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Abstract I discuss a stochastic model of language learning and change. During a syn-

tactic change, each speaker makes use of constructions from two different idealized

grammars at variable rates. The model incorporates regularization in that speakers

have a slight preference for using the dominant idealized grammar. It also includes

incrementation: The population is divided into two interacting generations. Children

can detect correlations between age and speech. They then predict where the popu-

lation’s language is moving and speak according to that prediction, which represents

a social force encouraging children not to sound out-dated. Both regularization and

incrementation turn out to be necessary for spontaneous language change to occur on

a reasonable time scale and run to completion monotonically. Chance correlation be-

tween age and speech may be amplified by these social forces, eventually leading to a

syntactic change through prediction-driven instability.

Keywords language variation · language change · incrementation · mathematical

model · social structure · prediction-driven instability

1 Introduction

Languages change, and although many measurements of change and statistical models

thereof have been studied, the underlying forces and mechanisms are not well un-

derstood. In this article, based on a presentation at the Mathematics of Language

conference of 2007, I will formulate and discuss a mathematical model of language

change driven by the fundamental forces of regularization and incrementation together

with natural variation of speech and random fluctuations.

By an idealized grammar, I mean a formalism that specifies a spoken form for each

meaning, perhaps conditioned on the context of the conversation (Adger 2003; Radford

2004; Tesar and Smolensky 2000). The probably almost correct family of model learning

algorithms operate on a discrete space of idealized grammars and the learner ultimately

chooses a single one for its speech (Briscoe 2000, 2002; Gibson and Wexler 1994; Gold

1967; Kirby 2001; Komarova et al 2001; Mitchener 2003; Mitchener and Nowak 2003,
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2004; Mitchener 2007; Niyogi 1998; Niyogi and Berwick 1996, 1997; Nowak et al 2001,

2002; Tesar and Smolensky 2000). However, there is considerable variation present in

natural speech that this approach does not capture (Labov 1994, 2001; Kroch 1989).

The speech pattern of an individual can be better described by a stochastic grammar,

that is, a collection of similar idealized grammars, each of which is used to form a

fraction of the speaker’s utterances. That fraction will be called the usage rate of the

idealized grammar.

Let us suppose that individuals have the choice between two similar idealized gram-

mars, G1 and G2, when forming sentences, and that each individual has particular fixed

usage rates, that is he uses G2 in forming a fraction of spoken sentences, and G1 in

forming the rest. As a specific example, consider the syntax of questions in Late Mid-

dle and Early Modern English. We take G1 to be idealized English grammar with

verb-raising syntax, and G2 to be a similar grammar but with do-support:

(1) Know you what time it is? (verb-raising, Middle English, G1)

(2) Do you know what time it is? (do-support, Modern English, G2)

In a well-studied corpus of late Middle and early Modern English, each manuscript

uses a combination of verb-raising syntax and do-support (Elleg̊ard 1953; Kroch 1989;

Warner 2005). In light of the manuscript and sociolinguistic data, it is clear that lan-

guage acquisition requires more than selecting a single idealized grammar compatible

with the primary linguistic data. Instead, children must learn multiple idealized gram-

mars, plus the usage rates. Since verb-raising and do-support both exhibit stability

over a certain time scale, we should seek a model of learning within a population that

has two stable states, one representing populations that prefer G1 and a second rep-

resenting populations that prefer G2. To represent a language change from G1 to G2,

the model must be able to switch from one stable state to the other over large time

scales, while remaining steady over short time scales.

Chance fluctuations in such variation might be enough to trigger a language change,

but they are not sufficient to cause it to run to completion. If children learned and used

the population-wide average usage rate perfectly, every mixture of idealized grammars

would be marginally stable. The average usage rate might drift at random but will

show no definite tendency to drive one variant or the other to extinction. Such stable

variation does seem to occur for some grammatical features, such as the choices of

object syntax for certain ditransitive verbs in English (Bresnan and Nikitina 2007). For

variation that does eventually settle, the population must experience regularization, in

which children prefer to use one favorite variant of those in use. Psycholinguistic studies

show that this is a general property of child language acquisition, and that in contrast,

adults are more likely to use all the available variants at approximately the usage

rates they hear (Hudson Kam and Newport 2005). Regularization causes populations

to tend to extreme states where some variants go extinct. It accounts for the fact that

languages have many features that are well described as regular rules plus their few

exceptions.

An additional force is required to cause changes to be monotonic and to run to

completion within a reasonable time. Historical studies show that language changes

typically do not reverse themselves partway through (Kroch 1989; Yang 2002) (but

see (Warner 2005) for some evidence to the contrary). This means that learners must

be able to identify the idealized grammars present in their population’s language,

estimate their usage rates, and determine which variants are becoming obsolete. Some
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sort of collective momentum or memory is required, and the resulting force is known

as incrementation: children can detect and advance changes in progress. As a specific

example, Labov (1994, 2001) discusses observations of vowel shifts that show striking

gender and age correlations. Labov concludes that very young females initially match

their caregiver’s speech, but eventually begin shifting at an approximately constant

rate for several years, presumably due to increased contact with speakers outside their

immediate family (Labov 2001, Chap. 14). A girl entering the shifting phase somehow

identifies the correct direction and amplifies partially completed shifts. It is conceivable

that all shifts have an innately specified direction, but Labov concludes that although

some directions are more likely than others, no directions of vowel shifting are forbidden

(Labov 1994, p. 116). Rather than relying on an innate direction, is plausible that

children discover the direction by comparing the speech patterns of people of different

ages, for example, peers and caregivers. Under some circumstances, there appear to be

social forces driving children to avoid sounding conformist or out-dated; Labov (2001,

p. 383) characterizes some leaders of sound changes as distinctly non-conformist in

their attitudes and speech.

Based on these observations, I will assume that children can detect age-correlated

variation in speech patterns and target their speech to where they predict the popu-

lation will eventually be. Furthermore, I will assume that this process is not limited

to phonetics, and that usage rates of idealized grammars can be detected as well. In-

crementation can be simulated in an age-structured population model by including a

prediction step in the acquisition process that uses information about speech patterns

detected in two generations. Regularization is incorporated by distorting usage rates

in favor of the dominant idealized grammar. The result is a mathematical model that

can exhibit ongoing spontaneous language changes: random fluctuations generate an

accidental correlations between age and speech, which causes children to infer that the

population is experiencing a language change and to amplify it. This process, which I

will call prediction-driven instability, pushes the population away from one stable state

toward another.

2 Learning with regularization and incrementation

Initially, we might consider an infinitely large unstructured population, in which chil-

dren learn from all individuals equally and therefore hear essentially the mean usage

rate. The simplest dynamic model with the desired bi-stability is a differential equation

for the time-dependent mean usage rate m(t) of G2 in the population,

ṁ = q(m) −m (3)

where the learning function q(m) is the mean usage rate of children learning from a

population that uses G2 with a mean rate m. The usage rate of G1 is 1−m(t), so there

is no need for a separate variable for it. The q(m) term represents birth and learning,

and the −m term represents death. The term mean field refers to the fact that the

population’s influence on an individual is represented by a single aggregate property,

in this case, the mean usage rate of G2. If q is the identity function, then children learn

the exact mean usage rate of the entire population and no change is possible. Every

mixture is stable, and there is no tendency to favor one of the idealized grammars at
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Fig. 1 The regularizing learning function q(m)

Fig. 2 Phase portrait for (3)

the expense the other. If instead q is a sigmoid, for example

q(m) = m− 2

„
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«„
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16
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z − 31

32

«
(4)

as shown in Figure 1, then the dynamics of (3) consist of two stable fixed points

separated by an unstable fixed point, as in Figure 2. This learning function generates bi-

stability, however, there is no way for a population to spontaneously switch grammars

in this model. Even the addition of random noise to (3) can produce spontaneous

change only on astronomically long time scales.

To incorporate incrementation, some age information must be available. Assume

that there are two age groups, roughly representing youth and their parents, and that

children can detect systematic differences in their speech. Assume further that there are

social forces leading children to avoid sounding out-dated. Rather than a single mean

usage rate m, assume that children hear the younger generation use G2 at a rate v,

and the older generation use a rate w. Based on v and w and any trend those numbers

indicate, they predict a rate that their generation should use, and learn based on that

predicted target value. Thus, the prediction should be given by a function r(v, w) that

satisfies

v < w implies r(v, w) < v, and

v > w implies r(v, w) > v.
(5)
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Fig. 3 The prediction function r(v, w)

That is, if youth are less likely on average to use G2 than parents, the prediction is that

future generations will use it even less frequently. If youth are more likely on average to

use G2, then future generations will use it even more frequently. We will use a specific

prediction function with these properties defined by finding points (t1, w) and (t2, v)

on the graph of an exponential sigmoid σ(t) = 1/(1 + e−t). Then t0 = t2 + 3(t2 − t0)

and r(v, w) = σ(t0). See Figure 3.

To add the possibility of spontaneous language change, we formulate the model as a

Markov chain rather than a deterministic differential equation. The population consists

of N youth and N parents, each of which is one of K + 1 types, numbered 0 to K,

where type j means that the individual uses G2 at a rate j/K. These states represent

a set of possible stochastic grammars formed by combining two idealized grammars.

Examples in this article will use K = 5 and N = 500.

To represent the population at time t, define Vj(t) to be the number of youth of

type j, and define Wj(t) to be the number of parents of type j. We assume that apart

from age, children make no distinction among individuals. Thus, they learn essentially

from the mean usage rates of the two generations,

MV (t) =

KX
j=0

„
j

K

«„
Vj(t)

NV

«

MW (t) =

KX
j=0

„
j

K

«„
Wj(t)

NW

« (6)

The transition process from (V (t),W (t)) to (V (t + 1),W (t + 1)) is as follows; see

Figure 4. Each adult is examined, and dies with probability pD. A replacement indi-

vidual is selected according to the distribution of youth to simulate aging. Similarly,

each youth is removed with probability pD to simulate aging, and is replaced by a

new youth whose state is drawn from a discrete probability vector Q2(MV (t),MW (t)).

The vector Q2(v, w) is defined to be a binomial distribution over the K + 1 possible

states with mean q(r(v, w)). Thus Q2(v, w) represents the acquisition process, includ-

ing regularization and incrementation. The lifetime of an individual follows a geometric

distribution with mean of 2/pD time steps, half in each generation. The replacement

parameter is set to pD = 1/20 for a mean life span of 40 steps.
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Fig. 4 Diagram of the transition function for the age-structured Markov chain

This model turns out to exhibit the desired properties. The population can spon-

taneously change from one language to the other and back within a reasonable amount

of time, and once initiated the change runs to completion without turning back. See

Figure 5 for a graph of the mean usage rate of G2 among the younger age group as a

function of time for a typical run of this Markov chain.

To understand geometrically why spontaneous change happens in this model, we

approximate the Markov chain by a system of deterministic differential equations gov-

erning the mean usage rates v and w of the two generations,

v̇ = q(r(v, w)) − v

ẇ = v − w
(7)

The phase space of this dynamical system is a square, and it happens to have two

stable equilibria representing populations where both generations are dominated by

one grammar or the other. Each such equilibrium has a basin of attraction. Populations

in the basin flow toward the equilibrium and settle there. The boundary between the

two basins is called the separatrix, and in this case, the separatrix passes very close to

the stable equilibria. See Figure 6. The population hovers near one equilibrium or the

other, but due to random fluctuations, it is possible for the population state to stray

across the separatrix, where it will be blown toward the other equilibrium.

3 Change among more than two options

Language changes frequently involve several features of grammar that interact. The

age-structured Markov chain model can be extended to any number of interacting
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Fig. 5 Trajectory of the mean usage rate MV (t) of G2 in the young generation from a sample
path of the age-structured Markov chain; left: the path from time 50 to 90, showing several
changes between G1 (low) and G2 (high); right: the path from time 66 to 72, showing a single
grammar change

Fig. 6 Phase portrait for (7); dots: stable equilibria; dashed curve: the separatrix between their
basins of attraction; right: phase portrait with sample trajectory in the presence of random
fluctuations

parameters. This section treats the case of two binary parameters, so there are up to

four possible grammars. The type of each individual must now be represented as a

pair (j1, j2) which means that the individual sets parameter 1 with probability j1/K

and sets parameter 2 with probability j2/K. The element Qj1,j2(m1,m2) of the joint

learning distribution indicates the probability that a child with target mean usage rates

m1 and m2 for the two parameters grows up to be of type (j1, j2). To incorporate

prediction, let MV 1(t) and MW1(t) be the mean usage rates of constructions with

parameter 1 set by youth and parents respectively at time t, and let MV 2(t) and

MW2(t) be the mean usage rates of constructions with parameter 2 set by youth and

parents respectively at time t. Using the prediction function r(v, w), children for time

step t+1 are drawn from the distribution Q(r(MV 1(t),MW1(t)), r(MV 2(t),MW2(t))).

For specific results, we must specify Q(m1,m2). The easiest case is for four idealized

grammars determined by two independent binary parameters. That is, children use the

same prediction and learning algorithm as in Section 2 to determine how often to set

parameter 1 based on the mean usage rates of parameter 1 among adults and youth, and
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Fig. 7 Learning distribution function Q(m1, m2) for two independent parameters, at four
values of (m1, m2). Darker coloring indicates higher probability.

similarly for parameter 2, with the assumption that the usage rate of each parameter

has no bearing on the learning or use of the other parameter.

Figure 7 illustrates a joint learning distribution Q(m1,m2) for four different pairs

(m1,m2). For each (m1,m2), Q(m1,m2) is a probability distribution over pairs of

integers, so it is represented as an array of colored squares. The joint mean learning

function is a product, q(m1,m2) = q(m1)q(m2) with the same q as above. The joint

distribution Q(m1,m2) is a product of independent binomial distributions with means

q(m1) and q(m2). Figure 8 shows a sample trajectory of the Markov chain, where

the mean speech pattern of the younger generation is plotted as a function of time.

The horizontal axis indicates the mean usage rate of idealized grammars with param-

eter 1 set, and the vertical axis indicates the rate for parameter 2. As time passes, the

population spontaneously switches to states dominated by each of the four idealized

grammars.

Alternatively, the parameters might be dependent. For example, a sentence cannot

use a verb-second construction (as in Old and Middle English) if it does not also use

verb raising.1 Children will not set parameter 2 (verb-second) if parameter 1 (verb

raising) is not set. A different learning distribution models this situation: Q(m1,m2) is

defined such that the marginal distribution for the usage rate of the first parameter is

binomial with mean q(m1), and the conditional distribution for the usage rate of the

1 It is conceivable that a language could combine verb-second with do-support and not have
verb raising. Something like this may be happening in modern Dutch (personal communication
with a native Dutch speaker). However, in Middle English the verb-second construction was
lost before verb raising, so we need not consider do-support at this point.
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Fig. 8 Sample trajectory for an age structured population learning two independent param-
eters, mean usage rates of parameters 1 and 2 among the young generation as a function of
time

second parameter given the first is binomial with mean q(m2) if the first parameter

is set and zero if it is not. See Figure 9, which shows Q for four different values of

(m1,m2).

A sample trajectory for two dependent parameters is plotted in Figure 10. The

population switches among states that prefer three of the four possible parameter

settings, but since the fourth results in an invalid grammar, the population never

prefers it. Also observe that the simulated population generally unsets parameter 2

before unsetting parameter 1. This is visible in Figure 10 in that the trajectory tends

to go down before it goes to the left. The simulation sometimes unsets both parameters

almost simultaneously, going down and left at the same time, but it never tries to

unset parameter 1 while parameter 2 is set, which would take it to the left across

the top. For reasons that are not clear, when the population prefers a grammar with

both parameters unset, it tends to set both parameters simultaneously rather than

sequentially. Thus, this example makes clear that dependence among parameters can

influence the order in which syntactic changes occur, and that several syntactic changes

can occur at the same time and reinforce each other.

4 Discussion and conclusion

We set out to build a mathematical model that can represent spontaneous language

change in a population. The model was required to have two semi-stable states, rep-

resenting populations dominated by one idealized grammar or another. To represent

language change on historical time scales, the model was required to hover near one

stable state on short time scales, but to spontaneously switch to the other after a rea-

sonable amount of time. Language is represented as a mixture of the idealized grammars

to reflect the variability of speech seen in manuscripts and social data.
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Fig. 9 Learning distribution function Q(m1, m2) for two dependent parameters, at four values
of (m1, m2); darker coloring indicates higher probability
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A Markov chain model that includes age structure, regularization, and incremen-

tation has all the desired properties. The population can switch spontaneously from

one language to the other and the transition is monotonic. Intuitively, the mechanism

of these spontaneous changes is that every so often, children pick up on an acciden-

tal correlation between age and speech. The prediction step in the acquisition process

amplifies the correlation, and moves the population away from equilibrium. I therefore

coin the term prediction-driven instability for this effect. The age-structured Markov

chain has reasonable behavior for languages consisting of mixtures of two idealized

grammars, and for mixtures of several idealized grammars specified by independent or

dependent parameter settings.

More detailed analysis of Markov chain models like the ones described in this

article are given in (Mitchener 2009b). A technical analysis of deterministic mean-field

population language dynamics with spatial effects is described in (Mitchener 2009a).

This research suggests that some social structure is necessary in a model so that it

may accurately represent the qualitative features of spontaneous language change. A

further project would be to fit the parameters of the age-structured Markov chain to

manuscript data and obtain quantitative results as well.
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