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ABSTRACT. Let ΩΩ be the semigroup of all mappings of a countably infinite set
Ω. If U and V are subsemigroups of ΩΩ, then we write U ≈ V if there exists a
finite subset F of ΩΩ such that the subsemigroup generated by U and F equals
that generated by V and F . The relative rank of U in ΩΩ is the least cardinality
of a subset A of ΩΩ such that the union of U and A generates ΩΩ. In this paper
we study the notions of relative rank and the equivalence ≈ for semigroups of
endomorphisms of binary relations on Ω.

The semigroups of endomorphisms of preorders, bipartite graphs, and toler-
ances on Ω are shown to lie in two equivalence classes under ≈. Moreover such
semigroups have relative rank 0, 1, 2, or d in ΩΩ where d is the minimum cardinal-
ity of a dominating family for NN. We give examples of preorders, bipartite graphs,
and tolerances on Ω where the relative ranks of their endomorphism semigroups
in ΩΩ are 0, 1, 2, and d.

We show that the endomorphism semigroups of graphs, in general, fall into at
least four classes under ≈ and that there exist graphs where the relative rank of
the endomorphism semigroup is 2ℵ0 .

1. INTRODUCTION

1.1. Background and Preliminaries. Bergman and Shelah [2] introduced the fol-
lowing preorder (i.e. reflexive and transitive binary relation) on the subsets of the
symmetric group Sym(Ω) on a countably infinite set Ω. If G and H are subsets of
Sym(Ω), then G 4 H if there exists a finite subset F of Sym(Ω) such that G is con-
tained in the subgroup generated byH∪F . Galvin [6] proved that every countable
set of permutations on Ω is contained in a 2-generated subgroup of Sym(Ω). Hence
if there exists a countable subset F such that G is contained in the subgroup gen-
erated by H ∪F , then G 4 H . The preorder4 gives rise to an equivalence relation
≈ on the subsets of Sym(Ω) defined by G ≈ H whenever G 4 H and H 4 G. In
[2] it was shown that the subgroups of Sym(Ω) that are closed in the topology of
pointwise convergence fall into four classes with respect to ≈. Furthermore, the
partial order on these four equivalence classes induced by 4 is a total order.

The situation for the semigroup ΩΩ of all mappings from Ω to Ω (the semigroup
theoretic analogue of Sym(Ω)) is somewhat different. Of course, it is straightfor-
ward to give a definition of 4 for ΩΩ: if U, V are subsets of ΩΩ, then U 4 V if
there exists a finite subset F of ΩΩ such that U is contained in the subsemigroup
generated by V ∪ F . Throughout the remainder of the paper we will denote the
subsemigroup generated by a subset U of ΩΩ by 〈 U 〉. Analogous to the theorem
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of Galvin mentioned above, a classical theorem of Sierpiński [12] states that every
countable set of mappings on Ω is contained in a 2-generated subsemigroup of
ΩΩ. Hence if U, V ⊆ ΩΩ such that U ⊆ 〈 V, F 〉 for some countable F ⊆ ΩΩ , then
U 4 V .

Mesyan [11] proved an analogue of Bergman and Shelah’s theorem for a re-
stricted collection of closed (again in the topology of pointwise convergence) sub-
semigroups of ΩΩ. Namely for subsemigroups U with the following properties
(throughout this article we will write functions on the right of their arguments
and compose them from left to right):

• if Σ ⊆ Ω is finite, then U ≈ { f ∈ U : σf = σ for all σ ∈ Σ }; and
• the set of functions in U that are injective on a cofinite subset of Ω are dense

in U .

Letting Ω = {α1, α2, . . .} and N = {1, 2, . . .}, Mesyan showed that such sub-
semigroups must be equivalent under ≈ to one of the following semigroups:

(i) the trivial semigroup {1Ω};
(ii) S1,α =

{
f ∈ ΩΩ : αf ∈ {α1, α} for all α ∈ Ω

}
;

(iii) S2 =
{
f ∈ ΩΩ : {α2n−1f, α2nf} ⊆ {α2n−1, α2n} for all n ∈ N

}
;

(iv) S≤ =
{
f ∈ ΩΩ : αnf ∈ {α1, α2, . . . , αn} for all n ∈ N

}
;

(v) the full transformation semigroup ΩΩ.

It was also shown that if F = { f ∈ ΩΩ : |Ωf | < ℵ0 }, then

{1Ω} ≺ F ≺ S1,α ≺ S2 ≺ S≤ ≺ ΩΩ

where ≺ denotes 4 but not ≈. Mesyan also proved that 4 contains an infinite
chain and at least two incomparable elements. However, there is no complete
characterisation of the closed subsemigroups of ΩΩ with respect to 4. It is not
even known how many equivalence classes there are on subsets of ΩΩ under ≈.

In this paper rather than considering all closed subsemigroups of ΩΩ we will
consider subsemigroups arising as the endomorphism semigroups of preorders,
graphs and tolerances (reflexive and symmetric binary relations). In the main the-
orems of this paper, we will prove that if S is the endomorphism semigroup of
a preorder, bipartite graph, or tolerance on Ω, then either S ≈ ΩΩ or S ≈ S≤.
Whether S ≈ ΩΩ or S ≈ S≤ depends on certain simple structural properties of the
underlying relation; further details can be found in Section 1.3.

The notion of ≈ among subsets of ΩΩ is related to that of relative rank. The
relative rank of a subset U of ΩΩ is defined to be the least cardinality of a set A such
that 〈 U,A 〉 = ΩΩ and is denoted by rank(ΩΩ : U). Relative ranks of subsets of ΩΩ

have been previously studied, for example, see [4], [5], or [9].
Using Sierpiński’s Theorem [12] it is straightforward to prove that rank(ΩΩ : U)

is 0, 1, 2 or uncountable for any U ⊆ ΩΩ. Moreover, it follows immediately from
the definitions that rank(ΩΩ : U) = 0, 1, 2 if and only if U ≈ ΩΩ. On the other
hand, if U, V ≤ ΩΩ with U 4 V and rank(ΩΩ : U) > ℵ0, then rank(ΩΩ : U) ≥
rank(ΩΩ : V ).

Assuming the Continuum Hypothesis holds the relative rank of any U in ΩΩ

is 0, 1, 2, or 2ℵ0 . However, if the Continuum Hypothesis is not assumed, then it is
natural to ask what values rank(ΩΩ : U) can have when it is uncountable.
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We will prove that if U and V are semigroups of endomorphisms of a pre-
order, bipartite graph, or tolerance, where rank(ΩΩ : U), rank(ΩΩ : V ) > ℵ0, then
rank(ΩΩ : U) = rank(ΩΩ : V ). We require the following well-known notion to
define the cardinal equalling any such relative ranks.

If Ω is well-ordered by ≤, then a function f ∈ ΩΩ is said to dominate g ∈ ΩΩ if
αf ≥ αg for allα ∈ Ω. The study of the notion of dominance and related ideas gave
rise to the following cardinal number, introduced by van Douwen. A dominating
family for ΩΩ is a subset F of ΩΩ such that for all f ∈ ΩΩ there exists g ∈ F where g
dominates f . Of course, whether a subset is a dominating family for ΩΩ depends
on the well-ordering of Ω, but the least cardinality of a dominating family does
not depend on the well-ordering. Thus we can define (without ambiguity) the
cardinal d to be the least cardinality of a dominating family for ΩΩ. The following
relations are not hard to obtain: ℵ1 ≤ d ≤ 2ℵ0 . If the Continuum Hypothesis holds,
then d = 2ℵ0 . However, without the Continuum Hypothesis, it is consistent with
the usual axioms of set theory (ZFC) that d = ℵ1 < 2ℵ0 = ℵ2 or ℵ1 < d = 2ℵ0 = ℵ2,
see [1].

1.2. Definitions and notation. As usual a binary relation R on a set Ω is just a
subset of Ω× Ω. Let Ω and Λ be sets, and R and S be binary relations on Ω and Λ,
respectively. Then a homomorphism from (Ω, R) to (Λ, S) is a function f : Ω −→ Λ
such that (αf, βf) ∈ S for all (α, β) ∈ R. A homomorphism is an isomorphism
if it is bijective and its inverse is also a homomorphism. An endomorphism is a
homomorphism from (Ω, R) to (Ω, R). An automorphism is an isomorphism from
(Ω, R) to (Ω, R). We denote the semigroup of endomorphisms on (Ω, R) under
composition of mappings by End(Ω, R). Let R ⊆ Ω× Ω and let Λ ⊆ Ω. We define
the subrelation of R induced by Λ to be R ∩ Λ× Λ.

A walk from α ∈ Ω to β ∈ Ω in (Ω, R) is a sequence of elements of Ω

α = γ0, γ1, γ2, . . . , γn = β

such that (γi, γi+1) ∈ R or (γi+1, γi) ∈ R for all i. We will say that such a walk
has length n. Two points are connected if there exists a walk from one to the other.
Being connected is an equivalence relation on Ω and the equivalence classes are
called the components of (Ω, R). We will say that (Ω, R) is connected if it only has
one component. If R is a binary relation on Ω, then a path in (Ω, R) is a walk in
which all points are distinct.

The degree of an element α ∈ Ω is the size of the set { β ∈ Ω : (α, β) ∈
R or (β, α) ∈ R }. We say that (Ω, R) is locally finite if all the elements of Ω have
finite degree.

A preorder is a reflexive and transitive binary relation. A partial order is a pre-
order that is also anti-symmetric. A set with a partial order is called a partially
ordered set or poset. A graph G = (Ω, E) is a set Ω together with a binary relation E
that is symmetric and irreflexive. If G is a graph, then for the sake of consistency
with the literature, we will call the elements of Ω the vertices of G, the elements
of E the edges of G, and a subrelation induced by a set will be referred to as the
subgraph induced by that set. Two vertices α, β ∈ Ω are adjacent if (α, β) ∈ E. A
graph G is bipartite if its vertices can be partitioned into two sets where adjacent
vertices lie in distinct sets. A binary relation is called a tolerance if it is reflexive
and symmetric.
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In what follows we will always, unless stated otherwise, assume that Ω is the
countably infinite set {α1, α2, . . .} and we will always assume that N = {1, 2, . . .}.

1.3. Overview. Let R be a preorder, bipartite graph, or tolerance. Then the main
theorems of this paper can be summarized as follows:

• if R has finitely many components and is locally finite, then End(Ω, R) ≈
S≤ and rank(ΩΩ : End(Ω, R)) = d;

• ifR has infinitely many components or is not locally finite, then End(Ω, R) ≈
ΩΩ and rank(ΩΩ : End(Ω, R)) ∈ {0, 1, 2};

see Theorems 2.3, 3.1, 4.4, 4.5, and 5.1.

The picture is more complicated for arbitrary non-bipartite graphs. In particu-
lar, there exist examples of graphs G where:

• G has infinitely many components, End(G) ≈ {1Ω} or End(G) ≈ S2, and
rank(ΩΩ : End(G)) = 2ℵ0 ;

• G has infinitely many components, End(G) ≈ S≤, and rank(ΩΩ : End(G)) =
d;

• G is connected and locally finite, End(G) ≈ {1Ω}, and rank(ΩΩ : End(G)) =
2ℵ0 ;

• G is connected and not locally finite, End(G) ≈ S≤, and rank(ΩΩ : End(G)) =
d;

see Examples 6.1, 6.2, and 6.3.
The following weaker version of the theorems regarding bipartite graphs hold

for an arbitrary graph G:

• if G has finitely many components and is locally finite, then End(G) 4 S≤;
• if all the components of G are finite, then one of the following holds:

End(G) ≈ {1Ω}, S1,α 4 End(G) 4 S≤, or End(G) ≈ ΩΩ;

see Theorems 2.4 and 4.3.

2. UNCOUNTABLE RANKS AND BINARY RELATIONS

The following theorem connects the notions of relative rank, domination, and
the preorder 4. We require the following notion for a subset F of ΩΩ. We say that
F is an almost disjoint family if for all f, g ∈ F there are only finitely many α ∈ Ω
such that αf = αg. It is reasonably straightforward to show that there exists an
almost disjoint family F in ΩΩ with |F | = 2ℵ0 ; see, for example, [10, Theorem 1.3].

Theorem 2.1. Let U be a subset of ΩΩ. If U ≈ S≤, then rank(ΩΩ : U) = d.
On the other hand, if U 4 S2, then rank(ΩΩ : U) = 2ℵ0 .

Proof. For a proof of the fact that rank(ΩΩ : S≤) = d see [5, Lemma 3.5].
We will show that rank(ΩΩ : S2) = 2ℵ0 . Let A be a subset of ΩΩ such that

〈 S2, A 〉 = ΩΩ. Seeking a contradiction assume that |A| < 2ℵ0 . Let (a1, a2, . . . , am)
be an m-tuple of elements of A. Then define

B(a1,a2,...,am) = { s0a1s1a2s2 . . . amsm : s0, s1, . . . , sm ∈ S2 }.
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The semigroup ΩΩ can be given as the union of the sets B(a1,a2,...,am) over all finite
tuples of elements of A.

Let F ⊆ ΩΩ be a family of almost disjoint functions of size 2ℵ0 . IfB(a1,a2,...,am)∩
F were finite for all (a1, a2, . . . , am), then |F | ≤ min{ℵ0, |A|}. But |F | = 2ℵ0 and so
there exists a tuple (b1, b2, . . . , bn) of elements from A such that B(b1,b2,...,bn) ∩ F is
infinite.

Define
Cα = { αh : h ∈ B(b1,b2,...,bn) }.

Then |Cα| ≤ 2n+1 for all α ∈ Ω by the definition of S2. Let N = 2n+1 and
f1, f2, . . . , fN+1 be distinct elements of B(b1,b2,...,bn) ∩ F . Then, since F is a fam-
ily of almost disjoint functions, there exists β ∈ Ω such that βf1, βf2, . . . , βfN+1

are distinct. But |Cβ | ≤ N , a contradiction. �

It is straightforward to classify those binary relations whose endomorphism
semigroups equal ΩΩ. The proof follows immediately from the definitions and is
omitted.

Lemma 2.2. Let Ω be an infinite set and let R be a binary relation on Ω. Then the relative
rank of End(Ω, R) in ΩΩ is 0 if and only ifR is one of ∅, Ω×Ω, or ∆Ω = {(α, α) : α ∈ Ω}.

In light of Lemma 2.2 we will assume throughout that R is a non-empty proper
subset of Ω× Ω not equal to ∆Ω = { (α, α) : α ∈ Ω }.

Theorem 2.3. Let R be a reflexive binary relation on Ω such that (Ω, R) has infinitely
many components. Then rank(ΩΩ : End(Ω, R)) ≤ 1 and so End(Ω, R) ≈ ΩΩ.

Proof. Recall that Ω = {α1, α2, . . .}. Let the components of (Ω, R) be L1, L2, . . . and
let γi ∈ Li be fixed for all i. Define g ∈ ΩΩ by αig = γi.

Let f ∈ ΩΩ be arbitrary. Let f̂ ∈ ΩΩ map all points in Li to αif for i = 1, 2, . . ..
Since R is reflexive, f̂ ∈ End(Ω, R). Then for all αi ∈ Ω we have αigf̂ = γif̂ = αif .
Thus f ∈ 〈 End(Ω, R), g 〉. Since f was chosen arbitrarily we conclude that ΩΩ =
〈 End(Ω, R), g 〉 and hence rank(ΩΩ : End(Ω, R)) ≤ 1. �

Theorem 2.4. Let R be a binary relation on Ω such that (Ω, R) has finitely many compo-
nents and is locally finite. Then End(Ω, R) 4 S≤ and hence rank(ΩΩ : End(Ω, R)) ≥ d.

We require the following result to prove Theorem 2.4. Let d : Ω× Ω −→ R be a
metric on Ω. A function f ∈ ΩΩ is Lipschitz if there exists a constant C ∈ N such
that d(αf, βf) ≤ Cd(α, β) for all α, β ∈ Ω. We may also say that f is Lipschitz with
constant C. Denote the semigroup of all Lipschitz functions on Ω by LΩ.

Proposition 2.5. [5, Theorem 3.1] Let Ω be a countably infinite set and let d be a metric
on Ω that is unbounded on every infinite subset of Ω. Then LΩ 4 S≤ and rank(ΩΩ :
LΩ) ≥ d.

Proof of Theorem 2.4. Let L1, L2, . . . , Ln be the components of R. To show that
End(Ω, R) 4 S≤ we define a metric on Ω and prove that End(Ω, R) ⊆ LΩ.

Let dLi
: Li×Li −→ N∪{0} be defined so that dLi

(α, β) is the minimal length of
a walk from α to β. It is straightforward to verify that dLi

is a metric on Li for all



6 J. D. MITCHELL, M. MORAYNE, Y. PÉRESSE, AND M. QUICK

i. We will now extend the metrics dLi
to a metric d on the entire set Ω. Let γi ∈ Li

be fixed. Then define d by

d(α, β) =

{
dLi

(α, β) if α, β ∈ Li
dLi

(α, γi) + dLj
(γj , β) + 1 if α ∈ Li and β ∈ Lj where i 6= j.

It can easily be seen that d is indeed a metric on Ω and that it is unbounded above
on every infinite subset.

We will now show that all functions in End(Ω, R) are Lipschitz with respect to
d. Let f ∈ End(Ω, R) be arbitrary and let M = max{ d(γi, γjf) : 1 ≤ i, j ≤ n }.
If α and β are in the same component Li, then αf, βf ∈ Lj for some j and since
f ∈ End(Ω, R) we have that

d(αf, βf) = dLj
(αf, βf) ≤ dLi

(α, β) = d(α, β).

Next, if α ∈ Li, β ∈ Lj with i 6= j, and αf ∈ Lk, βf ∈ Ll, then

d(αf, βf) ≤ d(αf, γif) + d(γif, γk) + d(γk, γl) + d(γl, γjf) + d(γjf, βf)

≤ dLk
(αf, γif) +M + 1 +M + dLl

(γjf, βf)

≤ dLi
(α, γi) +M + 1 +M + dLj

(γj , β)

= d(α, β) + 2M

≤ d(α, β) + 2Md(α, β) = (2M + 1)d(α, β).

Thus f is Lipschitz with constant 2M + 1. Therefore it follows from Theorem 2.5
that End(Ω, R) 4 S≤. �

3. PREORDERS

In this section we completely classify the endomorphisms of preorders v on Ω
with respect to4. Since preorders are reflexive, the case where (Ω,v) has infinitely
many components follows directly from Theorem 2.3. That is, if v is a preorder
on Ω such that (Ω,v) has infinitely many components, then End(Ω,v) ≈ ΩΩ and
rank(ΩΩ : End(Ω,v)) ≤ 1.

The case where v is a partial order was considered in [9]. It was shown that the
endomorphisms of a poset (Ω,v) have finite relative rank in ΩΩ precisely when
(Ω,v) is locally finite or (Ω,v) has infinitely many components. Here we will
show that this classification extends to preorders and show that the only infinite
value that can arise for rank(ΩΩ : End(Ω,v)) is d.

Theorem 3.1. Let v be a preorder on Ω such that (Ω,v) has finitely many components.

(i) If (Ω,v) is locally finite, then End(Ω,v) ≈ S≤ and rank(ΩΩ : End(Ω,v)) = d.
(ii) If (Ω,v) is not locally finite, then End(Ω,v) ≈ ΩΩ and rank(ΩΩ : End(Ω,v))
≤ 2.

It is natural to ask if the bound given in Theorem 3.1(ii) is the best possible. The
answer is yes: two examples of connected posets with rank(ΩΩ : End(Ω,v)) = 1
and 2, respectively, were given in [9].

To prove Theorem 3.1 we require the following four lemmas.



GENERATING SEMIGROUPS USING ENDOMORPHISMS 7

Lemma 3.2. Let R be a binary relation on Ω, let g ∈ End(Ω, R) be any endomorphism
with infinite image, let R′ be the subrelation of R induced by im(g), and let S be any rela-
tion on Ω such that (im(g), R′) is isomorphic to (Ω, S). Then End(Ω, R) < End(Ω, S).

Proof. Let Ψ : (im(g), R′) −→ (Ω, S) be an isomorphism. Then gΨ ∈ ΩΩ is a
surjective homomorphism from (Ω, R) to (Ω, S).

Let g ∈ ΩΩ be any function such that αg ∈ α(gΨ)−1 = { β ∈ Ω : βgΨ = α } for
all α ∈ Ω. Then ggΨ = 1Ω where 1Ω denotes the identity map on Ω. Likewise, if
Ψ∗ ∈ ΩΩ is an extension of Ψ, then Ψ−1Ψ∗ = 1Ω.

Let f ∈ End(Ω, S) be arbitrary. Then gΨfΨ−1 ∈ End(Ω, R). Thus

f = ggΨfΨ−1Ψ∗ ∈ 〈 End(Ω, R), g,Ψ∗ 〉.

Since f was arbitrary, End(Ω, S) ⊆ 〈 End(Ω, R), g,Ψ∗ 〉. �

Lemma 3.3. Let Ω = {α1, α2, . . .} and let

(i) R = { (αi, αi+1), (αi+1, αi) : i ∈ N };
(ii) S = { (α2i−1, α2i), (α2i+1, α2i) : i ∈ N }.

Then (Ω, R) is a graph with End(Ω, R) < S≤, and (Ω, S) is a poset with End(Ω, S) <
S≤.

Proof. It suffices to show that End(Ω, R) ∩ End(Ω, S) < S≤ . Let g ∈ ΩΩ be de-
fined by αng = αn(n−1)+1 for all n ∈ N and let h ∈ ΩΩ be any function such that
(α2n−1)h = αn for every n ∈ N.

Let f ∈ S≤ be arbitrary. We will define a function f̂ ∈ End(Ω, R)∩End(Ω, S) in
two steps so that f can be written as a product of f̂ , g, and h. The first step is to let
f̂ be defined on the elements of the form αn(n−1)+1 by

(αn(n−1)+1)f̂ = α2k−1

whenever αnf = αk.
The second step is to define f̂ on all the elements αm with indices in the range

n(n − 1) + 2 to n(n + 1). If αnf = αk and αn+1f = αl, then k ≤ n and l ≤ n + 1
since f ∈ S≤. It follows that the length of the path on (Ω, R) from α2k−1 to α2l−1

is an even number not greater than 2n. Hence there exists a walk

β0 = α2k−1, β1, . . . , β2n = α2l−1

of length 2n. The definition of f̂ is completed by setting

(αn(n−1)+1+i)f̂ = βi

for all i ∈ {1, 2, . . . , 2n− 1}. By construction, f̂ is an endomorphism of (Ω, R).
We will now show that f̂ is also an element of End(Ω, S). By construction,

{α1, α3, α5, . . .}f̂ ⊆ {α1, α3, α5, . . .} and {α2, α4, α6, . . .}f̂ ⊆ {α2, α4, α6, . . .}.

Let α, β ∈ Ω with (α, β) ∈ S. Then α = α2i−1 and β = α2i or α2i−2 for some i ∈ N.
Since α and β are adjacent in (Ω, R) their images αf̂ and βf̂ are also adjacent in
(Ω, R). Thus either (αf̂, βf̂) ∈ S or (βf̂ , αf̂) ∈ S. In fact, (αf̂, βf̂) ∈ S since
αf̂ = α2i−1f̂ ∈ {α1, α3, α5, . . .}. So, f̂ ∈ End(Ω, R) ∩ End(Ω, S), as required.
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To conclude the proof, let αi ∈ Ω be arbitrary and let αj = αif . Then

αigf̂h = (αi(i−1)+1)f̂h = (α2j−1)h = αj = αif.

Thus S≤ ⊆ 〈End(Ω, R)∩End(Ω, S), g, h 〉 and so End(Ω, R)∩End(Ω, S) < S≤. �

Lemma 3.4 (König’s Lemma). Let G be an infinite connected locally finite graph. Then
there exists an infinite path in G, that is, a sequence of distinct vertices β1, β2, . . . such
that βi and βi+1 are adjacent for all i.

For a proof see [3, Lemma 19.2.1].

The following lemma is an analogue of König’s Lemma for arbitrary binary re-
lations. It is also slightly stronger, in so far as when it is applied to graphs the
subgraph induced by β1, β2, . . . from Lemma 3.4 is isomorphic to the graph de-
fined in Lemma 3.3(i).

Lemma 3.5. Let Ω be countably infinite and let R ⊆ Ω × Ω be such that (Ω, R) is
connected and locally finite. Then there exists a sequence γ1, γ2, . . . of distinct elements of
Ω such that, for i 6= j, γiRγj or γjRγi if and only if i and j are consecutive integers.

Proof. Let E be the symmetric closure of R \ ∆Ω. Then G = (Ω, E) is a graph.
Hence by Lemma 3.4 there exist a infinite path β1, β2, . . . in G. But βi is adjacent to
βi+1 in G if and only if (βi, βi+1) or (βi+1, βi) ∈ R.

Let γ1 = β1. Assume that γi−1 has been defined for some i > 1. Then define

ni = max{ n ∈ N : (γi−1, βn) or (βn, γi−1) ∈ R }

and set γi = βni . The number ni exists since (Ω, R) is locally finite. The sequence
γ1, γ2, . . . obtained in this way has the required property. �

Proof of Theorem 3.1. (i). As (Ω,v) is locally finite, it follows immediately from
Theorem 2.4 that End(Ω,v) 4 S≤.

To prove that End(Ω,v) < S≤, we show that there exists g ∈ End(Ω,v) such
that the preorder induced by the image of g is isomorphic to that given in Lemma
3.3(ii). This allows us to apply Lemma 3.2 to conclude the proof.

Since (Ω,v) has finitely many components there is at least one infinite com-
ponent. By Lemma 3.5 that component contains a sequence of distinct elements
γ1, γ2, . . . such that γi v γj or γj v γi if and only if i and j are consecutive integers.

Let γn be arbitrary. If γn v γn+1, then γn+1 w γn+2 as otherwise γn v γn+2

by transitivity of v, a contradiction. Likewise, if γn w γn+1, then γn+1 v γn+2.
Assume without loss of generality that γ1 v γ2. We conclude that the subposet
induced by {γ1, γ2, . . .} is isomorphic to that defined in Lemma 3.3(ii).

Next, we specify g ∈ End(Ω,v) with image equal to {γ1, γ2, . . .} by defining it
on the components of (Ω,v). Let K be any component of (Ω,v). Then since v is
transitive and (Ω,v) is locally finite, it follows that there exists β1 ∈ K such that
for all β ∈ K with β v β1 we have that β w β1. Note that, in some sense, β1 is a
minimal element of K.

Let L1 = { β ∈ K : β v β1 } and define L2, L3, . . . recursively as follows:

L2i = { β ∈ K : there exists δ ∈ L2i−1 with β w δ } \ (L1 ∪ · · · ∪ L2i−1)
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and

L2i+1 = { β ∈ K : there exists δ ∈ L2i with β v δ } \ (L1 ∪ · · · ∪ L2i).

Of course, since (Ω,v) is locally finite, Li is finite for all i ∈ N. As K is connected,
every element in K lies in some Li. Also, if K is infinite, then Li is non-empty for
all i.

So, if gK : K −→ Ω is defined so that αgK = γi for all α ∈ Li, then by construc-
tion gK is a homomorphism from (K,v) to the preorder induced by {γ1, γ2, . . .}.
Let g : Ω −→ {γ1, γ2, . . .} be the union of the functions gK over all the components
K of (Ω,v). Then g ∈ End(Ω,v) and, as (Ω,v) has at least one infinite component,
g is surjective.

If R is the preorder induced by γ1, γ2, . . ., then, by Lemma 3.2, End(Ω,v) <
End(Ω, R). Moreover, by Lemma 3.3, it follows that End(Ω, R) < S≤ and the proof
of this case is concluded.

(ii). Recall that in this case we assume that (Ω,v) is not locally finite. If α, β ∈ Ω
such that α v β and β v α, then we will write α ≡ β. If all the equivalence
classes of ≡ are finite, then there are infinitely many such classes and they can
be given as E1, E2, . . .. Let βn ∈ En be fixed for every n ∈ N and let g ∈ ΩΩ be
defined by αg = βn for all α ∈ En and for all n. It is straightforward to verify that
g ∈ End(Ω,v). Furthermore the preorder induced by the image of g is a partial
order which is not locally finite. In [9] it was shown that the set of endomorphisms
of a non-locally finite poset is always equivalent under ≈ to ΩΩ. Thus by Lemma
3.2 we have that End(Ω,v) ≈ ΩΩ and so, as mentioned in the introduction, it
follows by Sierpiński [12] that rank(ΩΩ : End(Ω,v)) ≤ 2.

Next, we assume that there exists an infinite equivalence class E of ≡. Let k :
Ω −→ E be any bijection and let k∗ ∈ ΩΩ be any extension of k−1. Let f ∈ ΩΩ be
arbitrary and define f̂ ∈ ΩΩ by

αf̂ =

{
αk−1fk if α ∈ E
α if α ∈ Ω \ E.

Then f̂ ∈ End(Ω,v) since f fixes Ω \ E pointwise and maps elements of E to
elements of E. Furthermore, if α ∈ Ω, then

αkf̂k∗ = αk(k−1fk)k∗ = αf.

Thus ΩΩ = 〈 End(Ω,v), k, k∗ 〉 and so End(Ω,v) ≈ ΩΩ. In fact, k ∈ End(Ω,v) and
so ΩΩ = 〈 End(Ω,v), k∗ 〉 and rank(ΩΩ : End(Ω,v)) = 1. �

4. GRAPHS

In this section we consider semigroups of endomorphisms of graphs. These
semigroups fall into more equivalence classes under ≈ than endomorphisms of
preorders and we do not achieve a full classification in this case.

Lemma 4.1. If G contains a subgraph isomorphic to the complete graph KΩ on Ω, then
rank(ΩΩ : End(G)) = 1.
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Proof. Let H denote the subgraph of G isomorphic to KΩ, let H1, H2, . . . be infinite
sets partitioning the vertices of H , and let g ∈ ΩΩ be a function that maps all
elements of Hi to αi for i = 1, 2, . . .. Note that g 6∈ End(G).

Pick an arbitrary f ∈ ΩΩ. Let f̂ be an injection such that αif̂ ∈ Hj whenever
αif = αj . Since im(f̂) ⊆ H all image points are adjacent and so f̂ ∈ End(G). Now
αif̂g = αj = αif for all αi ∈ Ω. Hence ΩΩ = 〈 End(G), g 〉. �

Let G be a graph and define K(G) to be the set of components. If L,M ∈ K(G),
then we will write L � M whenever there exists a homomorphism from L to M .
Denote by L� the set {M ∈ K(G) : L�M }.

Theorem 4.2. Let G be a graph such that for infinitely many components L of G the set
L� is infinite. Then rank(ΩΩ : End(G)) ≤ 2.

Proof. Let L1, L2, . . . be the components of G with L�i infinite for all i ∈ N.
First, let

{A(i,1), A(i,2), . . .} ⊆ L�i
such that {A(i,1), A(i,2), . . .} ∩ {A(j,1), A(j,2), . . .} = ∅ for i 6= j.

Let Ω = {α1, α2, . . .}, let g ∈ ΩΩ be any function with αig ∈ Li, let h ∈ ΩΩ

be any function such that αh = αj for all α ∈ A(i,j), and let f ∈ ΩΩ be arbitrary.
Since A(i,k) ∈ L�i for all i, k, there exists a homomorphism from Li to A(i,k). A
function that is a homomorphism on all the components ofG is an endomorphism
of G. So there exists f̂ ∈ End(G) such that Lif̂ ⊆ A(i,k) whenever αk = αif . Let
αi ∈ Ω be arbitrary and let αk = αif . Then αig ∈ Li and so (αig)f̂ ∈ A(i,k). Hence
αigf̂h = αk = αif . So f = gf̂h and ΩΩ = 〈 End(G), g, h 〉. �

In Theorem 2.3, we prove that endomorphisms of reflexive relations with infin-
itely many components have relative rank at most 1 in ΩΩ. However for graphs the
analogous statement is not true. Examples of graphs G and H satisfying the hy-
pothesis of Theorem 4.2 where rank(ΩΩ : End(G)) = 1 and rank(ΩΩ : End(H)) = 2
can be found in Example 6.4 and Proposition 7.8, respectively.

We use a result from Mesyan [11] to show that the converse of Theorem 4.2
holds in the case that all the components of G are finite.

Theorem 4.3. Let G be a countably infinite graph such that every component of G is
finite. Then the following are equivalent:

(i) L� is finite for all but finitely many components L of G;
(ii) rank(ΩΩ : End(G)) > 2;

(iii) rank(ΩΩ : End(G)) ≥ d;
(iv) S1,α 4 End(G) 4 S≤ or End(G) ≈ {1Ω}.

Proof. By Theorem 2.1 it follows that (iv) implies (iii). Also (iii) implies (ii) imme-
diately. Theorem 4.2 tells us that (ii) implies (i).

It remains to show that (i) implies (iv). Under this assumption, the set { αf :
f ∈ End(G) } is finite for all but finitely many α ∈ Ω, since an endomorphism
must map components into components. Let ρ be the preorder on Ω defined by
(α, β) ∈ ρ if β = αf for some f ∈ End(G) and let E(ρ) = { f ∈ ΩΩ : (α, αf) ∈
ρ for all α ∈ Ω}. Then {β ∈ Ω : (α, β) ∈ ρ} is finite for all but finitely many α ∈ Ω.
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It was shown in [11, Section 7] that E(ρ) 4 S≤ for such a preorder ρ. It follows
from the definition of E(ρ) that End(G) ⊆ E(ρ) and thus End(G) 4 S≤.

It remains to prove that either End(G) < S1,α or End(G) ≈ {1G}. There are two
possibilities. Suppose that, for all but finitely many components L, the only homo-
morphism from L into G is the identity map. It follows that End(G) is countable
since all the components of G are finite. Thus End(G) ≈ {1G} as the equivalence
class of {1G}, consists of all countable subsets of ΩΩ.

On the other hand, suppose there exist infinitely many components L1, L2, . . .
of G and non-identity homomorphisms gi : Li −→ G for all i ∈ N. We will define
an infinite subset {δ1, δ2, . . .} of the union of L1, L2, . . . such that

(a) if δi and δj are in the same component, then i = j;
(b) if δi ∈ Lj , then δigj 6∈ {δ1, δ2, . . .} for all i ∈ N.

Since gi is not the identity onLi, for all i ∈ N there exists γi ∈ Li such that γigi 6= γi.
There are two cases to consider. If there exists j ∈ N such that

A = { γi : γigi = γj }

is infinite, then A satisfies conditions (a) and (b) above.
Otherwise, we define {δ1, δ2, . . .} recursively as follows. Let δ1 = γ1. Assume

that δ1, δ2, . . . , δn−1 ∈ {γ1, γ2, . . .} have already been defined and set

Bn = { γi : γigi ∈ {δ1, δ2, . . . , δn−1} }.

Since by assumption {γi : γigi = δj } is finite for all j ∈ {1, . . . , n−1}, Bn is finite.
Hence we may choose δn to be any element of

{γ1, γ2, . . .} \ (Bn ∪ {δ1, δ2, . . . , δn−1}).

It follows, by construction, that {δ1, δ2, . . .} satisfies (a) and (b).
Let h : Ω −→ {δ1, δ2, . . .} be the map defined by αih = δi and let k ∈ ΩΩ be

defined by

αk =

{
αi if α = δi for some i
α1 if α 6∈ {δ1, δ2, . . .}.

Let f ∈ S1,α be arbitrary. Then define f̂ ∈ ΩΩ as follows. Let α ∈ Ω and let Lj
be the component of G containing α. If δi ∈ Lj for some i ∈ N and αif = α1, then
we define

αf̂ = αgj .

Otherwise define αf̂ = α. Since f̂ is a homomorphism on each component, f̂ ∈
End(G).

Let αi ∈ Ω be arbitrary. Then either αif = α1 or i > 1 and αif = αi. In the
former case, if δi ∈ Lj , then

αihf̂k = δif̂k = δigjk = α1 = αif

as δigj 6∈ {δ1, δ2, . . .}.
In the latter case,

αihf̂k = δif̂k = δik = αi = αif.

Thus S1,α ⊆ 〈 End(G), h, k 〉 and the proof is complete. �
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In Example 6.3 we give an instance of a graph G with infinitely many com-
ponents, all of which are finite, and where End(G) ≈ S≤. In Example 6.2 we
show that there exists a graph with infinitely many components and where S1,α ≺
End(G) ≈ S2 ≺ S≤. It is not known if there exists a graph G such that S1,α ≈
End(G).

If G is a graph with finitely many components and G is locally finite, then it fol-
lows immediately from Theorem 2.4 that End(G) 4 S≤ and rank(ΩΩ : End(G)) ≥
d. The converse of this statement does not hold and Example 6.1 is a counterexam-
ple. This contrasts with the analogous situation for preorders described in Theo-
rem 3.1. In Lemma 3.3 and Example 6.2 we give examples of graphsG andH with
finitely many components and where End(G) ≈ S≤ and End(H) ≈ {1Ω} ≺ S≤.

Note that in the proofs of Theorems 4.2 and 4.3 neither symmetry nor irreflex-
ivity is used and that these theorems generalise to arbitrary binary relations with
infinitely many components. We chose not to phrase these results in the most
general way since the only other kinds of relations considered in this paper are
preorders and tolerances for which the much stronger Theorem 2.3 holds.

We have not succeeded in proving any general theorem relating to graphs with
finitely many components that are not locally finite. However, we will show that
there exist such graphs where the relative rank of their endomorphisms in ΩΩ is
any of 1, 2, d, or 2ℵ0 . Moreover, if we restrict our attention to the class of bipartite
graphs, then we again obtain a complete classification.

Theorem 4.4. LetG be a graph with infinitely many bipartite components. Then rank(ΩΩ :
End(G)) = 1 and so End(G) ≈ ΩΩ.

Proof. There are two cases to consider.
Case 1: there exist infinitely many singleton components {β1}, {β2}, . . . in G. Let

g ∈ ΩΩ be defined by αig = βi for all i ∈ N. If f ∈ ΩΩ is arbitrary, then define f̂
by βif̂ = αif for all i and αf̂ = α for all α 6= βi for any i. Then f̂ ∈ End(G) and
αigf̂ = βif̂ = αif . Hence 〈 End(G), g 〉 = ΩΩ.

Case 2: there exist infinitely many bipartite components L1, L2, . . . in G with at least
two vertices. Let γn ∈ Ln be fixed for all n ∈ N and let

I = { i ∈ N : αi 6∈ Lj for all j ∈ N }.
Then, by definition, γm 6= αn for all m ∈ N and for all n ∈ I . Also N \ I is infinite
as clearly there are infinitely vertices αi in L1 ∪L2 ∪ · · · . It follows that there exists
an injective g ∈ ΩΩ such that γig = αi for all i ∈ I and where (Ω \ {γi : i ∈ I})g ⊆
{γi : i ∈ N \ I}. Hence g2 is an injection and im(g2) ⊆ {γi : i ∈ N \ I}.

Let Li and Lj be arbitrary and let α ∈ Li and β ∈ Lj . Since Li and Lj are
bipartite and contain at least two vertices, there exists a homomorphism φα,β :
Li −→ Lj such that αφα,β = β.

Let f ∈ ΩΩ be arbitrary. We require two endomorphisms f̂1 and f̂2 of G that
together with g will generate f .

We define f̂1 on an arbitrary component L as follows. Either there exist i ∈ I ,
j ∈ N, and α ∈ Ω such that αf = αi, L = Lj , and αg2 = γj , or not. If i, j, and α
exist, then define

βf̂1 = βφγj ,γi
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for all β ∈ L. Otherwise, we define βf̂1 = β for all β ∈ L. In particular, if αf = αi
for some i 6∈ I , then f̂1 fixes αg2. Since f̂1 is a homomorphism on every component
of G, it is an element of End(G).

We define f̂2 on an arbitrary component L of G as follows. As above, either
there exist i ∈ N \ I , j ∈ N, and α ∈ Ω such that αf = αi, L = Lj , and αg3 = γj ,
or not. If i, j, and α exist, then, since i 6∈ I , there exists k ∈ N such that αi ∈ Lk. It
follows that φγj ,αi is well-defined and so we define

βf̂2 = βφγj ,αi

for all β ∈ L. Otherwise, we define βf̂2 = β for all β ∈ L. In particular, if i ∈ I ,
then, from the definition of I , αi 6∈ Lj for all j ∈ N and so f̂2 fixes αi. Again since
f̂2 is a homomorphism on all the components of G, it follows that f̂2 ∈ End(G).

We will now show that g2f̂1gf̂2 = f . Let α ∈ Ω be arbitrary. Then αf = αi for
some i ∈ N. If i ∈ I and αg2 = γj for some j, then

αg2f̂1gf̂2 = γj f̂1gf̂2 = γjφγj ,γigf̂2 = γigf̂2 = αif̂2 = αi = αf.

If i 6∈ I and αg3 = γk for some k, then

(αg2)f̂1gf̂2 = αg3f̂2 = γkf̂2 = γkφγk,αi
= αi = αf.

Thus ΩΩ = 〈 End(G), g 〉 and rank(ΩΩ : End(G)) = 1. �

Theorem 4.5. Let G be a bipartite graph with finitely many components. Then either:

(i) G is locally finite, End(G) ≈ S≤, and rank(ΩΩ : End(G)) = d; or
(ii) G is not locally finite, End(G) ≈ ΩΩ, and rank(ΩΩ : End(G)) ≤ 2.

Before we prove Theorem 4.5 we require the following lemma.

Lemma 4.6. Let G be the graph with edges (α1, αi) for all i > 1 (see Figure 1 for a
diagram). Then rank(ΩΩ : End(G)) = 1.
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FIGURE 1. The graph from Lemma 4.6

Proof. Note that if f : Ω −→ Ω such that α1f = α1 and αif 6= α1 for all i > 1, then
f ∈ End(G). Let g, h ∈ End(G) be defined by

αig =

{
αi i = 1

αi+1 i > 1
αih =

{
αi 1 ≤ i ≤ 2

αi−1 i > 2.

Let t ∈ ΩΩ be a transposition with α1t = α2 and vice versa. Then αigt = αi+1 and
αi+1th = αi for all i ∈ N.
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Let f be an arbitrary element of ΩΩ. Define the function f̂ by α1f̂ = α1 and
αi+1f̂ = αk+1 whenever αif = αk. Then f̂ ∈ End(G) by our earlier remark.
Furthermore, for an arbitrary vertex αi ∈ Ω with αif = αk we have that

αigtf̂ th = αi+1f̂ th = αk+1th = αk = αif

and so 〈 End(G), t 〉 = ΩΩ. �

Proof of Theorem 4.5. Let G be a bipartite graph with finitely many components
L1, L2, . . . , Ln.

(i). If G is locally finite, then by Theorem 2.4 we have that End(G) 4 S≤. We
will show that End(G) < S≤. By Lemma 3.5, there exists a sequence γ1, γ2, . . . of
vertices that induce a subgraphH ofG isomorphic to the graph defined in Lemma
3.3(i).

Let δi ∈ Li be fixed. For m = 0, 1, 2, . . . define

Lm+1
i = { α ∈ Li : the shortest path from α to δi has length m }.

Let g ∈ ΩΩ map every point in Lm1 ∪ Lm2 ∪ . . . ∪ Lmn to γm. Since G is locally finite
and at least one Li is infinite, it follows that g is surjective. If (α, β) ∈ E, then,
since G is bipartite, α ∈ Lmj and β ∈ Lm+1

j or β ∈ Lmj and α ∈ Lm+1
j for some j

and m. Hence (αg, βg) = (γm, γm+1) ∈ E or (αg, βg) = (γm+1, γm) ∈ E . Thus
g ∈ End(G). So, by Lemma 3.2 and Lemma 3.3 it follows that End(G) < S≤.

(ii). Since G is bipartite we may partition Ω into sets R and B such that the
edges of G only join vertices in R to vertices in B. Since G is not locally finite it
has a vertex of infinite degree. Without loss of generality we assume that α1 ∈ R
and that α1 has infinite degree.

Let g be any function such that αg = α1 for all α ∈ R and

Bg ⊆ {β ∈ Ω : (α1, β) ∈ E} ⊆ B

with |Bg| = ℵ0. Then g is an endomorphism of G and the image of g induces
a graph isomorphic to that defined in Lemma 4.6. So, by Lemmas 3.2 and 4.6 it
follows that End(G) ≈ ΩΩ. �

Lemma 4.6 provides an example of a graph G satisfying the hypothesis of The-
orem 4.5(ii) and where rank(ΩΩ : End(G)) = 1. In Section 6 we give an example of
such a bipartite graph H with rank(ΩΩ : End(H)) = 2.

5. TOLERANCES

Let f be a homomorphism of a graph G with vertices Ω and edges E. Then f
cannot map adjacent vertices to the same vertex, since (α, α) 6∈ E for all α ∈ Ω.
It might be argued that the definition of a homomorphism of a graph could be
modified to allow αf = βf for (α, β) ∈ E. This would be equivalent to considering
the endomorphisms of (Ω, E ∪ ∆Ω) where ∆Ω = { (α, α) : α ∈ Ω }, that is, the
endomorphisms of a tolerance on Ω.
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We completely classify the semigroups of endomorphisms of tolerances R on
Ω according to 4. If (Ω, R) has infinitely many components, then it follows from
Theorem 2.3 that rank(ΩΩ : End(Ω, R)) = 1.

Theorem 5.1. Let R be a tolerance on Ω such that (Ω, R) has finitely many components.
Then either:

(i) (Ω, R) is locally finite, End(Ω, R) ≈ S≤, and rank(ΩΩ : End(Ω, R)) = d; or
(ii) (Ω, R) is not locally finite, End(Ω, R) ≈ ΩΩ, and rank(ΩΩ : End(Ω, R)) ≤ 2.

Proof. Recall that R is a symmetric and reflexive relation, and let L1, L2, . . . , Ln be
the components of (Ω, R).

(i). By Theorem 2.4, it follows that End(Ω, R) 4 S≤. We must prove that
End(Ω, R) < S≤. Then, by Lemma 3.5, there exists Γ = {γ1, γ2, . . .} such that,
for i 6= j, (γi, γj) ∈ R if and only if {i, j} = {k, k + 1} for some k ∈ N.

Let Lmi be the sets and g ∈ ΩΩ be the function defined in the proof of Theorem
4.5(i). If (α, β) ∈ R, then either α, β ∈ Lmj or α ∈ Lmj and β ∈ Lm+1

j for some j
and m. In the first case, (αg, βg) = (γm, γm) ∈ R and in the second case (αg, βg) =
(γm, γm+1) ∈ R. Hence g ∈ End(Ω, R).

Let R′ be the subrelation of R induced by Γ. Then by Lemma 3.2 we have
that End(Ω, R) < End(Ω, S) where (Ω, S) is isomorphic to (Γ, R′). Now, (Ω, S \
∆Ω) is a graph isomorphic to that defined in Lemma 3.3(i). Thus, by Lemma 3.3,
End(Ω, S \∆Ω) < S≤. As End(Ω, S) ⊇ End(Ω, S \∆Ω), it follows that End(Ω, R) <
End(Ω, S) < End(Ω, S \∆Ω) < S≤.

(ii). There exists an element of Ω with infinite degree. Assume without loss of
generality that α1 has infinite degree, that is,A = {β ∈ Ω : (α1, β) ∈ R} is infinite.
It is a straightforward consequence of Ramsey’s Theorem [3, Theorem 10.6.1], ap-
plied to (Ω, R \∆Ω), that the subrelation induced by A contains an infinite subset
B such that (B ×B) ∩R = B ×B or ∆B .

Note that (Ω, R \ ∆Ω) is a graph and End(Ω, R \ ∆Ω) ⊆ End(Ω, R). If (B ×
B) ∩ R = B × B, then, by Lemma 4.1, rank(ΩΩ : End(Ω, R \ ∆Ω)) = 1 and so
rank(ΩΩ : End(Ω, R)) = 1.

If (B × B) ∩ R = ∆B , then define g ∈ ΩΩ by αg = α for all α ∈ B and define
αg = α1 for all α ∈ Ω \ B. Since R is reflexive and (α1, β) ∈ R for all β ∈ B, it
follows that g ∈ End(Ω, R). Therefore by an argument analogous to that in the
previous paragraph, by Lemmas 3.2 and 4.6, rank(ΩΩ : End(Ω, R)) ≤ 2. �

If G = (Ω, E) is the graph in Lemma 4.6, then (Ω, E ∪∆Ω) is a tolerance where
rank(ΩΩ : End(Ω, E ∪ ∆Ω)) = 1. In Section 8 we construct a tolerance with
rank(ΩΩ : End(Ω, R)) = 2.

It is natural to ask whether Theorems 3.1 and 5.1 generalise to endomorphisms
of reflexive binary relations without the respective assumptions of transitivity and
symmetry. The answer is no. In Example 6.5 we construct an example of a reflexive
binary relation R such that (Ω, R) is not locally finite but where End(Ω, R) 6≈ ΩΩ.
In Example 6.6, we give an example of a reflexive binary relationR such that (Ω, R)
is locally finite but where End(Ω, R) 6≈ S≤.



16 J. D. MITCHELL, M. MORAYNE, Y. PÉRESSE, AND M. QUICK

6. EXAMPLES I

The following example shows that, in general, the converse of Theorem 2.4 is
not true.

Example 6.1. Let G denote the graph with edges (α1, αi) and (αi, αi+1) for all
i ∈ N (for a diagram see Figure 2). Then G is not locally finite. However, we will
show that End(G) 4 S≤ and thus rank(ΩΩ : End(G)) ≥ d.
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FIGURE 2. The graph from Example 6.1

Let F = { f ∈ End(G) : α1f = α1 } and U = End(G) \ F . If H is the
graph obtained from G by deleting all the edges incident to α1, then F ⊆ End(H).
But End(H) ≈ S≤ by Theorem 4.5 and so F 4 S≤. In Section 1.1 we defined
F = { f ∈ ΩΩ : |Ωf | < ℵ0 } and we noted that Mesyan [11] proved that F ≺ S≤.
Since U 4 F, this implies that U ≺ S≤. It follows that End(G) = U ∪ F 4 S≤.

In fact, an argument analogous to that used in the proof of Lemma 3.3 shows
that End(G) ≈ S≤ and so rank(ΩΩ : End(G)) = d.

Example 6.2. A graph G is called rigid if End(G) = {1Ω}. It follows from [8,
Theorem 3] that there exists a locally finite countably infinite rigid graph H with
infinitely many components.

We will construct a graph G from the components of H such that End(G) ≈ S2.
Let L1, L2, . . . be distinct components of H . Then define G to have components
M1,M2, . . . and N1, N2, . . . such that Mi 6= Nj and Mi, Ni, and Li are isomorphic
for all i, j ∈ N. The only homomorphisms between components of G are the iso-
morphisms hi : Mi −→ Ni. Thus for all α ∈ Ω the set { αf : f ∈ End(G) } has
two elements: α and αhi if α ∈ Mi for some i or α and αh−1

i if α ∈ Ni for some i.
If Ω is enumerated in such a way that {α2i−1, α2i} = { α2if : f ∈ End(G) } for all
i ∈ N, then clearly End(G) ≤ S2 and, in particular, End(G) 4 S2.

To show that End(G) < S2 =
{
f ∈ ΩΩ : {α2i−1f, α2if} ⊆ {α2i−1, α2i} for all i ∈

N
}

, letm1 ∈M1,m2 ∈M2, . . . be fixed, let g : Ω −→ {mi,mihi : i ∈ N} be defined
by α2i−1g = mi and α2ig = mihi ∈ Ni, and let h be any mapping extending g−1

to an element of ΩΩ. If f ∈ S2 is arbitrary, then there exists f̂ ∈ End(G) such
that mif̂ = (α2i−1f)g ∈ {mi,mihi} and mihif̂ = (α2if)g ∈ {mi,mihi}. Hence
α2i−1gf̂h = mif̂h = α2i−1fgh = α2i−1f and, likewise, α2igf̂h = α2if . Therefore
End(G) < S2, as required.

Let Aut(G) denote the group of automorphisms from a graph G to G. A cycle
of length n is a graph G with vertices β1, β2, . . . , βn and with edges (β1, βn) and
(βi, βi+1) for 1 ≤ i ≤ n− 1.

Example 6.3. Let G be a graph with components O1, O3, O5, . . . where O2i+1 is an
odd cycle of length 2i+ 1 for all i ∈ N.
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We will show that End(G) ≈ Aut(G) ≈ S≤ and so rank(ΩΩ : End(G)) =
rank(ΩΩ : Aut(G)) = d. It is well-known (and not difficult to verify) that the
image of any element in O2i+1 under an endomorphism of G lies in O2j+1 with
j ≤ i; for a proof see [7, Corollary 1.4]. In other words, |O�2i+1| ≤ i for all i ∈ N. It
follows, by Theorem 4.3, that End(G) 4 S≤.

Let ω(i, 1), ω(i, 2), . . . , ω(i, 2i+1) be the vertices ofO2i+1. Then define g, h ∈ ΩΩ

by αig = ω(i, 1) and (ω(i, j))h = αj for all i, j ∈ N.
Let f ∈ S≤ be arbitrary and let t : N −→ N be the map such that αif = αit for all

i ∈ N. Note that it ≤ i < 2i+1 for all i and so the vertex ω(i, it) exists for all i. Now,
for all i ∈ N there exists an automorphism of O2i+1 mapping ω(i, 1) to ω(i, it). Let
f̂ ∈ ΩΩ be the union of these automorphisms. By definition, f̂ ∈ Aut(G) and

αigf̂h = (ω(i, 1))f̂h = (ω(i, it))h = αit = αif.

Thus S≤ ⊆ 〈Aut(G), g, h 〉 and our claim follows.

Example 6.4. An n-clique of a graph G is a subgraph of G isomorphic to the com-
plete graph Kn with n vertices. Let G be a graph with only finite components and
let G have arbitrarily large n-cliques. We will show that rank(ΩΩ : End(G)) = 1.

Let L1, L2, . . . be the components of G. Then there exist infinitely many disjoint
sets L0,L1,L2, . . . of components such that for all k ∈ N ∪ {0}, the set Lk contains
a component with an n-clique for all n ∈ N.

Let M1,M2, . . . be distinct elements of L0 where Mi contains a clique of size at
least |Li| for all i. Then define g to be any injective endomorphism so that Lig is
contained in Mi for all i. Let h ∈ ΩΩ be any function which, for j ≥ 1, maps every
vertex lying in a component belonging to Lj to αj and which maps the vertex αig
(belonging to one of the components in L0) into one of the components in Li.

Let f ∈ ΩΩ be arbitrary. Then let f̂ be any endomorphism of G such that: if
αj = αif , then Lf̂ equals the set of vertices of an |L|-clique in some component in
Lj for all L ∈ Li and αf̂ = α for all α belonging to a component in L0. Note that
since Ω = {α1, α2, . . .}, i and j in the preceding definition are strictly greater than
0.

If αi ∈ Ω is arbitrary, then αigh lies in a component in Li, i > 0. Thus (αigh)f̂

lies in a component in Lj where αj = αif and j > 0. So (αighf̂)h = αj = αif .
Hence f = ghf̂h and ΩΩ = 〈 End(G), h 〉.

The purpose of the next two examples is to show that Theorems 3.1 and 5.1 do
not generalise to arbitrary reflexive binary relations.

Example 6.5. We construct a relation R on Ω such that (Ω, R) is connected, not
locally finite, and End(Ω, R) 4 S≤. Let G = (Ω, E) be a connected, locally finite
graph, let B = { (β0, γ) : γ ∈ Ω } for a fixed β0 ∈ Ω, and let R = E ∪B ∪∆Ω. The
relation R was constructed so that it is reflexive and (Ω, R) is not locally finite.

Let α, β ∈ Ω such that α, β are adjacent in G and let f ∈ End(Ω, R). Then
(αf, βf) ∈ R and (βf, αf) ∈ R. Hence αf = βf or αf and βf are adjacent in G.
We conclude that End(Ω, R) ⊆ End(Ω, E ∪ ∆Ω) ≈ S≤ by Theorem 5.1(i) and so
End(Ω, R) 4 S≤.
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FIGURE 3. The binary relation from Example 6.6. The relations
(α, α) for all α ∈ Ω are not shown.

Example 6.6. Let Ω = {α1, α2, . . .} ∪ {β1, β2, . . .} and define the following relation
R on Ω. Let (α, α) ∈ R for all α ∈ Ω and let

(αi, αi+1), (α2i+2, α2i−1), (α2i−1, βi), (βi, α2i+2) ∈ R

for all i ∈ N. A diagram of (Ω, R) can be found in Figure 3. The relation R is
reflexive and (Ω, R) is connected and locally finite. We will prove that End(Ω, R) 4
F ≺ S≤.

Let f ∈ End(Ω, R), letAi = {α2i−1, α2i, α2i+1, α2i+2}, and letBi = {α2i−1, α2i+2, βi}
for all i ∈ N. We start by proving that for all i ∈ N one of the following holds: Aif
is a singleton, Aif = Aj , or Aif = Bj for some j ∈ N. We will also show that if
Aif = Aj , then

(1) βif = βj and (α2i−1f, α2if, α2i+1f, α2i+2f) = (α2j−1, α2j , α2j+1, α2j+2).

Since f is a homomorphism, Aif = {γ1, . . . , γk} where 1 ≤ k ≤ 4 and for all
1 ≤ j ≤ k − 1 we have that (γk, γ1), (γj , γj+1) ∈ R . The only subsets of Ω that
satisfy this condition are singletons, Aj , or Bj for some j ∈ N. Thus Aif is either a
singleton, Aif = Aj , or Aif = Bj for some j ∈ N.

In the case that, Aif = Aj , since f is an endomorphism, we have that

(α2i+2f, α2i−1f), (α2i−1f, βif), (βif, α2i+2f) ∈ R.

The only γ, δ ∈ Aj with (γ, δ) ∈ R such that there exists λ ∈ Ω with (δ, λ), (λ, γ) ∈
R areα2j−1 andα2j+2. It follows that βif = βj and (α2i−1f, α2if, α2i+1f, α2i+2f) =
(α2j−1, α2j , α2j+1, α2j+2).

We will now prove that there are only countably many elements of End(Ω, R)
with infinite image. Note that the only element of Ω not in any Bj is α2. There are
3 cases to consider.

Case 1: A1f = Aj for some j ∈ N. In this case, from (1), β1f = βj and
(α1f, α2f, α3f, α4f) = (α2j−1, α2j , α2j+1, α2j+2). Since α3f and α4f are distinct,
A2f is not a singleton. Also if α3f ∈ Bi and α4f ∈ Bk, then i 6= k and so
A2f 6= Bi for all i ∈ N. Hence A2f = Ak for some k ∈ N. It follows from (1)
that α3f = α2(j+1)−1 and α4f = α2(j+1). Thus A2f = Aj+1 and so again, from (1),
α5f = α2(j+1)+1, α6f = α2(j+1)+2 and β2f = βj+1.

Repeating this process it follows that αif = α2(j−1)+i and βif = β(j−1)+i for
all i ∈ N. In particular, there are only countably many endomorphisms f with
A1f = Aj for some j ∈ N.
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Case 2: A1f ⊆ Bj for some j ∈ N. In this case,

α3f, α4f ∈ Bj = {α2j−1, α2j+2, βj}.

Since (α3f, α4f) 6= (α2k−1, α2k) for all k ∈ N, it follows by (1) that A2f 6= Ak for
all k ∈ N. Thus either A2f = Bj or A2f is a single element of Bj and in either case
A2f ⊆ Bj .

Repeating this argument, we conclude that ωf ∈ Bj for all ω ∈ Ω and f has
finite image.

Case 3: A1f = {α2}. In particular, α3f = α4f and so |A2f | < 4. Thus by (1)
A2f 6= Ak for all k ∈ N. Furthermore, α2 6∈ Bk for all k ∈ N and so A2f 6= Bk for
all k ∈ N. ThusA2f = {α2}. Repeating this argument it follows that im(f) = {α2}.

Since there are only countably many endomorphisms of (Ω, R) with infinite
image we conclude that End(Ω, R) 4 F ≺ S≤. Note that, on the other hand, it is
possible to show that |End(Ω, R)| = 2ℵ0 and so End(Ω, R) � {1Ω}.

7. EXAMPLES II – GRAPHS WITH RANK 2

In this section we construct two examples of graphs G, one connected and one
with infinitely many components, such that rank(ΩΩ : End(G)) = 2.

Lemma 7.1. Let U be a subsemigroup of ΩΩ such that f ∈ U is injective if and only if f
is surjective. Then rank(ΩΩ : U) ≥ 2.

Proof. Let g ∈ ΩΩ be arbitrary. Seeking a contradiction assume that 〈 U, g 〉 = ΩΩ.
Let h ∈ ΩΩ be injective but not surjective and let k ∈ ΩΩ be surjective but not
injective. Then there exist h1, h2, . . . , hm, k1, k2, . . . , kn ∈ U ∪ {g} such that h =
h1h2 · · ·hm and k = k1k2 · · · kn.

Let
M = min{ i : h1h2 · · ·hi is not surjective }

and
N = max{ i : kiki+1 · · · kn is not injective }.

Then hM is injective, as h is injective, and so hM = g. On the other hand, kN is
surjective, as k is surjective, and so kN = g. But then g is injective and not injective,
a contradiction. �

An example of a connected but not locally finite poset (Ω,v) where the only
injective or surjective endomorphism is the identity is given in [9, Section 6]. It
follows from Theorem 3.1 and Lemma 7.1 that rank(ΩΩ : End(Ω,v)) = 2. We will
use this poset to define a bipartite graph with the same property. The poset (Ω,v)
is described as follows.

Let A = { ai : i ∈ N } be a countably infinite set. Let E denote the set of all
finite subsets E of A such that |E| ≥ 2 and where an ∈ E implies that |E| ≤ n+ 1.
Thus any set in E containing a1 has cardinality 2, any set in E containing a2 has
cardinality 2 or 3, any set in E containing a3 has cardinality 2, 3 or 4, etc. We
enumerate the elements of E as A1, A2, . . . Now, we assign in a one-to-one way a
new element bE , not in A, to every E in E . Let B = { bE : E ∈ E }. Also, let
C = {c0, c1, c2, . . .} be any set disjoint from A ∪B.
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FIGURE 5. A portion of the poset (Ω,v).

We define the partial order v on the elements of Ω = A ∪ B ∪ C by: a v
bE for all a ∈ E; c2i+1 v c0 for all i ≥ 0; x v c2 for all x ∈ {c1, c3, c5}; c2i−1 v c2i,
c2i+1 v c2i for all i ≥ 2; and c2i+1 v bAi for all i ≥ 0. See Figures 4 and 5 for two
diagrams of portions of (Ω,v).

Theorem 7.2. Letv be the partial order defined above and let f ∈ End(Ω,v) be injective
or surjective. Then f is the identity mapping on Ω.

For a proof see [9, Theorem 6.7].
We construct a graph G = (Ω, E) from the poset (Ω,v) by letting

(α, β), (β, α) ∈ E whenever α 6= β and α v β.
Let P = A ∪ { c2i+1 : i ∈ N ∪ {0} } and Q = B ∪ { c2i : i ∈ N ∪ {0} }. Note that if
α, β ∈ Ω with α 6= β and α v β, then α ∈ P and β ∈ Q. Note that every edge in G
connects a vertex in P to one in Q and so G is bipartite.

Lemma 7.3. Let f ∈ End(G). If there exists α ∈ P such that αf ∈ P , then f ∈
End(Ω,v). Likewise, if there exists α ∈ Q such that αf ∈ Q, then f ∈ End(Ω,v).

Proof. We will prove the lemma in the case where α, αf ∈ P . The proof of the
other case is identical. Let β ∈ P . Since G is connected there exists a path from
α to β. Furthermore, this path has even length since α, β ∈ P and G is bipartite.
Thus there is a walk of even length from αf to βf . It follows that βf ∈ P since
αf ∈ P . On the other hand, if β ∈ Q, then any path from α to β has odd length and
so there is a walk of odd length from αf ∈ P to βf . Thus βf ∈ Q. It follows that
Pf ⊆ P and Qf ⊆ Q. Now let α, β ∈ Ω with α 6= β and α v β. Then (αf, βf) ∈ E
and αf ∈ P, βf ∈ Q. Thus αf v βf and hence f ∈ End(Ω,v). �
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Using Lemma 7.3 we prove that the graph obtained from (Ω,v) has no non-
identity injective or surjective endomorphisms. To do so, we will make use of the
following notion.

If R is a binary relation on Ω, α ∈ Ω and n ∈ N, then let

B(α, n) = { β ∈ Ω : there exists a path of length at most n from α to β }.
The proof of the following lemma is straightforward and omitted.

Lemma 7.4. Let R ⊆ Ω × Ω and let α ∈ Ω. If B(α, n) = Ω for some n ∈ N and
f ∈ End(Ω, R) is surjective, then B(αf, n) = Ω.

Theorem 7.5. Let G be the graph defined above and let f ∈ End(Ω, G) be injective or
surjective. Then f is the identity mapping on Ω.

Proof. Let g ∈ End(G) be injective. Note that all vertices of A ⊆ P have infinite
degree but c0 is the only vertex of Q with infinite degree. Since injective endomor-
phisms map vertices of infinite degree to vertices of infinite degree, it follows that
ag ∈ Q for at most one a ∈ A. In particular, there exists a ∈ A such that af ∈ P
and so, by Lemma 7.3, g ∈ End(Ω,v) . By Theorem 7.2 this implies that g is the
identity on Ω.

Let h ∈ End(G) be surjective. We will show that c0h = c0. From the definition
ofGwe have thatB(c0, 1) = {c0}∪{c2i+1 : i ∈ N∪{0}} and thusB(c0, 2) = B∪C
and B(c0, 3) = Ω. We will prove that B(α, 3) 6= Ω for all α 6= c0.

If ai ∈ A, then B(ai, 3)∩{ c2k+1 : k ∈ N∪{0}} = { c2j+1 : ai ∈ Aj } 6= { c2k+1 :
k ∈ N∪ {0} }. If bE ∈ B, then B(bE , 3)∩B = { bF ∈ B : E ∩F 6= ∅ } 6= B. If i ≥ 0,
then B(c2i+1, 3)∩A = { aj ∈ A : aj ∈ Ai } 6= A. Finally, if i ≥ 1, then B(c2i, 3)∩A
is finite.

Thus c0 is the unique vertex α of G such that B(α, 3) = Ω. It follows by Lemma
7.4 that c0h = c0. Thus h ∈ End(Ω,v) by Lemma 7.3 and hence h is the identity on
Ω by Theorem 7.2. �

Corollary 7.6. Let G be the graph obtained from (Ω,v). Then rank(ΩΩ : End(G)) = 2.

Proof. Since G is bipartite and not locally finite, by Theorem 4.5(ii), rank(ΩΩ :
End(G)) ≤ 2. On the other hand, G has no non-identity injective or surjective
endomorphisms by Theorem 7.5. Thus rank(ΩΩ : End(G)) ≥ 2 by Lemma 7.1. �

The following example shows that there are graphsGwith infinitely many com-
ponents and rank(ΩΩ : End(G)) = 2. We require the following notion. A graph
is a core if every endomorphism is an automorphism. If G is a graph where every
component is a core and no two components are isomorphic, then the preorder�
defined in Section 4 is a partial order on the set of components of G.

Theorem 7.7. [7, Theorem 3.3] Let P be a countable poset. Then there exists a graph
G where every component is a finite core and the set of components of G under � is
isomorphic to P .

Example 7.8. Let G be a graph with finite components the distinct cores L1, L2, . . .
and M1,M2, . . . such that there exists a homomorphism from Li −→ Mj for all
i, j and there are no further homomorphisms between components. Such a graph
exists by Theorem 7.7.
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Now rank(ΩΩ : End(G)) ≤ 2 by Theorem 4.3. Furthermore, every injective
endomorphism of G must fix each component setwise. It follows that every injec-
tive endomorphism is surjective. Likewise all surjective endomorphisms are also
injective. So, using Lemma 7.1, we conclude that rank(ΩΩ : End(G)) = 2.

8. EXAMPLES III – A TOLERANCE WITH RANK 2

Let Ω = A ∪B where A and B are the sets defined in Section 7 and let v be the
partial order defined in Section 7 restricted to A ∪B.

Lemma 8.1. Letv be the partial order defined above and let f ∈ End(Ω,v) be surjective.
Then f is the identity mapping on Ω.

For a proof see [9, Lemma 6.5].
We define a toleranceR based onv by letting (α, β), (β, α) ∈ Rwhenever α = β

or α v β.
The following lemma is routine and the proof omitted.

Lemma 8.2. If f ∈ End(Ω, R) such that Af ⊆ A, then f ∈ End(Ω,v).

Next, we prove that (Ω, R) has no non-identity surjective endomorphisms.

Lemma 8.3. Let R be the tolerance defined above and let f ∈ End(Ω, R) be surjective.
Then f is the identity mapping on Ω.

Proof. Let ai ∈ A. For any aj ∈ A there exists bE ∈ B such that ai, aj ∈ E. Hence
B(ai, 2) ⊇ A and so B(ai, 3) = Ω. On the other hand, if bE ∈ B is arbitrary, then
B(bE , 3) ∩ B = B(bE , 2) ∩ B = { bF ∈ B : E ∩ F 6= ∅ } 6= B by construction.
Thus B(bE , 3) 6= Ω. Let f ∈ End(Ω, R) be surjective. It follows by Lemma 7.4 that
Af ⊆ A. Hence f ∈ End(Ω,v) by Lemma 8.2 and thus f is the identity on Ω by
Lemma 8.1. �

Although (Ω, R) has no non-identity surjective endomorphisms, it does have
injective endomorphisms that are not surjective. So, in order to apply Lemma
7.1, we will define a new tolerance R∗ on a set Σ based on (Ω, R) such that f ∈
End(Σ, R∗) is injective if and only if f is surjective.

Let { c(i, j) : i, j ∈ N } be a set of new points with no elements in A and B, let
B be as above, let a∗i = {c(i, 1), c(i, 2), . . . , c(i, i+ 2)}, let C = a∗1 ∪ a∗2 ∪ · · · and let
Σ = B ∪ C. Then define R∗ to be the symmetric and reflexive closure of the set
containing:

(i) (c(i, j), c(i, j + 1)) for all j ∈ {1, . . . , i+ 1} and (c(i, i+ 2), c(i, 1)) for all i;
(ii) (bE , c) for all c ∈ a∗i and for all i such that ai ∈ E.

Note that a∗i is a cycle of length i+ 2 for all i.

Theorem 8.4. Let (Σ, R∗) be the tolerance defined above. Then f ∈ End(Σ, R∗) is
injective if and only if f is surjective.

Proof. Let c(i, j) ∈ C and bE ∈ B. Then, by a similar argument to the one in the
proof of Lemma 8.3, B(c(i, j), 3) = Σ and B(bE , 3) 6= Σ. Let f ∈ End(Σ, R∗) be
surjective. It follows, by Lemma 7.4, that cf ∈ C for all c ∈ C. Furthermore, since
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f is a homomorphism, for any i ∈ N we have that a∗i f ⊆ a∗j for some j ∈ N. We
may thus define f̂ ∈ ΩΩ (recall that Ω = A ∪B) by

αf̂ =


aj if α = ai and a∗i f ⊆ a∗j
aj if α ∈ B and αf ∈ a∗j
αf if α ∈ B and αf ∈ B.

Then f̂ is surjective since f is surjective. Moreover, if ai ∈ E, then (ai, bE) ∈ R
and so (c(i, j), bE) ∈ R∗ for all j. Hence (c(i, j)f, bEf) ∈ R∗ for all j. If a∗i f ⊆ a∗j
and bEf ∈ C, then bEf ∈ a∗j and so (aif̂ , bE f̂) = (aj , aj) ∈ R. Otherwise, bEf =

bF ∈ B for some F ∈ E and so aj ∈ F . Hence (aif̂ , bE f̂) = (aj , bF ) ∈ R. Therefore
f̂ ∈ End(Ω, R) and it follows that f̂ is the identity by Lemma 8.3. Therefore bf = b
for all b ∈ B and the components a∗j are fixed setwise by f . Since every a∗j is finite
and f is surjective, it follows that f ∈ Aut(Σ, R∗).

Let f ∈ End(Σ, R∗) be injective. Since every element in C has infinite degree
and every element in B has finite degree, it follows that Cf ⊆ C. Hence for
all i ∈ N we have that a∗i f ⊆ a∗j for some j ∈ N. But since f is injective and
|a∗i f | = |a∗i | = i + 2 it follows that j ≥ i. On the other hand, there does not exist
an injective homomorphism from the cycle a∗i to any cycle a∗j where j > i. Hence
i = j and so f ∈ Aut(Σ, R∗). �

Corollary 8.5. Let (Σ, R∗) be the tolerance defined above. Then rank(ΣΣ : End(Σ, R∗)) =
2.

Proof. By Theorem 5.1, rank(ΣΣ : End(Σ, R∗)) ≤ 2. By Theorem 8.4 and Lemma
7.1, rank(ΣΣ : End(Σ, R∗)) ≥ 2. �
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[7] P. Hell, J. Nešetřil, Graphs and Homomorphisms, Springer Verlag, New York, Heidelberg, Berlin.
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