Q?

We will show in this section that, unfortunately and perhaps somewhat surprisingly,
this is generally not the case, by studying in more detail the special case of coherent
rejection functions on two-dimensional option spaces.

Our counterexample that we will build will be a rejection function on a two-
dimensional option space. Therefore, in the remainder of this section, we concentrate
on the two-dimensional option space V = L(X ) of gambles on an uncertain variable
that can assume only two possible values X B {H,T}, which is isomorphic to R2,
and with the order given by Equation (1).

4.1 An equivalent characterisation: rejection sets

As we will see shortly, the coherent rejection functions on the option space V = R2

are uniquely determined by what we shall call a rejection set, consisting essentially
of those option sets that allow us to reject 0 from them. Instead of describing the
gambles that reject 0 directly, this new characterisation will rather use Axiom R4a
to rescale gambles in the second and fourth quadrants
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VII B { 5 ∈ L(X ) ∶ 5 (H) < 0 < 5 (T)} and VIV B { 5 ∈ L(X ) ∶ 5 (T) < 0 < 5 (H)},

(4)
obtaining variants that can be described more easily. Indeed, every gamble 51 in VII
can be uniquely described as 51 = _1(:1 − 1, :1) with _1 in R>0 and :1 in (0, 1),
and similarly, every gamble 52 in VIV as 52 = _2(:2, :2 − 1) with _2 in R>0 and :2
in (0, 1), as indicated by the figure below.

H

T
51

52

1

1

−1

−1

:1
:2

1

1

(:1, :2)

Definition 7 Given any coherent rejection function ', we define its rejection set
 ' ⊆ [0, 1)2 as

 ' B {(:1, :2) ∈ [0, 1)2
∶ 0 ∈ '({(:1 − 1, :1), 0, (:2, :2 − 1)})}.

We will call any subset  ⊆ [0, 1)2 a rejection set. It will be useful to consider a
number of potential properties of rejection sets  :
K1. monotonicity: if (:1, :2) ∈  , : ′1 ≥ :1 and : ′2 ≥ :2, then also (: ′1, :

′
2) ∈  , for

all (:1, :2) and (: ′1, :
′
2) in [0, 1)2;

K2. non-triviality: (0, 0) ∉  ;
K3. a. for all 0, 1 and 2 in [0, 1) such that 2 < 0, 0 + 1 < 1, (1, 0) ∈  and

(1 − 0, 2) ∈  :

(G, 2) ∈  for all G in (1, 1) and (1, H) ∈  for all H in (2, 1);

b. for all 0 and 2 in [0, 1) such that 2 < 0, (0, 0) ∈  and (1 − 0, 2) ∈  :

(0, 2) ∈  ;

c. for all 0 and 1 in [0, 1) such that 0 < 0, 0+1 < 1, (1, 0) ∈  and (1−0, 0) ∈  :

(1, 0) ∈  ;

K4. if :1 + :2 > 1 then (:1, :2) ∈  , for all (:1, :2) in [0, 1)2.
Properties K2 and K3 imply the following useful property:

Lemma 1 Consider any rejection set  ⊆ [0, 1)2. If  satisfies Properties K2
and K3, then for every 0 ∈ [0, 1], either (0, 0) ∉  or (1 − 0, 0) ∉  .
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The coherence of '—and the extraAxiomR5 and theweaker Condition (2)—implies
a number of corresponding properties of its rejection set  ' :

Proposition 7 Consider any coherent choice function ' on L({H,T}). Then its
rejection set  ' satisfies Properties K1 and K2. Furthermore, if ' satisfies Condi-
tion (2), then  ' also satisfies Property K3. Finally, if ' satisfies Axiom R5 then
 ' also satisfies Properties K3 and K4.

Conversely, we now show how to associate a rejection function with any rejection
set  ⊆ [0, 1)2. Taking into account Property K2, we only consider sets  that do
not contain 0.

Definition 8 Given any subset  ⊆ [0, 1)2 ∖ {0}, we define its corresponding rejec-
tion function ' as follows. We let

' ({0}) = ∅. (5)

Next, for any � in Q0, we let 0 ∈ ' (� ∪ {0}) if at least one of the following
conditions holds:

� ∩L>0 ≠ ∅ (6)
(∃_1 ∈ R>0, (:1, 0) ∈  )_1(:1 − 1, :1) ∈ � (7)
(∃_2 ∈ R>0, (0, :2) ∈  )_2(:2, :2 − 1) ∈ � (8)

(∃_1, _2 ∈ R>0, (:1, :2) ∈  ∩ (0, 1)2
){_1(:1 − 1, :1), _2(:2, :2 − 1)} ⊆ �, (9)

andfinally,we allow for '(�) to contain non-zero gambles by imposing the following
condition:

(∀� ∈ Q)(∀ 5 ∈ �) 5 ∈ ' (�)⇔ 0 ∈ ' (� − { 5 }). (10)

The intuition behind this is that the elements of  of the type (:1, 0) or (0, :2)
determine gambles—(:1 − 1, :1) and (:2, :2 − 1), respectively—that allow us to
reject 0; the other possibility of rejecting 0 is by means of the combined action of a
gamble in the second quadrant—(:1 − 1, :1) for :1 in (0, 1)—and one in the fourth
quadrant—(:2, :2 − 1) for :2 in (0, 1).

Alternatively, we can summarise Conditions (7)–(9) as

(∃_1, _2 ∈ R>0, (:1, :2) ∈  ){_1(:1−1, :1), _2(:2, :2−1)} ⊆ �∪{(−1, 0), (0,−1)}.
(11)

Lemma 2 For any  ⊆ [0, 1)2 ∖ {0} and any � in Q, at least one of the Condi-
tions (7)–(9) holds if and only if Condition (11) holds.

Now that we know how to associate with a rejection set  a rejection function
' , let us determine which conditions on  ensure the coherence of ' . We begin
by showing that a number of coherence axioms follow directly from the definition,
irrespective of the choice of the rejection set  ⊆ [0, 1)2 ∖ {0}:
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Proposition 8 Consider any subset  ⊆ [0, 1)2 ∖ {0}. Then the rejection function
' given by Definition 8 satisfies Axioms R2, R3a, R4a, R4b and Condition (2).

If in addition  satisfies Properties K1–K3, then the rejection function ' given
by Definition 8 satisfies Axioms R3b and R1.

In other words, given any subset of [0, 1)2∖{0} that satisfies Properties K1–K3,
the rejection function ' given by Definition 8 is coherent and satisfies Property (2).

We conclude from the preceding discussion that any coherent rejection function
determines a rejection set via Definition 7, which, in turn, can be used to determine
a rejection function via Definition 8. Our next proposition shows that these two
procedures commute, or, in other words, that a coherent rejection function is uniquely
determined by its associated rejection set, and the other way around. In order to get
there, we first establish the following lemma:

Lemma 3 Consider any coherent rejection function ' on L({H,T}) that satisfies
Condition (2). Consider the option sets { 51, . . . , 5<} ⊆ VII and {61, . . . , 6=} ⊆

VIV, for some < and = in N. Then the following equivalences hold for any 8 in
arg max{ 5:() )

5:() )− 5:(�) ∶ : ∈ {1, . . . , <}} and any 9 in arg max{ E:(�)
E:(�)−E:() ) ∶ : ∈

{1, . . . , =}}:
(i) 0 ∈ '({0, 51, . . . , 5<, 61, . . . , 6=})⇔ 0 ∈ '({0, 58 , 6 9});
(ii) 0 ∈ '({0, 61, . . . , 6=})⇔ 0 ∈ '({0, 6 9});
(iii) 0 ∈ '({0, 51, . . . , 5<})⇔ 0 ∈ '({0, 58}).

Incidentally, Proposition 1 ensures that this lemma applies in particular to coherent
rejection functions that satisfy Axiom R5.

Proposition 9 For any coherent rejection function ' on L({H,T}) that satisfies
Condition (2), ' = ' ' . Conversely, for any rejection set  satisfying Proper-
ties K1–K3,  =  ' .

To conclude our preliminary discussion of the relation between rejection sets
and rejection functions, we characterise the conditions under which the rejection
function ' determined by a rejection set  satisfies the ‘convexity’ Axioms R5.
We begin with a lemma that will simplify the argument.

Lemma 4 Consider (:1, :2) in [0, 1)2. Let � B {(:1 − 1, :1), 0, (:2, :2 − 1)}, then

posi(�) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

� +L≥0 if :1 + :2 > 1
� if :1 + :2 = 1
� +L≤0 if :1 + :2 < 1,

where � B {_(:1 − 1, :1) ∶ _ ∈ R≥0} ∪ {_(:2, :2 − 1) ∶ _ ∈ R≥0}.

In particular, it follows from this result for � = {(:1 − 1, :1), 0, (:2, :2 − 1)} that

posi(�) ∩L>0 = ∅⇔ :1 + :2 ≤ 1, for all (:1, :2) in [0, 1)2. (12)
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Proposition 10 Consider any rejection set  ⊆ [0, 1)2 ∖ {0} that satisfies Proper-
ties K1–K3, and the corresponding rejection function ' on L({H,T}). Then the
following two statements are equivalent:

(i) ' satisfies Axiom R5,
(ii)  satisfies Property K4.

The results in this section so far can be succinctly summarised as follows:

Theorem 1 Consider a two-dimensional option space V B L({H,T}) with the
order given by Equation (1). There is a one-to-one correspondence between coherent
rejection functions on V satisfying Condition (2) and subsets of [0, 1)2 satisfying
Properties K1–K3.

Moreover, there is a one-to-one correspondence between coherent rejection func-
tions on V satisfying Axiom R5 and subsets of [0, 1)2 satisfying Properties K1–K4.

4.2 Counterexample

Let us call lexicographic rejection set a rejection set corresponding to a lexicographic
choice function. In order to find a rejection set that is no infimum of such lexico-
graphic rejection sets, we first need to find out what these lexicographic rejection
sets look like. Recall from Proposition 5 that all the lexicographic coherent sets of
desirable gambles on a binary possibility space {H,T} are given by

D̄L ∶= {�d, �
H
d , �

T
d ∶ d ∈ (0, 1)} ∪ {�0, �1} = {�d ∶ d ∈ (0, 1)} ∪ D̂,

and the lexicographic rejection functions on L({H,T}) are R̄L = {'� ∶ � ∈ D̄L}.
We determine the corresponding rejection sets. For any � in D̄L, we let  � be the
rejection set that corresponds to the rejection function '� . For any d in (0, 1) and
(:1, :2) ∈ [0, 1)2, observe that

(:1, :2) ∈  �d ⇔ 0 ∈ '�d({(:1 − 1, :1), 0, (:2, :2 − 1)})
⇔ {(:1 − 1, :1), (:2, :2 − 1)} ∩ �d ≠ ∅
⇔ (:1 − 1, :1) ∈ �d or (:2, :2 − 1) ∈ �d
⇔ :1 > d or :2 > 1 − d, (13)

and similarly,

(:1, :2) ∈  �H
d
⇔ (:1 − 1, :1) ∈ �

H
d or (:2, :2 − 1) ∈ �H

d ⇔ :1 > d or :2 ≥ 1 − d,
(14)

and

(:1, :2) ∈  �T
d
⇔ (:1 − 1, :1) ∈ �

T
d or (:2, :2 − 1) ∈ �T

d⇔ :1 ≥ d or :2 > 1 − d.
(15)

Finally, also for �0 and �1,
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(:1, :2) ∈  �0 ⇔ (:1 − 1, :1) ∈ �0 or (:2, :2 − 1) ∈ �0 ⇔ :1 > 0 (16)

and

(:1, :2) ∈  �1 ⇔ (:1 − 1, :1) ∈ �1 or (:2, :2 − 1) ∈ �1 ⇔ :2 > 0. (17)

We are now, finally, ready to provide an example of a rejection set that satisfies
Properties K1–K4—or a coherent rejection function that satisfies Axiom R5—but
is no intersection of lexicographic rejection sets.

Example 2 Consider any ℓ1 and ℓ2 in (0, 1) such that ℓ1 + ℓ2 < 1, and the rejection
set  ℓ1 ,ℓ2 ⊆ [0, 1)2 depicted in the figure below, and defined by

 ℓ1 ,ℓ2 B {(:1, :2) ∈ [0, 1)2
∶ :1 + :2 > 1 or (:1, :2) > (ℓ1, ℓ2)}. (18)

We show that it corresponds to a rejection function that is coherent and satisfies
Property R5. By Theorem 1 it suffices to show that  ℓ1 ,ℓ2 satisfies Properties K1–
K4. That it satisfies Properties K1, K2 and K4 is clear from its definition. We show
that it also satisfies Property K3. Note that (0, 0) ∉  ℓ1 ,ℓ2 and (1 − 0, 0) ∉  ℓ1 ,ℓ2

for all 0 in [0, 1], so the Properties K3b and K3c are trivially satisfied for  ℓ1 ,ℓ2 . It
therefore only remains to prove that Property K3a is satisfied for  ℓ1 ,ℓ2 . Consider any
0, 1 and 2 in [0, 1) such that 2 < 0, 0 + 1 < 1, (1, 0) ∈  ℓ1 ,ℓ2 and (1 − 0, 2) ∈  ℓ1 ,ℓ2 .
We need to show that then

(G, 2) ∈  ℓ1 ,ℓ2 for all G in (1, 1) and (1, H) ∈  ℓ1 ,ℓ2 for all H in (2, 1),

so consider any G in (1, 1) and H in (2, 1). Since (1, 0) ∈  ℓ1 ,ℓ2 and 0 + 1 <

1, Equation (18) tells us that (1, 0) > (ℓ1, ℓ2), so G > 1 ≥ ℓ1. Similarly, since
(1 − 0, 2) ∈  ℓ1 ,ℓ2 and 2 < 0 (or equivalently, 1 − 0 + 2 < 1), Equation (18) tells us
that (1 − 0, 2) > (ℓ1, ℓ2), so H > 2 ≥ ℓ2. Then (G, 2) > (ℓ1, ℓ2) and (1, H) > (ℓ1, ℓ2),
whence indeed (G, 2) ∈  ℓ1 ,ℓ2 and (1, H) ∈  ℓ1 ,ℓ2 . So we see that  ℓ1 ,ℓ2 satisfies
Properties K1–K4. It therefore corresponds to a coherent and ‘convex’ rejection
function.

:1

:2

ℓ1

ℓ2

 ℓ1 ,ℓ2

We show that  ℓ1 ,ℓ2 is no intersection of lexicographic rejection sets. Assume
ex absurdo that it is an intersection ⋂ D′ of some non-empty collection of lex-
icographic rejection sets  D′ B { � ∶ � ∈ D′}, with D′ ⊆ D̄L. Then, since
(ℓ1, ℓ2) ∉  ℓ1 ,ℓ2 , there must be some � in D′ such that (ℓ1, ℓ2) ∉  � . There are a
number of possibilities: (i) � = �d for some d in (0, 1), (ii) � = �H

d for some d
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in (0, 1), or (iii) � = �T
d for some d in (0, 1)—� ∈ {�0, �1} is impossible since

(ℓ1, ℓ2) belong to both  �0 [by Equation (16)] and  �1 [by Equation (17)].
In case (i), since (ℓ1, ℓ2) ∉  �d , we infer from Equation (13) that ℓ1 ≤ d and

ℓ2 ≤ 1 − d, or in other words, that d ∈ [ℓ1, 1 − ℓ2]. From ℓ1 + ℓ2 < 1, we infer that
ℓ1 < d or ℓ2 < 1 − d. We consider the case that ℓ1 < d; if ℓ2 < 1 − d, a symmetrical
argument leads to a similar result. From Equation (13) we infer, using ℓ2 ≤ 1− d, that
on the one hand (d, ℓ2) ∉  �d . On the other hand, we infer from (d, ℓ2) > (ℓ1, ℓ2)
that (d, ℓ2) ∈  ℓ1 ,ℓ2 , by Equation (18). This leads us to conclude that  ℓ1 ,ℓ2 ≠  �d .

In case (ii), then, since (ℓ1, ℓ2) ∉  �H
d
, we infer from Equation (14) that ℓ1 ≤ d and

ℓ2 < 1−d, or in other words, that d ∈ [ℓ1, 1−ℓ2). This implies that ℓ2 <
1−d+ℓ2

2 < 1−d:
indeed, 1−d+ℓ2

2 is a convex mixture of ℓ2 and 1 − d. From Equation (14), we infer,
using 1−d+ℓ2

2 < 1− d, that on the one hand (ℓ1,
1−d+ℓ2

2 ) ∉  �H
d
. On the other hand, we

infer from (ℓ1,
1−d+ℓ2

2 ) > (ℓ1, ℓ2) that (ℓ1,
1−d+ℓ2

2 ) ∈  ℓ1 ,ℓ2 , by Equation (18). This
leads us to conclude that  ℓ1 ,ℓ2 ≠  �H

d
.

In case (iii), a completely symmetrical argument leads to the conclusion that
 ℓ1 ,ℓ2 ≠  �H

d
.

This tells us that none of the remaining possibilities can hold, a contradiction. ◊

Thus, the rejection function that corresponds to  ℓ1 ,ℓ2 is coherent and satisfies
Property R5 by Theorem 1, but it is no infimum of lexicographic rejection functions.
This answers the initial question in this section—is ' = inf{'′ ∈ R̄L ∶ ' ⊑ '′} for
every coherent rejection function ' that satisfies Property R5?—in the negative: in
the restrictive case of two possible outcomes, we have found a counterexample.

5 Weak Archimedeanity

In order to find an additional requirement that guarantees representation, at least in
the binary case, let us further analyse the properties of rejection sets.

Definition 9 Consider any  ⊆ [0, 1)2 satisfying Properties K1–K4. We define the
following two maps c1∶ [0, 1)→ [0, 1] and c2∶ [0, 1)→ [0, 1]:

c1(I) B inf{0 ∈ R ∶ (I, 0) ∈  } and c2(I) B inf{0 ∈ R ∶ (0, I) ∈  }

for all I in [0, 1). Here, we let inf∅ B 1, so that c1(I) = 1 if (I, ℓ) ∉  for all ℓ in
[0, 1), and c2(I) = 1 if (ℓ, I) ∉  for all ℓ in [0, 1).

Note that c1(I) ∈ [0, 1 − I] and c2(I) ∈ [0, 1 − I] for every I in [0, 1), because
{(:1, :2) ∈ [0, 1)2 ∶ :1 + :2 > 1} ⊆  . Since  is assumed to be increasing,

(∀I ∈ [0, 1))((∀H ∈ (c1(I), 1))(I, H) ∈  ) and ((∀G ∈ (c2(1−I), 1))(G, 1−I) ∈  ).

Proposition 11 c1 and c2 are non-increasing. Moreover, for any I in [0, 1):
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• If c1(I) < 1 − I then c1(I) = c1(C) for all C in (I, 1 − c1(I));
• If c2(I) < 1 − I then c2(I) = c2(C) for all C in (I, 1 − c2(I)).

Next we introduce the notion of weak Archimedeanity that, as we shall show, shall
be instrumental in characterising those coherent choice functions that are the infima
of a family of lexicographic choice functions.2 We begin by giving the definition in
terms of rejection sets:

Definition 10 A rejection set  is called weakly Archimedean when it satisfies

(∀(:1, :2) ∈ (0, 1)2,∀: ′1 ∈ (:1, 1),∀: ′2 ∈ (:2, 1))
(:1 + :2 < 1, (: ′1, :2) ∈  , (:1, :

′
2) ∈  ⇒ (:1, :2) ∈  ).

The termArchimedeanity is reminiscent of some type of continuity in the preferences
encompassed by the rejection set, and indeed implies that the rejection set must
be closed in one particular case: when an element can be approximated from the
top and from the right within the rejection set. Our definition is inspired by the
idea of excluding rejection functions such as the one in our Example 2, that, as
we have shown, is no infimum of lexicographic choice functions. Indeed, weak
Archimedeanity rules out the rejection functions that have the rejection set  ℓ1 ,ℓ2

from the left figure in its basis.

:1

:2

ℓ1

ℓ2

 ℓ1 ,ℓ2

:1

:2

ℓ1

ℓ2

Observe that ℓ1+ℓ2 < 1, (: ′1, ℓ2) ∈  and (ℓ1, :
′
2) ∈  for every : ′1 in (ℓ1, 1) and : ′2 in

(ℓ2, 1), but (ℓ1, ℓ2) ∉  . Weak Archimedeanity implies that (ℓ1, ℓ2) ∈  , as depicted
on the right figure. In terms of choice functions, the notion of weak Archimedeanity
becomes the following:

Definition 11 A rejection function ' on a binary possibility space is called weakly
Archimedean when it satisfies

(∀D ∈ VII,∀E ∈ VIV)

(posi({D, E}) ∩ V⪰0 = ∅, (∀n ∈ R>0)(0 ∈ '({D + n, 0, E}) and 0 ∈ '({D, 0, E + n}))

⇒ 0 ∈ '({D, 0, E})). (19)

2Wewant to caution the reader that there are other non-equivalent definitions ofweakArchimedean-
ity: for instance, the one given by Zaffalon and Miranda in [27, Defintion 19] and [28] for binary
comparison of the options, differs from ours, even when we restrict our definition to binary option
sets.
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The intuition here is that if an increase, no matter how small, of one of the two
options allows us to reject the zero option, then the options D, E by themselves should
also let us reject 0. Recall that if {�,)} is a basis of the vector space V , then VII,VIV
are given by Equation (4), and that V⪰0 B { 5 ∈ L({H,T}) ∶ 5 (H), 5 (T) ≥ 0}.

Proposition 12 Consider some two-dimensional vector space V with basis {�,)}.
Consider a coherent rejection function ' on V satisfying Condition (2) and its
associated rejection set  ' . Then  ' is weakly Archimedean if and only if ' is
weakly Archimedean.

Weak Archimedeanity is closed under infima.

Proposition 13 Consider some two-dimensional vector space V with basis {�,)}.
Consider an arbitrary collectionR′ of coherent rejection functions on V that satisfy
Condition (2). If every rejection function in R′ is weakly Archimedean, then so is
infR′. Similarly, given an arbitrary collection of rejection sets { 8 ∶ 8 ∈ �} satisfying
Properties K1–K3, if every  8 is weakly Archimedean, then so is inf{ 8 ∶ 8 ∈ �}.

From this it follows that weak Archimedeanity is necessary for a coherent choice
function to be the infimum of lexicographic ones:

Corollary 2 Consider some two-dimensional vector space V with basis {�,)}. Any
infimum of lexicographic rejection functions on V is weakly Archimedean.

Next, we are going to establish that weak Archimedeanity is not only necessary,
but also sufficient, for a coherent choice function to be the infimum of a family
of lexicographic ones. We begin with an auxiliary result. It basically tells us that
whenever :1 + :2 < 1 and (:1, :2) ∉  then there is some (I, 1 − I) dominating
(:1, :2) such that (I − n, 1 − I − n) ∉  for all n in R>0.

Proposition 14 Consider any rejection set  that satisfies Properties K1–K3 and
that is weakly Archimedean, and consider any (:1, :2) in [0, 1)2 such that :1+:2 < 1
and (:1, :2) ∉  . Then c1(I) = 1 − I or c2(1 − I) = I for some I in [:1, 1 − :2].

Definition 12 Given a rejection set  that satisfies Properties K1–K4, we define
D′ ⊆ D̄L as D′ B ⋃{�G ∶ G ∈ [0, 1)}, where, for all G in (0, 1):

�G B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{�G} if (G, 1 − G) ∉  
{��G } if (G, 1 − G) ∈  , (∀n ∈ R>0)(G, 1 − G − n) ∉  

and (∀n ∈ R>0)(G − n, 1 − G) ∈  
{�)G } if (G, 1 − G) ∈  , (∀n ∈ R>0)(G, 1 − G − n) ∈  

and (∀n ∈ R>0)(G − n, 1 − G) ∉  
{��G , �

)
G } if (G, 1 − G) ∈  , (∀n ∈ R>0)(G, 1 − G − n) ∉  

and (∀n ∈ R>0)(G − n, 1 − G) ∉  

and
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�0 B

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{��0 } if (∀n ∈ R>0)(0, 1 − n) ∉  and (∃n ∈ R>0)(1 − n, 0) ∈  
{�)1 } if (∀n ∈ R>0)(1 − n, 0) ∉  and (∃n ∈ R>0)(0, 1 − n) ∈  
{��0 , �

)
1 } if (∀n ∈ R>0)(0, 1 − n) ∉  and (1 − n, 0) ∉  

∅ if (∃n ∈ R>0)(0, 1 − n) ∈  and (1 − n, 0) ∈  .

Using this collection of sets of desirable options, we define a coherent rejection
function inf{'� ∶ � ∈ D′}, whose rejection set we call  ′:

 ′ B ⋂
�∈D′

 '� = {(:1, :2) ∈ [0, 1)2
∶ 0 ∈ ⋂

�∈D′
'�({(:1−1, :1), 0, (:2, :2−1)})}.

Our next theorem shows that every rejection set that is weakly Archimedean,
and therefore every rejection function on a binary possibility space that is weakly
Archimedean, is an infimum of lexicographic choice functions.
Theorem 2 Given a rejection set  that satisfies Properties K1–K4 and that is
weakly Archimedean, we let D′ be the collection of lexicographic coherent set of
desirable options as in Definition 12 and  ′ the rejection set that corresponds to the
rejection function inf{'� ∶ � ∈ D′}. Then  ′ =  , and hence  is an infimum of
lexicographic rejection sets.

Wesee then that it isweakArchimedeanity, and not conditionR5 alone, that allows
us to characterise those coherent choice functions on binary possibility spaces that
are the infimum of lexicographic ones.

6 Discussion

There are several open problems deriving from this work. First and foremost, we
should extend our characterisation of the infimum of lexicographic choice functions
to higher-dimensional option spaces. One difficulty here is that a representation akin
to the one we have given in terms of rejection sets seems hard, because we will not
be able to reduce the choices to option sets of either two or three gambles, as we have
done here: it can be checked that, even in the case of a space of three elements, there
is no upper bound on the cardinality of the option sets characterising our choices
[10]. Another matter is that for general possibility spaces coherent sets of desirable
options may have much more complex structures than the ones in the binary case.
In particular, lexicographic sets of gambles will no longer be either maximal or
strictly desirable; while this provides us with some additional expressive power, it
also complicates the technical developments.

On the other hand, we would also like to combine our results with those in [21,
23, 24], by investigating the notion of indifference and the process of conditioning
with lexicographic choice functions. In particular, this should allow us to link our
work with that on conditioning lexicographic probabilities by Blume [3].

Finally, we should compare our work with the recent axiomatisation proposed
by De Bock & De Cooman [5] that, by including one extra rationality axiom, leads
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to a subfamily of coherent choice functions that are represented in terms of sets
of desirable gambles. This approach excludes (renders incoherent) choice functions
such as those in [20, Example 16]. In the binary case, we can deduce from our
results in this paper that the additional rationality axiom in [5] can be derived from
our notion of weak Archimedeanity; for more general spaces it has been established
in [4, Theorem 19] that convexity becomes sufficient and not only necessary for a
choice function that is coherent under their axiomatisation to be the infimum of a
family of lexicographic ones.
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Appendix: Proofs

Proof (of Proposition 1) It suffices to prove the direct implication. To this end,
consider any D1, . . . , D= in V and `1, . . . , `= in R>0, and assume that 0 ∈

'({0, D1, . . . , D=}). Let `∗ B min{`1, . . . , `=} ∈ R>0, � B {0, `1D1, . . . , `=D=}
and �′ B {0, `∗D1, . . . , `

∗D=}; we need to show that then 0 ∈ '(�). Using Ax-
iom R4a we infer that 0 ∈ '(�′), and using Axiom R3a also that 0 ∈ '(�1), with
�1 B � ∪ �′. Note that `∗D: ∈ CH({0, `:D:}) for every : in {1, . . . , =}, whence
� ⊆ �1 ⊆ CH(�). Therefore, by applying Axiom R5 we find indeed that 0 ∈ '(�).◻

Proof (of Proposition 2) ***Quique, this ismy try based on the proof of Proposition
25 from the thesis: *** We will first show that (i) implies (ii) and (iii). That (i)
implies (ii) follows immediately from Axiom R3b [with �̃ B '(�) ∖ {D}, �̃1 B
'(�) and �̃2 B �]. That (i) implies (iii) follows immediately from Axiom R3b
[with �̃ B {E}, �̃1 B {0, E} and �̃2 B �].

Wewill now assume that ' satisfies AxiomR3a and show that then (ii) implies (i).
To this end, consider any �, �1 and �2 in Q in and assume that � ⊆ �1 ⊆ '(�2).
Then in particular D ∈ '(�2), and therefore, using (ii), D ∈ '({D} ∪ �2 ∖ '(�2)),
for every D in �1 ∖ �. Applying Axiom R3a, we infer that D ∈ '(�2 ∖ �) for every
D in �1 ∖ �, whence indeed �1 ∖ � ⊆ '(�2 ∖ �).

To finish the proof, we will assume that ' additionally satisfies Axiom R4b,
and show that then (iii) implies (i). To this end, infer first that (iii) implies, using
Axiom R4b, that

(∀� ∈ Q)(∀D ∈ '(�))(∀E ∈ '(�) ∖ {D})D ∈ '(� ∖ {E}), (20)

which is easily seen once we realise that Axiom R4b implies that D ∈ '(�) is
equivalent to 0 ∈ '(� − {D}), for any � inQ and D in �. So assume that ' satisfies
Equation (20); we will prove that it satisfies Axiom R3b. Let � B {D1, . . . , D=},
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�1 B � ∪ {E1, . . . , E<} and �2 B �1 ∪ {F1, . . . , FA}, where = ∈ N and <, A ∈ Z≥0,
and assume that �1 ⊆ '(�2). Consider any 9 in {1, . . . , <}, thenwe have to prove that
E 9 ∈ '({E1, . . . , E<, F1, . . . , FA}) = '(�2 ∖ {D1, . . . , D=}). Since {D1, D2} ⊆ '(�2)
and {E 9 , D1} ⊆ '(�2), it follows from Equation (20) that {D2, E 9} ⊆ '(�2 ∖ {D1}),
whence, again using Equation (20), E 9 ∈ '(�2 ∖ {D1, D2}). Also, {D1, D3} ⊆ '(�2),
whence D3 ∈ '(�2 ∖ {D1}) using Equation (20). Since we already know that also
D2 ∈ '(�2 ∖ {D1}), we infer that D3 ∈ '(�2 ∖ {D1, D2}), again using Equation (20).
In turn, this implies that E 9 ∈ '(�2 ∖ {D1, D2, D3}). We can go on in this way until
we reach the desired statement, that E 9 ∈ '(�2 ∖{D1, . . . , D=}), after a finite number
of steps.

*** Quique, this is the old version of the proof: *** That (i) implies (ii) and (iii)
follows from Axiom R3b.

To prove that (ii) implies (i) underAxiomR3a, consider any �, �1 and �2 inQ and
assume that � ⊆ �1 ⊆ '(�2). Then, for every D in �1 ∖ �, in particular D ∈ '(�2),
and therefore, using (ii), D ∈ '({D} ∪ �2 ∖ '(�2)). Applying Axiom R3a, we infer
that D ∈ '(�2 ∖ �) for every D in �1 ∖ �, whence indeed �1 ∖ � ⊆ '(�2 ∖ �).

To see that (iii) implies (ii) when ' satisfies additionally Axiom R4b, note that
Axiom R4b implies that D ∈ '(�) is equivalent to 0 ∈ '(� − {D}), for any � in Q
and D in �. Applying then (iii) a finite number of times we deduce that it implies (ii),
which from the previous statement is equivalent to (i) under Axiom R3a. Quique,
I don’t see how we can apply this, because the option set for which will apply it
will change every time, doesn’t it? I think that it will every application be a smaller
option set. ◻

Proof (of Corollary 1) That the first statement implies the second is immediate. To
establish the converse, we will prove the contraposition. Assume that ' does not
satisfy Axiom R1. Therefore, we have that � = '(�) for some � in Q. Consider
any D in �, then by Proposition 2(ii) we find that D ∈ '({D} ∪ � ∖ '(�)) =

'({D} ∪ � ∖ �) = '({D}). By Axiom R4b therefore indeed 0 ∈ '({0}). ◻

Proof (of Lemma 1) If 0 = 0 then (0, 0) = (0, 0) ∉  by Property K2. Analogously,
if 0 = 1 then (1−0, 0) = (0, 0) ∉  by Property K2. Assume therefore that 0 ∈ (0, 1),
and assume ex absurdo that both (0, 0) and (1 − 0, 0) are elements of  . Use
Property K3b to infer that (0, 0) ∈  , which contradicts Property K2. ◻

Proof (of Proposition 7) We first prove that  ' satisfies Property K1. Consider any
(:1, :2) in  ' , and any (: ′1, :

′
2) in [0, 1)2 such that : ′1 ≥ :1 and : ′2 ≥ :2. Then

(:1, :2) ∈  ' simply means that 0 ∈ '({(:1 − 1, :1), 0, (:2, :2 − 1)}), and : ′1 ≥ :1
and : ′2 ≥ :2 implies that (: ′1 − 1, : ′1) ≥ (:1 − 1, :1) and (: ′2 − 1, : ′2) ≥ (:2 − 1, :2).
[22, Proposition 2] tells us that then 0 ∈ '({(: ′1 − 1, : ′1), 0, (:

′
2, :

′
2 − 1)}), whence

indeed (: ′1, :
′
2) ∈  ' .

To prove that  ' satisfies Property K2, assume ex absurdo that 0 ∈  ' ,
or equivalently, that 0 ∈ '({(−1, 0), 0, (0,−1)}). Since (−1, 0) < 0, we infer
from Axiom R2 that (−1, 0) ∈ '({(−1, 0), 0}), and therefore also that (−1, 0) ∈

'({(−1, 0), 0, (0,−1)}), by Axiom R3a. A similar argument leads from (0,−1) < 0
to (0,−1) ∈ '({(−1, 0), 0, (0,−1)}). This implies that {(−1, 0), 0, (0,−1)} =

'({(−1, 0), 0, (0,−1)}), which contradicts Axiom R1.
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Next, assume that ' satisfies Condition (2). To prove that  ' then satisfies
Property K3, we first prove that it satisfies Property K3a. Consider any 0, 1 and 2
in [0, 1) and assume that 2 < 0, 0 + 1 < 1, and that (1, 0) and (1 − 0, 2) belong to
 ' . We are going to prove that (1, H) ∈  ' for every H in (2, 1); the proof that also
(G, 2) ∈  ' for every G in (1, 1) is similar. Consider any _ in R>0, then Condition (2)
guarantees that 0 ∈ '({(1−1, 1), 0, _(0, 0−1)}) and 0 ∈ '({_(−0, 1−0), 0, (2, 2−
1)}). By Axiom R4b, we then find that −_(0, 0 − 1) ∈ '({(1 − _0 − 1, 1 − _0 +
_),−_(0, 0 − 1), 0}) and _(0, 0 − 1) ∈ '({0, _(0, 0 − 1), (2 + _0, 2 + _0 − _ − 1)}),
and applying Axiom R3a then leads to {−_(0, 0 − 1), _(0, 0 − 1)} ⊆ '({(1 − _0 −
1, 1 − _0 + _),−_(0, 0 − 1), 0, _(0, 0 − 1), (2 + _0, 2 + _0 − _ − 1)}). This, together
with Axiom R3a, implies that {−_(0, 0 − 1), 0, _(0, 0 − 1)} ⊆ '({(1 − _0 − 1, 1 −
_0 + _),−_(0, 0 − 1), 0, (2, 2 − 1), _(0, 0 − 1), (2 + _0, 2 + _0 − _ − 1)}). Applying
Axiom R3b implies that −_(0, 0 − 1) is included in '({(1 − _0 − 1, 1 − _0 +
_),−_(0, 0−1), (2, 2−1), (2+_0, 2+_0−_−1)}) and by Axiom R4b this implies
that 0 ∈ '({(1 − 1, 1), 0, (2 + _0, 2 + _0 − _ − 1), (2 + 2_0, 2 + 2_0 − 2_ − 1)}).
Let us call D B (2 + _0, 2 + _0 − _ − 1) and E B (2 + 2_0, 2 + 2_0 − 2_ − 1), and
`1 B

1
2+_0 and `2 B

1
2+2_0 ; these real numbers are both positive since 0 ≤ 2 < 0

and _ > 0. Then 0 ∈ '({(1 − 1, 1), 0, D, E}), and 0 ∈ '({(1 − 1, 1), 0, `1D, `2E}) by
Condition (2). But `1D < `2E since `1D = (1, 2+_0−_−1

2+_0 ) and `2E = (1, 2+2_0−2_−1
2+2_0 ),

and 2+_0−_−1
2+_0 < 2+2_0−2_−1

2+2_0 using the assumptions. Then `1D ∈ '({`1D, `2E}) by
Axiom R2, whence {0, `1D} ⊆ '({(1 − 1, 1), 0, `1D, `2E}) by Axiom R3a. Then
0 ∈ '({(1 − 1, 1), 0, `2E}) by Axiom R3b, and 0 ∈ '({(1 − 1, 1), 0, `3E}) by
Condition (2) with `3 =

1
2_+1 > 0, whence (1, 2+2_0

1+2_ ) ∈  ' . Now, by varying _ in
R>0 the number 2+2_0

1+2_ can take any value in the interval (2, 0). We conclude that
(1, H) ∈  ' for every H ∈ (2, 1), after also recalling that we have already proved that
 ' satisfies Property K1.

To prove that  ' satisfies Property K3b, assume that 0 ≤ 2 < 0 < 1, (0, 0) ∈  '
and (1 − 0, 2) ∈  ' . Because  ' already satisfies Property K3a [with in particular
1 B 0], we know that (G, 2) ∈  ' for every G in (0, 1) and (0, H) ∈  ' for every
H in (2, 1). We have to show that (0, 2) ∈  ' . To this end, consider the gambles
D B ( 1−2

2 −1, 1−2
2 ) and E B (2, 2−1). Because in particular (G, 2) ∈  ' for G = 1−2

2 ∈

(0, 1), we have that 0 ∈ '({D, 0, E}). Similarly, because in particular (0, H) ∈  '
for H = 1+2

2 ∈ (2, 1), we have that 0 ∈ '({(−1, 0), 0,−D}). Since also (−1, 0) ∈

'({(−1, 0), 0})—and therefore (−1, 0) ∈ '({(−1, 0), 0,−D}) by Axiom R3a—
because (−1, 0) < 0 and by Axiom R2, this leads us to conclude that {(−1, 0), 0} ⊆
'({(−1, 0), 0,−D}), and therefore also 0 ∈ '({0,−D}) by Axiom R3b. Hence,
D ∈ '({D, 0}), by Axiom R4b, and therefore D ∈ '({D, 0, E}), by Axiom R3a. Hence
{0, D} ⊆ '({D, 0, E}), so Axiom R3b leads to 0 ∈ '({0, E}). Now Axiom R3a
implies that indeed (0, 2) ∈  ' , so Property K3b is satisfied. Property K3c can be
shown to hold in a similar way.

To conclude, assume that ' satisfies Axiom R5. Since this implies that Con-
dition (2) holds by Proposition 1, we already know that Property K3 is sat-
isfied, so it only remains to prove that  ' satisfies Property K4. Consider
any (:1, :2) in [0, 1)2 such that :1 + :2 > 1. Then (

:1+:2−1
2 ,

:1+:2−1
2 ) > 0,
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whence 0 ∈ '({0, ( :1+:2−1
2 ,

:1+:2−1
2 )}) by Axiom R2. By Axiom R3a, we get

0 ∈ '({(:1 − 1, :1), 0, (:2, :2 − 1), ( :1+:2−1
2 ,

:1+:2−1
2 )}). Since (

:1+:2−1
2 ,

:1+:2−1
2 ) ∈

CH({(:1 − 1, :1), (:2, :2 − 1)}), Axiom R5 leads us to conclude that 0 ∈ '({(:1 −
1, :1), 0, (:2, :2 − 1)}), so indeed (:1, :2) ∈  ' . ◻

Proof (of Lemma 2) If Condition (7) holds, then {_1(:1 − 1, :1), (0,−1)} ⊆ � ∪

{(−1, 0), (0,−1)}, so Condition (11) holds with _2 B 1 and :2 B 0. Similarly, if
Condition (8) holds, then {(−1, 0), _2(:2, :2−1)} ⊆ �∪{(−1, 0), (0,−1)}, so Con-
dition (11) holds with _1 B 1 and :1 B 0. If Condition (9) holds, then Condition (11)
holds trivially.

Conversely, assume that Condition (11) holds. If both :1 ≠ 0 and :2 ≠ 0, then
Condition (9) holds trivially, so assume that either :1 = 0 or :2 = 0—they cannot
both be zero, because 0 ∉  . So assume that :1 = 0 and :2 > 0, then we infer from the
assumption that {_1(−1, 0), _2(:2, :2 − 1)} ⊆ � ∪ {(−1, 0), (0,−1)}. Since :2 > 0
implies that _2(:2, :2 − 1) ≠ (−1, 0) and _2(:2, :2 − 1) ≠ (0,−1) for any choice of
_2 > 0, it must be that _2(:2, :2 − 1) ∈ �, so Condition (8) holds. The case :2 = 0
and :1 > 0 is similar. ◻

Proof (of Proposition 8) For Axiom R2, consider any 5 and 6 in L such that 5 < 6.
Then 0 < 6 − 5 , so we infer from Condition (6) that 0 ∈ ' ({0, 6 − 5 }), and then
from Condition (10) that indeed 5 ∈ ' ({ 5 , 6}).

For Axiom R3a, assume that �1 ⊆ ' (�2) and �2 ⊆ �. Then we need to prove
that �1 ⊆ ' (�). Consider any 5 ∈ �1, then also 5 ∈ �2 and 5 ∈ �, so we can let
�′2 B �2−{ 5 } and �′ B �−{ 5 }, where �′2 ⊆ �

′. We then infer fromCondition (10)
that 0 ∈ ' (�′2), which means that at least one of the Conditions (6)–(9) holds. But
any of these conditions implies that also 0 ∈ ' (�′). Condition (10) then guarantees
that 5 ∈ ' (�) and therefore that, indeed, �1 ⊆ ' (�).

That Axioms R4a and R4b are satisfied follows from Conditions (6)–(10).
For Condition (2), consider any option set � = { 51, . . . , 5=} ∈ Q, where = is

a natural number, and any positive real numbers `1, . . . , `=. Assume that 0 ∈

' ({0} ∪ �). First of all, if 58 ∈ L>0 for some 8 in {1, . . . , =}, then also `8 58 ∈ L>0
since `8 > 0, whence indeed 0 ∈ ' ({0, `1 51, . . . , `= 5=}), by Condition (6). So
assume that 58 ∉ L>0 for all 8 in {1, . . . , =}. There are now only three possibilities.
The first is that there are _1 in R>0 and (:1, 0) in  such that _1(:1 − 1, :1) = 58
for some 8 in {1, . . . , =}. Then (_1`8)(:1 − 1, :1) = `8 58 ∈ {`1 51, . . . , `= 5=}, and
Condition (7) guarantees that indeed 0 ∈ ' ({0, `1 51, . . . , `= 5=}). The second
possibility is that there are _2 in R>0 and (0, :2) in  such that _2(:2, :2 − 1) = 5 9
for some 9 in {1, . . . , =}. Then (_2` 9)(:2, :2 − 1) = ` 9 5 9 ∈ {`1 51, . . . , `= 5=},
and Condition (8) guarantees that indeed 0 ∈ ' ({0, `1 51, . . . , `= 5=}). And the
final possibility is that there are _1 and _2 in R>0 and (:1, :2) in  ∩ (0, 1)2 such
that _1(:1 − 1, :1) = 58 and _2(:2, :2 − 1) = 5 9 for some 8 and 9 in {1, . . . , =}.
Then (_1`8)(:1 − 1, :1) = `8 58 and (_2` 9)(:2, :2 − 1) = ` 9 5 9 , and Condition (9)
guarantees that indeed 0 ∈ ' ({0, `1 51, . . . , `= 5=}).

Assume now that  satisfies in addition Properties K1–K3. We begin by proving
that ' satisfies Axiom R3b. Assume ex absurdo that it does not, then Proposition 2
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guarantees that there are � in Q and 6 in � ∖ {0} such that {0, 6} ⊆ ' (�) and
0 ∉ ' (� ∖ {6}).

Because 0 ∈ ' (�), we infer from Definition 8 and Lemma 2 that there are
two possibilities: (i) � ∩ L>0 ≠ ∅, or (ii) {_1(:1 − 1, :1), _2(:2, :2 − 1)} ⊆ � ∪

{(−1, 0), (0,−1)} for some _1 and _2 in R>0 and some (:1, :2) in  .
We first deal with case (i). Here we can assume without loss of generality that

�∩L>0 = {6} because, otherwise �∖{6}∩L>0 ≠ ∅ andwe could applyCondition (6)
to conclude that 0 ∈ ' (� ∖ {6}), a contradiction. We will use the notation 6 =

(G, H) > 0. Because also 6 ∈ ' (�), Condition (10) guarantees that 0 ∈ ' (�−{6}),
and a similar argument as before shows that there are now two possibilities: (i.a)
(� − {6}) ∩ L>0 ≠ ∅; and (i.b) {_3(:3 − 1, :3), _4(:4, :4 − 1)} ⊆ (� − {6}) ∪

{(−1, 0), (0,−1)} for some _3 and _4 in R>0 and some (:3, :4) in  . But in fact (i.a)
is impossible, because it would contradict our earlier conclusion that � ∩L>0 = {6}.
So we can restrict our attention to case (i.b) with (� − {6}) ∩ L>0 = ∅. There
are now 3 possibilities: (i.b.1) :3 ≠ 0 ≠ :4 corresponding to Condition (9), (i.b.2)
:3 = 0 ≠ :4 corresponding to Condition (8), and (i.b.3) :3 ≠ 0 = :4 corresponding
to Condition (7)—:3 = 0 = :4 is impossible because 0 ∉  . It is possible to show
that each of these three cases leads eventually to 0 ∈ ' (� ∖ {6}), a contradiction.

We now turn to case (ii), where we assume that � ∩ L>0 = ∅ and that there are
_1 and _2 in R>0 and (:1, :2) in  such that {_1(:1 − 1, :1), _2(:2, :2 − 1)} ⊆

� ∪ {(−1, 0), (0,−1)}. Here we distinguish between three possibilities: (ii.a) 6 ∉

{_1(:1−1, :1), _2(:2, :2−1)}, (ii.b) 6 = _1(:1−1, :1), and (ii.c) 6 = _2(:2, :2−1).
But we see at once that case (ii.a) is impossible, because it implies by Condi-

tion (11) that 0 ∈ ' (� ∖ {6}), a contradiction. So we now concentrate on the
cases (ii.b) and (ii.c), where it is by the way obvious that indeed � ∩L>0 = ∅.

We begin with the discussion of case (ii.b). We first of all claim that now :1 > 0.
Indeed, if :1 = 0 then (:1, :2) = (0, :2) ∈  , and Property K2 implies that :2 > 0.
Since we know that in this case _2(:2, :2 − 1) ∈ � ∖ {6} [since 6 = _1(:1 − 1, :1) ≠
_2(:2, :2 − 1)], Condition (8) guarantees that 0 ∈ ' (� ∖ {6}), a contradiction.

So we may assume that :1 > 0, and the assumption that 6 ∈ ' (�), or in
other words, that 0 ∈ ' (� − {6}), leaves us with two possibilities: that (ii.b.1)
(� − {6})∩L>0 ≠ ∅, or that (ii.b.2) {_3(:3 − 1, :3), _4(:4, :4 − 1)} ⊆ (� − {6})∪

{(−1, 0), (0,−1)} for some _3 and _4 in R>0 and (:3, :4) in  .
For case (ii.b.1), there is some ℎ B (G′, H′) > 0 such that 5 B 6 + ℎ ∈ �. Since

the second component _1:1 + H
′ of 5 is positive and 5 ∉ L>0, we find that 5 must lie

in the second quadrant, and therefore its first component _1:1 − _1 + G
′ is negative:

_1:1 < _1−G
′ and therefore _∗3 B _1−G

′+ H′ > 0. If we now let :∗3 B
_1:1+H′
_1−G′+H′ , then

5 = _∗3(:
∗
3 −1, :∗3 ). Moreover, :∗3 < 1 because this is equivalent to _1:1−_1+G

′ < 0,
which we have already found to be true. Similarly, :∗3 ≥ :1 because this is equivalent
to G′:1 + H

′(1− :1) ≥ 0. Then (:∗3 , :2) ∈  because (:1, :2) ∈  and  is increasing
[Property K1]. Since we now know that {_∗3(:

∗
3 − 1, :∗3 ), _2(:2, :2 − 1)} ⊆ � ∖ {6},

Condition (9) guarantees that 0 ∈ ' (� ∖ {6}), a contradiction.
For case (ii.b.2), {6 + _3(:3 − 1, :3), 6 + _4(:4, :4 − 1)} ⊆ � ∪ {6 + (−1, 0), 6 +

(0,−1)}, or in other words, {(_1:1 + _3:3 − _1 − _3, _1:1 + _3:3), (_1:1 + _4:4 −
_1, _1:1 + _4:4 − _4)} ⊆ � ∪ {6 + (−1, 0), 6 + (0,−1)} We claim that here :3 < :1.
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To prove this, assume ex absurdo that :3 ≥ :1, then also :∗3 B
_1:1+_3:3
_1+_3

≥ :1 > 0.
Moreover, :∗3 < 1 because it is a convex combination of :1 < 1 and :3 < 1, and
therefore (:∗3 , :2) ∈ [0, 1)2∖{0} and (:∗3 , :2) ≥ (:1, :2). Then (:∗3 , :2) ∈  because
(:1, :2) ∈  and  is increasing [Property K1]. Moreover, if we also let _∗3 B
_1+_3 > 0, then _∗3(:

∗
3 −1, :∗3 ) = 6+_3(:3−1, :3) ∈ � ∪{6+(−1, 0), 6+(0,−1)},

and since we know that _3(:3 − 1, :3) ∉ {(−1, 0), 0, (0,−1)} [because _3 > 0 and
:3 ≥ :1 > 0], this leads us to conclude that {_∗3(:

∗
3 −1, :∗3 ), _2(:2, :2−1)} ⊆ �∖{6},

so Condition (9) together with (:∗3 , :2) ∈  guarantees that 0 ∈ ' (� ∖ {6}), a
contradiction.

Since :3 < :1 rules out the possibility that :1 = 0, we find that :1 > 0 as an
intermediate result. In the remainder of this case (ii.b), note that nothing depends on
whether :2 = 0 or :2 > 0.We can now distinguish between three distinct possibilities:
(ii.b.2.1) :3 > 0 and :4 > 0, (ii.b.2.2) :3 = 0 and :4 > 0, and (ii.b.2.3) :3 > 0 and
:4 = 0, which correspond to Conditions (9), (8) and (7), respectively—:3 = 0 = :4
is impossible because 0 ∉  .

In case (ii.b.2.1)we see that {_3(:3−1, :3), _4(:4, :4−1)}∩{(−1, 0), 0, (0,−1)} =
∅, and therefore {(_1:1+_3:3−_1−_3, _1:1+_3:3), (_1:1+_4:4−_1, _1:1+_4:4−
_4)} ⊆ � ∖ {6}. We distinguish between two possibilities, which will determine in
what quadrants these points lie: _4 ≤ _1 and _4 > _1.

If _4 ≤ _1, then we establish, reasoning ex absurdo, that :4 ≤ 1 − :1. Once we
have this, because  is increasing [Property K1], we infer from (:3, :4) ∈  that
(:3, 1 − :1) ∈  . We distinguish between two further possibilities: :1 + :2 < 1 and
:1 + :2 ≥ 1.

If :1 + :2 < 1 then we can use Property K3a with 0 = 1 − :1, 1 = :3 and 2 = :2.
Observe that 0 + 1 = 1 − :1 + :3 < 1 because :3 < :1, that 2 = :2 < 1 − :1 = 0

by assumption, that (1, 0) = (:3, 1 − :1) ∈  has been proved above, and that
(1 − 0, 2) = (:1, :2) ∈  also by assumption, whence (∀: ′3 ∈ (:3, 1))(: ′3, :2) ∈  .
In particular, let : ′3 B

_1:1+_3:3
_1+_3

. Then : ′3 > min{:1, :3} = :3 > 0, where the
first inequality follows from _1 > 0 and _3 > 0, and the equality from :3 < :1.
Moreover, : ′3 < 1 because it is a convex combination of :1 < 1 and :3 < 1. Hence
: ′3 ∈ (:3, 1) and therefore (: ′3, :2) ∈  . If we now let _′3 B _1 + _3 > 0, then we see
that _′3(:

′
3 − 1, : ′3) = (_1:1 + _3:3 − _1 − _3, _1:1 + _3:3) ∈ � ∖ {6}, whence also

{_′3(:
′
3 − 1, : ′3), _2(:2, :2 − 1)} ⊆ � ∖ {6}, and Condition (9) now guarantees that

0 ∈ ' (� ∖ {6}), a contradiction.
If :1 + :2 ≥ 1 then we have that :2 ≥ 1 − :1 ≥ :4. Also :∗3 B

_1:1+_3:3
_1+_3

>

min{:1, :3} = :3 > 0, where the first inequality follows from _1 > 0 and _3 > 0,
and the equality from :1 > :3. Moreover, :∗3 < 1 because it is a convex combination
of :1 < 1 and :3 < 1. This tells us that (:∗3 , :2) ∈ [0, 1)2 ∖ {0} and (:∗3 , :2) >

(:3, 1 − :1). We then find that (:∗3 , :2) ∈  because (:3, 1 − :1) ∈  and  

is increasing [Property K1]. If we now let _∗3 B _1 + _3 > 0 then we find that
_∗3(:

∗
3 − 1, :∗3 ) = (_1:1 +_3:3 −_1 −_3, _1:1 +_3:3) ∈ � ∖ {0}, and therefore also

{_∗3(:
∗
3 − 1, :∗3 ), _2(:2, :2 − 1)} ⊆ � ∖ {6}, and Condition (9) now guarantees that

0 ∈ ' (� ∖ {6}), a contradiction.
If _4 > _1, thenwe establish, again reasoning ex absurdo, that :4 ≤ 1−:1. Oncewe

have this, using that  is increasing, we infer from (:3, :4) ∈  that (:3, 1− :1) ∈  .
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We now have the same two possibilities :1 + :2 < 1 and :1 + :2 ≥ 1 as before, and
for each of them, we can construct a contradiction in exactly the same way as for the
case when _4 ≤ _1.

This shows that we always arrive at a contradiction in case (ii.b.2.1).
In case (ii.b.2.2) we see that _4(:4, :4 − 1) ∉ {(−1, 0), 0, (0,−1)}, and therefore

(_1:1 + _4:4 − _1, _1:1 + _4:4 − _4) ∈ � ∖ {6}. We distinguish between two possi-
bilities, which will determine in what quadrant this point lies: _4 ≤ _1 or _4 > _1.

If _4 ≤ _1, then we claim that :4 ≤ 1 − :1. To prove this, assume ex absurdo that
:4 > 1− :1, so :1+ :4−1 > 0. If _1 = _4, then (_1:1+_4:4−_1, _1:1+_4:4−_4) =
_1(:1+:4−1, :1+:4−1) > 0, a contradiction, sowemay assume that_4 < _1.We now
wonder in what quadrant the vector (_1:1+_4:4−_1, _1:1+_4:4−_4) ≠ 0 lies. We
infer from :1 > 0,_1 > _4 > 0 and :1+:4 > 1 that_1:1+_4:4−_4 > _4(:1+:4)−_4 >
0. Since � ∩ L>0 = ∅, we find that (_1:1 + _4:4 − _1, _1:1 + _4:4 − _4) must lie
in the second quadrant, and therefore its first component _1:1 + _4:4 − _1 must be
negative: _1:1 + _4:4 < _1. This tells us that :∗4 B

_1:1+_4:4−_4
_1−_4

< 1. Moreover,
:∗4 > :1 because this is equivalent to :4 > 1 − :1. Hence (:∗4 , :2) ∈ [0, 1)2 ∖ 0
and (:∗4 , :2) > (:1, :2). This tells us that (:∗4 , :2) ∈  because (:1, :2) ∈  and
 is increasing [Property K1]. If we now let _∗4 B _1 − _4 > 0, then we see that
_∗4(:

∗
4 − 1, :∗4 ) = (_1:1 + _4:4 − _1, _1:1 + _4:4 − _4) ∈ � ∖ {6}. Hence also

{_∗4(:
∗
4 − 1, :∗4 ), _2(:2, :2 − 1)} ⊆ � ∖ {6}, and Condition (9) now guarantees that

0 ∈ ' (� ∖ {6}), a contradiction.
So we see that 0 < :4 ≤ 1 − :1 < 1, so (0, 1 − :1) ∈ [0, 1)2 ∖ {0} and (0, 1 −

:1) ≥ (0, :4) and hence, because  is increasing [Property K1], we infer from
(0, :4) = (:3, :4) ∈  that also (0, 1 − :1) ∈  . We distinguish between two further
possibilities: :1 + :2 < 1 and :1 + :2 ≥ 1.

If :1 + :2 < 1 then we can use Property K3b with 0 = 1 − :1 and 2 = :2. Observe
that 2 = :2 < 1 − :1 = 0 by assumption, that (0, 0) = (0, 1 − :1) ∈  was derived
above, and that (1 − 0, 2) = (:1, :2) ∈  also by assumption, and therefore we find
that (0, :2) ∈  . Since _2(:2, :2 − 1) ∈ � ∖ {6}, Condition (8) now guarantees that
0 ∈ ' (� ∖ {6}), a contradiction.

If :1 + :2 ≥ 1 then we have that :2 ≥ 1 − :1 ≥ :4. Then (0, :2) ∈  because
(0, :4) ∈  and  is increasing [Property K1]. Since _2(:2, :2 − 1) ∈ � ∖ {6},
Condition (8) now guarantees that 0 ∈ ' (� ∖ {6}), a contradiction.

If _4 > _1, then we claim that, here too, :4 ≤ 1 − :1. To prove this, assume
ex absurdo that :4 > 1 − :1. We wonder in what quadrant the vector (_1:1 +
_4:4 − _1, _1:1 + _4:4 − _4) lies. Infer from 0 < 1 − :1 < :4 and 0 < _1 < _4 that
_1:1 + _4:4 − _1 > _1(:1 + :4) − _1 > 0. Since � ∩L>0 = ∅, we find that the vector
(_1:1 + _4:4 − _1, _1:1 + _4:4 − _4) must lie in the fourth quadrant, and therefore
its second component _1:1 + _4:4 − _4 must be negative: _1:1 + _4:4 < _4. This
tells us that :∗4 B

_1:1+_4:4−_1
_4−_1

< 1. Moreover, :∗4 > :4 because this is equivalent
to :4 > 1 − :1. Hence (0, :∗4 ) ∈ [0, 1)2 ∖ {0} and (0, :∗4 ) > (0, :4). This tells us
that (0, :∗4 ) ∈  because (0, :4) ∈  and  is increasing [Property K1]. If we now
let _∗4 B _4 − _1 > 0, then we see that _∗4(:

∗
4 , :

∗
4 − 1) = (_1:1 + _4:4 − _1, _1:1 +

_4:4 − _4) ∈ � ∖ {6}, and Condition (8) now guarantees that 0 ∈ ' (� ∖ {6}), a
contradiction.
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So we see that 0 < :4 ≤ 1 − :1 < 0, and hence, because  is increasing, we infer
from (:3, :4) ∈  that (:3, 1 − :1) ∈  . We now have the same two possibilities
:1 + :2 < 1 and :1 + :2 ≥ 1 as before, and for each of them, we can construct a
contradiction in exactly the same way as for the case when _4 ≤ _1.

We conclude that case (ii.b.2.2) always leads to a contradiction.
In case (ii.b.2.3) we see that _3(:3 − 1, :3) ∉ {(−1, 0), 0, (0,−1)}, and therefore

(_1:1 + _3:3 − _1 − _3, _1:1 + _3:3) ∈ � ∖ {6}, or if we let _∗3 B _1 + _3 > 0 and
:∗3 B

_1:1+_3:3
_1+_3

> 0, _∗3(:
∗
3 −1, :∗3 ) ∈ � ∖{6}. Observe that also :∗3 < 1 because it is

a convex combination of :1 < 1 and :3 < 1. This tells us that (:∗3 , 0) ∈ [0, 1)2 ∖ {0}.
Moreover, we have that :∗3 > min{:1, :3} = :3 > 0 [the strict inequality holds
because _1 > 0 and _3 > 0, and the equality holds because :1 > :3. Hence (:∗3 , 0) >
(:3, 0) and therefore (:∗3 , 0) ∈  , because also (:3, 0) ∈  and  is increasing
[Property K1]. Since _∗3(:

∗
3 − 1, :∗3 ) ∈ � ∖ {6}, Condition (7) now guarantees that

0 ∈ ' (� ∖ {6}), a contradiction.
We have now found a contradiction in cases (ii.b.2.1)–(ii.b.2.3), which tells us

that case (ii.b.2) always leads to a contradiction. Since case (ii.b.1) also led to a
contradiction, we may conclude that case (ii.b) always leads to a contradiction.

The discussion of the last remaining case (ii.c) is completely similar to that of
case (ii.b): we can distinguish between similar cases, and in each of them we can
construct a contradiction in the same manner, by exchanging the roles of :1 and :2,
and of :3 and :4.

Since we have now arrived at a contradiction in all possible cases, we conclude
that ' indeed satisfies Axiom R3b.

We finish the proof by establishing that ' also satisfies Axiom R1. Since we
have already shown that ' satisfies Axiom R4b [see Proposition 8] and Axiom R3b
[see the argumentation above], by Corollary 1 it suffices to show that 0 ∉ ' ({0}).
By Condition (5), this is indeed the case. ◻

Proof (of Lemma 3) We only prove the first equivalence; the proofs for the second
and the third equivalences are analogous. It suffices to establish the direct implication,
since the converse follows from Axiom R3a.

Call _: B 5:()) − 5:(�) > 0 and ℓ: B 5:() )
5:() )− 5:(�) ∈ [0, 1) for every : in

{1, . . . , <}, and _′: B 6:(�) − 6:()) > 0 and ℓ′: B
6:(�)

6:(�)−6:() ) ∈ [0, 1) for
every : in {1, . . . , =}. Then 0 ∈ '({0, 51, . . . , 5<, 61, . . . , 6=}) ⇔ 0 ∈ '({0, (ℓ1 −
1, ℓ1), . . . , (ℓ< −1, ℓ<), (ℓ′1, ℓ

′
1 −1), . . . , (ℓ′=, ℓ′= −1)}), using Condition (2). Let I B

{: ∈ {1, . . . , <} ∶ ℓ: = ℓ8} and J B {: ∈ {1, . . . , =} ∶ ℓ′: = ℓ
′
9}. Then (ℓ: − 1, ℓ:) =

'({(ℓ8 − 1, ℓ8), (ℓ: − 1, ℓ:)}) by Axiom R2, and then also (ℓ: − 1, ℓ:) ∈ '({0, (ℓ1 −
1, ℓ1), . . . , (ℓ< − 1, ℓ<), (ℓ′1, ℓ

′
1 − 1), . . . , (ℓ′=, ℓ′= − 1)}) by Axiom R3a, for all : in

{1, . . . , <}∖I. In a similar way, we find that {0}∪{(ℓ:−1, ℓ:) ∶ : ∈ {1, . . . , <}∖I}∪

{(ℓ′:′ , ℓ
′
:′ − 1) ∶ : ′ ∈ {1, . . . , =} ∖J } ⊆ '({0, (ℓ1 − 1, ℓ1), . . . , (ℓ< − 1, ℓ<), (ℓ′1, ℓ

′
1 −

1), . . . , (ℓ′=, ℓ′= − 1)}). Then Axiom R3b implies that 0 ∈ '({0} ∪ {(ℓ: − 1, ℓ:) ∶ : ∈
I} ∪ {(ℓ′:′ , ℓ

′
:′ − 1) ∶ : ′ ∈ J }) = '({0, (ℓ8 − 1, ℓ8), (ℓ′9 , ℓ′9 − 1)}), whence indeed

0 ∈ '({0, 58 , 6 9}), by Condition (2). ◻
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Proof (of Proposition 9) For the first statement, assume that ' is coherent and
satisfies Condition (2). Then we infer from Proposition 7 that  ' satisfies Proper-
ties K1–K3, and therefore Proposition 8 guarantees that ' ' is coherent and satisfies
Condition (2) as well. To prove that ' = ' ' , we consider any � in Q and 5 in �,
and show that 5 ∈ '(�)⇔ 5 ∈ ' ' (�). Since both ' and ' ' satisfy Axiom R4b
[Proposition 8], we can assume without loss of generality that 5 = 0.

For the direct implication, assume that 0 ∈ '(�). If �∩L>0 ≠ ∅ then 0 ∈ ' ' (�)

by Condition (6). If �∩L>0 = ∅ then 0 ∈ '(�) implies that 6(H) > 0 or 6(T) > 0 for
some 6 in �. If we use the notationVII∩� = {61, . . . , 6<} andVIV∩� = {6′1, . . . , 6

′
=}

with < and = in Z≥0, this tells us that max{=, <} > 0. Also, we may assume without
loss of generality that � ∩ L<0 = ∅. By Lemma 3 we infer that there are three
possibilities:

(i) 0 ∈ '({0, 6̃, 6̃′}), and hence 0 ∈ '({0, ℎ, ℎ′});
(ii) 0 ∈ '({0, 6̃}), and hence 0 ∈ '({0, ℎ});
(iii) 0 ∈ '({0, 6̃′}), and hence 0 ∈ '({0, ℎ′});
where we let, to ease the notation, ℎ B 1

6̃(T)−6̃(H) 6̃ and ℎ
′ B 1

6̃′(H)−6̃′(T) 6̃
′. For each

of these possible cases, we find respectively:
(i) (ℎ(T), ℎ′(H)) ∈  ' , which tells us that 0 ∈ ' ' ({0, 6̃, 6̃′});
(ii) (ℎ(T), 0) ∈  ' , from which we infer that 0 ∈ ' ' ({0, 6̃}) by Condition (8);
(iii) (0, ℎ′(H)) ∈  ' , from which we infer that 0 ∈ ' ' ({0, 6̃′}) by Condition (7).
In all three cases we can now conclude that, indeed, 0 ∈ ' ' (�), by Axiom R3a.

For the converse implication, assume that 0 ∈ ' ' (�). If � ∩ L>0 ≠ ∅, then
0 ∈ '(�) by Axioms R2 and R3a, so assume that � ∩ L>0 = ∅. If Condition (7)
holds, then there is some :1 in (0, 1) and some _1 in R>0 such that (:1, 0) ∈  ' and
_1(:1 − 1, :1) ∈ �. The first statement means that 0 ∈ '({(:1 − 1, :1), 0, (0,−1)}),
whence, after applying a familiar combination of Axioms R2, R3a and R3b, also 0 ∈

'({(:1−1, :1), 0}). Applying Condition (2), the second statement, and Axiom R3a
now leads us to deduce that indeed 0 ∈ '(�).

The remaining possibility is that either Condition (8) or Condition (9) holds. The
proof in this case is similar. This concludes the proof of the first statement.

For the second statement, assume that  satisfies Properties K1–K3, then we infer
from Proposition 8 that ' is coherent and satisfies Condition (2). Proposition 7
then guarantees that  ' satisfies Properties K1–K3 as well. To show that  =  ' ,
consider any (ℓ1, ℓ2) in [0, 1)2 ∖ {0}. First assume that (ℓ1, ℓ2) ∈  ' , meaning
that 0 ∈ ' ({(ℓ1 − 1, ℓ1), 0, (ℓ2, ℓ2 − 1)}), by the definition of a rejection set of a
rejection function. We have to prove that this implies that (ℓ1, ℓ2) ∈  . The definition
of ' [Definition 8] now tells us that Condition (6), Condition (7), Condition (8),
or Condition (9) must obtain, with � B {(ℓ1 − 1, ℓ1), (ℓ2, ℓ2 − 1)}. Since (ℓ1, ℓ2) ∈
[0, 1)2 ∖ {0}, we infer that Condition (6) cannot be fulfilled, and we therefore have
three remaining: (a) Condition (7), (b) Condition (8), or (c) Condition (9) is satisfied.

In case (a) there are _1 in R>0 and (:1, 0) in  such that _1(:1 − 1, :1) ∈ �.
But, because � = {(ℓ1 −1, ℓ1), (ℓ2, ℓ2 −1)} with (ℓ1, ℓ2) ∈ [0, 1)2 ∖{0}, this implies
that _1 = 1 and :1 = ℓ1. This guarantees that (ℓ1, 0) ∈  and, since  is increasing
[Property K1], indeed also that (ℓ1, ℓ2) ∈  . The proof in cases (b) and (c) is similar.
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Conversely, assume that (ℓ1, ℓ2) ∈  , then Condition (11) guarantees that in
particular 0 ∈ ' ({(ℓ1 −1, ℓ1), 0, (ℓ2, ℓ2 −1)}), which implies that (ℓ1, ℓ2) ∈  ' .◻

Proof (of Lemma 4) Visual proof: see the three possible situations depicted below.

�

)
1

1
:1
:2

:1 + :2 > 1

�

)
1

1
:1
:2

:1 + :2 = 1

�

)
1

1:1:2

:1 + :2 < 1 ◻

Proof (of Proposition 10) We first prove that (i)⇒(ii). Assume that ' satisfies
Axiom R5, and consider any (:1, :2) in [0, 1)2 ∖ {0} such that :1 + :2 > 1. It
then follows that (:1, :2) ∈ (0, 1)2, and also that ( :1+:2−1

2 ,
:1+:2−1

2 ) > 0, whence
0 ∈ ' ({0, ( :1+:2−1

2 ,
:1+:2−1

2 )}) by Condition (6). By Proposition 8, ' satisfies
AxiomR3a, whence 0 ∈ ' ({(:1−1, :1), 0, (:2, :2−1), ( :1+:2−1

2 ,
:1+:2−1

2 )}). Also,
(
:1+:2−1

2 ,
:1+:2−1

2 ) ∈ CH({(:1 − 1, :1), (:2, :2 − 1)}). But then Axiom R5 implies
that 0 ∈ ' ({(:1 − 1, :1), 0, (:2, :2 − 1)}), whence indeed (:1, :2) ∈  .

Next, we prove that (ii)⇒(i). Consider arbitrary � and �1 in Q such that � ⊆

�1 ⊆ CH(�), and let us show that ' (�1)∩ � ⊆ ' (�). Let � B { 51, . . . , 5=} and
�1 B �∪{ 5=+1, . . . , 5=+:} for some = and : inN. Assume that 58 ∈ ' (�1) for some
8 in {1, . . . , =}. We then have to prove that 58 ∈ ' (�). We can assume without loss
of generality that 58 = 0, because also �−{ 58} ⊆ �1−{ 58} ⊆ CH(�)−{ 58} = CH(�−

{ 58}). To ease the notation along, let ℓ: B 5:(T)
5:(T)− 5:(H) and _: B 5:(T) − 5:(H)

for every : such that 5: ∈ VII [there might be no such :] and verify that _: > 0
and 5: = _:(ℓ: − 1, ℓ:) for every gamble 5: in � ∩ VII. Similarly, for every : in
{1, . . . , =} such that 5: ∈ VIV [there might be no such :], let ℓ: B 5:(H)

5:(H)− 5:(T) and
_: B 5:(H) − 5:(T); then _: > 0 and 5: = _:(ℓ: , ℓ: − 1) for every gamble 5: in
� ∩ VIV.

First of all, we see that � ∩ L>0 ≠ ∅ implies that indeed 0 ∈ ' (�), by Condi-
tion (6). We may therefore in the remainder of this proof assume that � ∩L>0 = ∅.
Next, we observe that CH(�) ∩ L>0 ≠ ∅ also implies that 0 ∈ ' (�). This can be
proven ex absurdo by observing that it implies that � ∩VII ≠ ∅ and � ∩VIV ≠ ∅ and
applying suitably condition (ii).

Now, since we have assumed that 58 = 0 ∈ ' (�1), Definition 8 tells us that there
are four possibilities: one of the four Conditions (6)–(9) must hold for �1.

Condition (6) for �1 amounts to �1 ∩L>0 ≠ ∅, contradicting our assumption that
CH(�) ∩L>0 = ∅, because �1 ⊆ CH(�).

If Condition (9) holds for �1, then {_∗1(:
∗
1 − 1, :∗1 ), _

∗
2(:

∗
2 , :

∗
2 − 1)} ⊆ �1 for

some _∗1 and _∗2 in R>0 and (:∗1 , :
∗
2 ) in  ∩ (0, 1)2. Let ℎ1 B _∗1(:

∗
1 − 1, :∗1 ) and

ℎ2 B _∗2(:
∗
2 , :

∗
2 − 1). Then � ∩ VII ≠ ∅ and � ∩ VIV ≠ ∅ , so we may assume again

without loss of generality that 51 is a gamble in arg max{ ℎ(T)
ℎ(T)−ℎ(H) ∶ ℎ ∈ � ∩ VII}
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and that 52 is a gamble in arg max{ ℎ(H)
ℎ(H)−ℎ(T) ∶ ℎ ∈ � ∩ VIV}. Since we have

assumed that CH(�) ∩ L>0 = ∅, we see that CH({ℎ1, 0, ℎ2}) ∩ L>0 = ∅—and
therefore also posi({ℎ1, 0, ℎ2})∩L>0 = ∅—whence, by Equation (12), :∗1 + :

∗
2 ≤ 1.

If (:∗1 , :
∗
2 ) = (ℓ: , ℓ<) for some : and< in {1, . . . , =} such that 5: ∈ VII and 5< ∈ VIV,

then 0 ∈ ' (�) by Condition (9). If this is not the case, then we distinguish between
three possibilities: (i) :∗1 ≠ ℓ: for all : in {1, . . . , =} such that 5: ∈ VII and :∗2 = ℓ<
for some < in {1, . . . , =} such that 5< ∈ VIV, (ii) :∗1 = ℓ: for some : in {1, . . . , =}
such that 5: ∈ VII and :∗2 ≠ ℓ< for all < in {1, . . . , =} such that 5< ∈ VIV, and (iii)
:∗1 ≠ ℓ: for all : in {1, . . . , =} such that 5: ∈ VII and :∗2 ≠ ℓ< for all < in {1, . . . , =}
such that 5< ∈ VIV.

In case (i), we already find that _(:∗2 , :
∗
2 − 1) ∈ � for some _ in R>0. If :∗1 ≤ ℓ1,

then (:∗1 , :
∗
2 ) ∈  implies that (ℓ1, :

∗
2 ) ∈  because  is increasing. Since we know

that 51 = _1(ℓ1 − 1, ℓ1) ∈ �, this guarantees that 0 ∈ ' (�), by Condition (9). If
:∗1 > ℓ1, then we claim that necessarily also ℓ1 + ℓ2 > 1, and therefore (ℓ1, ℓ2) ∈  by
Property K4, so indeed 0 ∈ ' (�) by Condition (9). To see that ℓ1 + ℓ2 > 1, assume
ex absurdo that (a) ℓ1 + ℓ2 < 1 or (b) ℓ1 + ℓ2 = 1; it is not difficult to show that both
these cases lead to a contradiction.

In case (ii), a completely similar argument leads us to conclude that 0 ∈ ' (�)

here as well.
In case (iii) there are, again, three possibilities: (U) :∗1 < ℓ1 and :∗2 < ℓ2, so

(ℓ1, ℓ2) ∈  because  is increasing, and therefore 0 ∈ ' (�) by Condition (9);
(V) :∗1 > ℓ1 and :∗2 < ℓ2, and its symmetric counterpart :∗1 < ℓ1 and :∗2 > ℓ2; and
(W) :∗1 > ℓ1 and :∗2 > ℓ2, and therefore ℓ1 + ℓ2 < :∗1 + :

∗
2 ≤ 1, so ℓ1 + ℓ2 < 1 and

Lemma 4 guarantees that ℎ1 ∉ posi({ 51, 0, 52}) = posi(�), and therefore a fortiori
ℎ1 ∉ CH(�), a contradiction. It therefore suffices to consider case (V), and show
that :∗1 > ℓ1 and :∗2 < ℓ2 implies that 0 ∈ ' (�), since the case that :∗1 < ℓ1 and
:∗2 > ℓ2 can be covered by a completely symmetrical argument. So assume that
:∗1 > ℓ1 and :∗2 < ℓ2. Since ℎ1 ∈ CH(�) ⊆ posi(�), Lemma 4 and :∗1 > ℓ1 guarantee
that necessarily ℓ1 + ℓ2 > 1, so (ℓ1, ℓ2) ∈  by Property K4, and therefore once again
0 ∈ ' (�), by Condition (9).

The proof when Conditions (8) or (7) hold is similar to that for Condition (9). ◻

Proof (of Proposition 11) We will prove that c1 is non-increasing; the proof that c2
is non-increasing is completely analogous. Assume ex absurdo that c1(I

′) > c1(I)
for some I and I′ in [0, 1) such that I′ > I. Then, by the definition of c1, we have (∀H ∈
(c1(I), 1))(I, H) ∈  . Because is increasing, we find (∀H ∈ (c1(I), 1))(I′, H) ∈  ,
and hence in particular (∀H ∈ (c1(I), c1(I

′)))(I′, H) ∈  , a contradiction.
Consider now I ∈ (0, 1). Let us prove the first statement; the proof of the second

one is completely analogous. Recall that (I, H) ∈  for all H in (c1(I), 1), by the
definition of c1. Call X B 1 − I − c1(I) > 0. Since  is increasing, we infer that for
all n in (0, X), (I, 1− I− n) ∈  . On the other hand, by definition of c1 it follows that
(I + n, H′) ∈  for all n in (0, X) and H′ in (c1(I + n), 1). We call 1 = I, 0 = 1− I − n
and 2 = H′. Note that 0 + 1 = 1 − I − n + I < 1 and 2 = H′ < 1 − I − n = 0 for any H′ in
(c1(I + n), 1 − I − n) ⊆ (c1(I + n), 1). To see that c1(I + n) < 1 − I − n , assume ex
absurdo that c1(I+ n) ≥ 1− I− n , then c1(I) ≥ 1− I− n by the first statement, indeed
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a contradiction with the fact that n < X. We use Property K3 to infer that (I, H′) ∈  
for all H in (c1(I + n), 1) and n in (0, X). Infer that c1(I) ≤ c1(I + n), and since c1
is non-increasing by the first part, we conclude that c1(I) = c1(I + n), for all n in
(0, X). Therefore, c1(I) = c1(C) for all C in (I, 1 − c1(I)). ◻

Proof (of Proposition 12) We first prove necessity. Assume that ' is such that  ' is
weakly Archimedean, and consider any D in VII and E in VIV such that posi({D, E})∩
V⪰0 = ∅, and 0 ∈ '({D + n, 0, E}) and 0 ∈ '({D, 0, E + n}) for all n in R>0. Then,
due to Proposition 1, we find that ∀n ∈ R>0, 0 ∈ '({(:1 −1, :1)+ n, 0, (:2, :2 −1)})
and 0 ∈ '({(:1 − 1, :1), 0, (:2, :2 − 1) + n}) for :1 ∶=

D() )−D(�)
D() ) ∈ (0, 1) and

:2 ∶=
E(�)−E() )

E(�) ∈ (0, 1). In particular, we find that ∀: ′1 ∈ (:1, 1), : ′2 ∈ (:2, 1),
0 ∈ '({(: ′1−1, : ′1), 0, (:2, :2−1)} and 0 ∈ '({(:1−1, :1), 0, (: ′2, :

′
2−1)})), whence

(: ′1, :2) ∈  ' and (:1, :
′
2) ∈  ' for all : ′1 in (:1, 1) and : ′2 in (:2, 1), byDefinition 7.

Also, it can be checked that :1 + :2 < 1. The weak Archimedeanity of  ' implies
that (:1, :2) ∈  ' by Definition 10, whence 0 ∈ '({(:1 − 1, :1), 0, (:2, :2 − 1)}).
In turn, that implies by Proposition 1 that 0 ∈ '({D, 0, E}).

We now turn to sufficiency. Assume that ' satisfies Equation (19) and consider
any (:1, :2) in (0, 1)2 such that :1 + :2 < 1 and (: ′1, :2) ∈  ' and (:1, :

′
2) ∈  '

for all : ′1 in (:1, 1) and : ′2 in (:2, 1). Then ∀: ′1 ∈ (:1, 1), : ′2 ∈ (:2, 1), 0 ∈ '({(: ′1 −
1, : ′1), 0, (:2, :2 −1)}) and 0 ∈ '({(:1 −1, :1), 0, (: ′2, :

′
2 −1)}), whence ∀n ∈ R>0,

0 ∈ '({(:1−1, :1)+n, 0, (:2, :2−1)}) and 0 ∈ '({(:1−1, :1), 0, (:2, :2−1)+n})
by [22, Proposition 2]. Clearly, (:1 − 1, :1) ∈ VII and (:2, :2 − 1) ∈ VIV. Due to
Equation (12), posi({(:1−1, :1), (:2, :2−1)})∩V⪰0 = ∅. Then, usingEquation (19),
we find that 0 ∈ '({(:1 − 1, :1), 0, (:2, :2 − 1)}), or in other words, that (:1, :2) ∈
 ' . ◻

Proof (of Proposition 13) From the correspondence between weak Archimedeanity
for rejection functions and rejection sets (Proposition 12) as well as Proposition 9, it
suffices to establish the result for rejection sets. Recalling that in that case the infima
of the rejection sets corresponds to their intersection, we deduce from the definition
that if  8 is weakly Archimedean for every 8 in �, also inf{ 8 ∶ 8 ∈ �} is weakly
Archimedean. ◻

Proof (of Corollary 2) Taking into account Proposition 13, it suffices to show that
any lexicographic rejection function is weakly Archimedean. Assume ex absurdo
that this is not the case for some rejection function ' on V . By Proposition 12,
this means that its associated rejection set  ' is not weakly Archimedean. Thus,
there are D in VII and E in VIV such that posi({D, E}) ∩ V⪰0 = ∅ and ∀n ∈ R>0,
(0 ∈ '({D + n, 0, E}) ∩ '({D, 0, E + n})) while 0 ∉ '({D, 0, E}). Let �' be the
lexicographic set of desirable options associated with '. It follows that D ∉ �'
and E ∉ �' , and as a consequence that D + n ∈ �' and E + n ∈ �' for every
n in R>0. If we denote by %�' the linear prevision induced by �' , given by
%�' ( 5 ) B sup{` ∶ 5 − ` ∈ �'}, it follows that %�' (D) = %�' (E) = 0. Since
by assumption D ∈ VII and E ∈ VIV, it follows that there must be some U in (0, 1) such
that UD+(1−U)E = 0, a contradiction with the assumption posi({D, E})∩V⪰0 = ∅.◻
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Proof (of Proposition 14) Assume ex absurdo that c1(I) ≠ 1− I and c2(1− I) ≠ I,
and hence c1(I) < 1 − I and c2(1 − I) < I, for all I in [:1, 1 − :2]. Then we use
Proposition 11 to infer that in particular c1(:1) = c1(C) for all C in (:1, 1− c1(:1)).
There are two possibilities: (i) c1(:1) > :2 or (ii) c1(:1) ≤ :2.

If (i) c1(:1) > :2 we look at c1(1 − c1(:1)). By the definition of c1,
we find (1 − c1(:1), H) ∈  for all H in (c1(1 − c1(:1)), 1). Moreover, since
c1(:1) ∈ [0, 1 − :1] by the definition of c1, we find that c1(:1) ∈ (:2, 1 − :1]
and hence 1 − c1(:1) ∈ [:1, 1 − :2). By the assumption that c1(I) < 1 − I

for all I in [:1, 1 − :2], we find that c1(1 − c1(:1)) < c1(:1). We also look
at c2(c1(:1)). By the definition of c2, we find (G, c1(:1)) ∈  for all G in
(c2(c1(:1), 1)). By the assumption that c2(1 − I) < I for all I in [:1, 1 − :2],
we find that c2(c1(:1)) < 1 − c1(:1). Call 0 = c1(:1), 1 = G and 2 = H for G
in (c2(c1(:1)), 1) and H in (c1(1 − c1(:1)), 1). Use Property K3 to infer that
(G, H′) ∈  and (G′, H) ∈  for all G greater than but close enough to c2(c1(:1)),
H greater than but close enough to c1(1 − c1(:1)), G′ in (G, 1) and H′ in (H, 1).
Hence by weak Archimedeanity (G, H) ∈  for all G in (c2(c1(:1)), 1) and H in
(c1(1 − c1(:1)), 1). Now, take G = c2(c1(:1))+1−c1(:1)

2 and H = c1(1−c1(:1))+c1(:1)
2

to infer that (
c2(c1(:1))+1−c1(:1)

2 ,
c1(1−c1(:1))+c1(:1)

2 ) ∈  , and take any C in
(
c2(c1(:1))+1−c1(:1)

2 , 1 − c1(:1)) and infer that c1(C) ≤ c1(
c2(c1(:1))+1−c1(:1)

2 ) <

c1(:1). That is a contradiction with the assumption that c1(C) = c1(:1) for all C in
(:1, 1 − c1(:1)).

So we may assume that (ii) c1(:1) ≤ :2 is the case. Infer that then (:1, H) ∈  
for all H in (:2, 1) by the definition of c1. Using a similar argument, we can infer
that (G, :2) ∈  for all G in (:1, 1). We use now the assumption that  is weakly
Archimedean (Definition 10) to infer that (:1, :2) ∈  , a contradiction. ◻

Proof (of Theorem 2) We first show that  ⊆  ′. Consider any (:1, :2) in [0, 1)2

such that (:1, :2) ∉  
′. Then there must be some �′ inD′ such that 0 ∉ '�′({(:1 −

1, :1), 0, (:2, :2 − 1)}). There are a number of possibilities:
- If �′ = �G for some G in (0, 1), then (G, 1 − G) ∉  , :1 ≤ G and :2 ≤ 1 − G by
Equation (13), whence also (:1, :2) ∉  , taking into account that  is increasing.

- If �′ = ��G for some G in (0, 1), then (G, 1 − G) ∈  by Equation (14), (∀n ∈

R>0)(G, 1 − G − n) ∉  , :1 ≤ G and :2 < 1 − G. This means that there is some G
in [:1, 1 − :2) such that (G, 1 − G) ∈  and (∀n ∈ R>0)(G, 1 − G − n) ∉  , whence
((∃G ∈ [:1, 1 − :2))((G, 1 − G − 1−:2−G

2 ) = (G,
1−G+:2

2 ) ∉  ))⇒ (:1, :2) ∉  .
- If �′ = �)G , we follow a similar reasoning to conclude that (:1, :2) ∉  .
- If �′ = ��0 , then :1 = 0, and (∀n ∈ R>0)(0, 1 − n) ∉  , and therefore (:1, :2) =
(0, :2) ∉  .

- Finaly, if �′ = �)1 , we follow a reasoning similar to that in the previous point and
derive that (:1, :2) = (:1, 0) ∉  .
We now turn to showing  ′ ⊆  . Consider any (:1, :2) in [0, 1)2 such that

(:1, :2) ∉  . By Proposition 7, :1+:2 ≤ 1. There are two possibilities: either (i) :1+
:2 = 1 or (ii) :1+:2 < 1. If (i) :1+:2 = 1 then :1 in (0, 1) and hence�:1 ∈ D

′ because
(:1, 1 − :1) = (:1, :2) ∉  . Then infer 0 ∉ '�:1

({(:1 − 1, :1), 0, (:2, :2 − 1)}) by
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Equation (13), whence 0 ∉ ⋂�∈D′ '�({(:1 − 1, :1), 0, (:2, :2 − 1)}) and hence
(:1, :2) ∉  

′. So we may assume that (ii) :1 + :2 < 1. We now use Proposition 14
to infer that c1(I) = 1 − I or c2(1 − I) = I for some I in [:1, 1 − :2]. There are four
possible cases: (a) c1(:1) = 1 − :1; (b) c2(:2) = 1 − :2; (c) c1(I) = 1 − I for some
I in (:1, 1 − :2); and (d) c2(1 − I) = I for some I in (:1, 1 − :2). In any of them it
is not difficult to prove that (:1, :2) ∉  

′. ◻
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