Skip to main content

Advertisement

Log in

Energy-Time Uncertainty Relations in Quantum Measurements

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum measurement is a physical process. A system and an apparatus interact for a certain time period (measurement time), and during this interaction, information about an observable is transferred from the system to the apparatus. In this study, we quantify the energy fluctuation of the quantum apparatus required for this physical process to occur autonomously. We first examine the so-called standard model of measurement, which is free from any non-trivial energy–time uncertainty relation, to find that it needs an external system that switches on the interaction between the system and the apparatus. In such a sense this model is not closed. Therefore to treat a measurement process in a fully quantum manner we need to consider a “larger” quantum apparatus which works also as a timing device switching on the interaction. In this setting we prove that a trade-off relation (energy–time uncertainty relation), \(\tau \cdot \Delta H_A \ge \frac{\pi \hbar }{4}\), holds between the energy fluctuation \(\Delta H_A\) of the quantum apparatus and the measurement time \(\tau \). We use this trade-off relation to discuss the spacetime uncertainty relation concerning the operational meaning of the microscopic structure of spacetime. In addition, we derive another trade-off inequality between the measurement time and the strength of interaction between the system and the apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. While a measurement process consists of the “information transfer” described by the time evolution of a composite system and the state reduction conditional to each measurement outcome, we treat only the former. See [7] for the relevant discussions.

  2. For a given total Hamiltonian H there is an ambiguity in dividing it into three parts as \(H=H_S + H_A + V\). In this paper, by imposing conditions which are explained later, this arbitrariness is reduced to some extent. Although there remains arbitrariness even with these conditions, our results do not depend on the choice of the division.

References

  1. Wheeler, J.A., Zurek, W.: Quantum Theory and Measurement. Princeton University Press, Princeton (1984)

    Google Scholar 

  2. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  3. Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1996)

    MATH  Google Scholar 

  4. Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer, Berlin (1995)

    MATH  Google Scholar 

  5. Heinosaari, T., Ziman, M.: The Mathematical Language of Quantum Theory. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  6. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Ozawa, M.: Quantum state reduction: an operational approach. Fortschr. Phys. 46, 615–625 (1998)

    Article  MathSciNet  Google Scholar 

  8. Ozawa, M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79–87 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  9. Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Busch, P.: On the energy-time uncertainty relation. Part II. Found. Phys. 20, 33–43 (1990)

    Article  ADS  Google Scholar 

  11. Busch, P.: The time-energy uncertainty relation. In: Muga, J.G., Sala Mayato, R., Egusquiza, I.L. (eds.) Time in Quantum Mechanics, 2nd edn, pp. 73–105. Springer, Berlin (2008)

    Google Scholar 

  12. Hegerfeldt, G.C.: Causality problems for Fermi’s two-atom system. Phys. Rev. Lett. 72, 596–599 (1994)

    Article  ADS  MATH  Google Scholar 

  13. Ahlfors, L.: Complex Analysis. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  14. Haag, R.: Local Quantum Physics. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  15. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Mandelstam, L., Tamm, I.G.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. USSR 9, 249–254 (1945)

    MathSciNet  MATH  Google Scholar 

  17. Busch, P.: On the energy-time uncertainty relation. Part I. Found. Phys. 20, 1–32 (1990)

    Article  ADS  Google Scholar 

  18. Pfeifer, P.: How fast can a quantum state change with time? Phys. Rev. Lett. 70, 3365–3368 (1993)

    Article  ADS  Google Scholar 

  19. Janssens, B., Maassen, H.: Information transfer implies state collapse. J. Phys. A: Math. Gen. 39, 9845–9860 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Uffink, J.: The rate of evolution of a quantum state. Am. J. Phys. 61, 935–936 (1993)

    Article  ADS  Google Scholar 

  21. Miyadera, T., Imai, H.: Heisenberg’s uncertainty principle for simultaneous measurement of positive-operator-valued measures. Phys. Rev. A 78, 052119-1–052119-5 (2008)

    Article  ADS  Google Scholar 

  22. Miyadera, T.: Uncertainty relations for joint localizability and joint measurability in finite-dimensional systems. J. Math. Phys. 52, 072105-1–072105-11 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Heinosaari, T., Miyadera, T.: Qualitative noise-disturbance relation for quantum measurements. Phys. Rev. A 88, 042117-1–042117-7 (2013)

    Article  ADS  Google Scholar 

  24. Miyadera, T.: Relation between strength of interaction and accuracy of measurement for a quantum measurement. Phys. Rev. A 83, 052119-1–052119-5 (2011)

    ADS  Google Scholar 

  25. Mead, C.A.: Possible connection between gravitation and fundamental length. Phys. Rev. 135, B849–B862 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Yoneya, T.: String theory and the space-time uncertainty principle. Prog. Theor. Phys. 103, 1081–1125 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics 1 & 2. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  29. Nachtergaele, B., Sims, R.: Locality estimates for quantum spin systems. New Trends in Mathematical Physics, pp. 591–614. Springer, Berlin (2009)

    Chapter  Google Scholar 

  30. Rastegin, A.E.: Upper bound on the global fidelity for mixed-state cloning. Phys. Rev. A 67, 012305-1–012305-3 (2003)

    Article  ADS  Google Scholar 

  31. Peres, A.: Measurement of time by quantum clocks. Am. J. Phys. 42, 552–557 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  32. Buzek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev. Lett. 82, 2207–2210 (1999)

    Article  ADS  Google Scholar 

  33. Bisio, A., Chiribella, G., D’ariano, G.M., Facchini, S., Perinotti, P.: Optimal quantum learning of a unitary transformation. Phys. Rev. A 81, 032324-1–032324-6 (2010)

    Article  ADS  Google Scholar 

  34. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885–2892 (1983)

    Article  ADS  Google Scholar 

  35. Milburn, G.J., Poulin, D.: Relational time for systems of oscillators. Int. J. Quantum Inf. 04, 151–159 (2006)

    Article  MATH  Google Scholar 

  36. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum time. Phys. Rev. D 92, 045033-1–045033-9 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555–609 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Miyadera, T., Loveridge, L., Busch, P.: Approximating relational observables by absolute quantities: a quantum accuracy-size trade-off. J. Phys. A: Math. Theor. 49, 185301-1–185301-17 (2016)

  39. Loveridge, L., Busch, P., Miyadera, T.: Symmetry and the relativity of states and observables in quantum mechanics. arXiv:1604.02836

Download references

Acknowledgments

I am grateful to anonymous referees for valuable comments, and to Leon Loveridge for many helpful remarks. This work was supported by KAKENHI Grant Number 15K04998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Miyadera.

Appendices

Appendix 1: Proof of Theorem 4

Proof

For simplicity, we assume that \(t_0=0\) and that \(\sigma (0)(=|\phi (0)\rangle \langle \phi (0))|\) is pure. Let us consider two states \(\Theta _0(0)\) and \(\Theta _t(0)\) \((0\le t\le \frac{\pi \hbar }{2 \Delta H_c})\) defined by

$$\begin{aligned} \Theta _0(0):= & {} \rho (0)\otimes |\phi (0)\rangle \langle \phi (0)| \\ \Gamma _t(0):= & {} \rho (0) \otimes |\phi (-t)\rangle \langle \phi (-t)|. \end{aligned}$$

These states evolve with the Hamiltonian \(H=H_S+H_A+V\). Let us denote the states at time t by \(\Theta _0(t)\) and \(\Gamma _t(t)\). While \(\Theta _0(t)\) may have a complicated form, \(\Gamma _t(t)\) has a simple form,

$$\begin{aligned} \Gamma _t(t)=\rho ^0(t)\otimes |\phi (0)\rangle \langle \phi (0)|, \end{aligned}$$

where we used Lemma 2. Because the fidelity between two states is invariant under unitary evolution [15], it follows that

$$\begin{aligned} F(\Theta _0(0), \Gamma _t(0)) =F(\Theta _0(t), \Gamma _t(t)). \end{aligned}$$

The left-hand side of the above equation becomes

$$\begin{aligned} F(\Theta _0(0), \Gamma _t(0)) =|\langle \phi (0)| \phi (-t)\rangle | \end{aligned}$$

and the right-hand side is bounded as

$$\begin{aligned} F(\Theta _0(t), \Gamma _t(t))\le F(\rho (t), \rho ^0(t)), \end{aligned}$$

where we utilized the fact that the fidelity decreases for restricted states [15]. Thus it holds that

$$\begin{aligned} |\langle \phi (0)|\phi (-t)\rangle |\le F(\rho (t),\rho ^0(t)). \end{aligned}$$

The left-hand side of this inequality represents the speed of time evolution of the apparatus and is bounded. Let us fix a value \(0 \le F_0 \le 1\) and denote by \(\tau _F\) the minimum time t attaining \(F(\rho (t), \rho ^0(t)) \le F_0\). Then we obtain,

$$\begin{aligned} \tau _{F_0} \cdot \Delta _{\alpha }(H) \ge 2 \hbar \arccos \frac{F_0 + 1-\alpha }{\alpha }. \end{aligned}$$

For this process to describe a measurement process, there must be an initial state attaining \(F(\rho (t), \rho ^(0))\le \frac{1}{\sqrt{2}}\). Thus we obtain

$$\begin{aligned} \tau \cdot \Delta _{\alpha }(H) \ge 2 \hbar \arccos \frac{\frac{1}{\sqrt{2}}+ 1 -\alpha }{\alpha }. \end{aligned}$$

\(\square \)

Corollary 2

For \(\alpha = \frac{1}{2}\left( \frac{1}{\sqrt{2}}+1\right) \), it holds that

$$\begin{aligned} \tau \cdot \Delta _{\alpha }(H) \ge \frac{2 \pi \hbar }{3}. \end{aligned}$$

Appendix 2: Proof of Theorem 5

Proof

We mimic the proof of Theorem 3. We consider the dynamics from time \(t=t_0\) to \(t=t_0+\tau \). Suppose that 0 and 1 are possible outcomes. We consider two states \(|0\rangle \) and \(|1\rangle \) satisfying \(P_0 |0\rangle = |0\rangle \), \(P_1|0\rangle = 0\), \(P_1|1\rangle = |1\rangle \), and \(P_0|1\rangle =0\) and define \(|\pm \rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle )\). We consider a pair of initial states \(|\pm \rangle \langle \pm | \otimes \sigma (t_0)\). The states to be compared are \(\rho _{\pm }:=\text{ tr }_{\mathcal {K}}[e^{-i \frac{H}{\hbar }\tau } (|\pm \rangle \langle \pm | \otimes \sigma (t_0)) e^{i \frac{H}{\hbar }\tau }]\). For an arbitrary operator \(\mathsf {A}\) on the system, it holds that

$$\begin{aligned}&\Bigg |\text{ tr }\Bigg [e^{-i \frac{H}{\hbar }\tau } (|(+\rangle \langle + | - |-\rangle \langle - | )\otimes \sigma (t_0)) e^{i \frac{H}{\hbar }\tau } (\mathsf {A}\otimes \mathbf {1})\Bigg ]\Bigg | \\&\quad \le 2 \Vert \mathsf {A}\Vert \sum _n \langle 0 \otimes \phi (t_0)| e^{i \frac{H}{\hbar }\tau } (\mathbf {1}\otimes \mathsf {E}_n) e^{-i \frac{H}{\hbar }\tau }|0 \otimes \phi (t_0)\rangle ^{1/2} \langle 1 \otimes \phi (t_0)| e^{i \frac{H}{\hbar }\tau }\\&\qquad \times \,(\mathbf {1}\otimes \mathsf {E}_n) e^{-i \frac{H}{\hbar }\tau }|1 \otimes \phi (t_0)\rangle ^{1/2} \\&\quad = 2 \Vert \mathsf {A}\Vert \sum _n P(n||0\rangle \langle 0|)^{1/2} P(n | |1\rangle \langle 1|)^{1/2} \\&\quad = 2 \Vert \mathsf {A}\Vert \left( P(0||0\rangle \langle 0|)^{1/2} P(0||1\rangle \langle 1|)^{1/2} +P(1||0\rangle \langle 0|)^{1/2} P(1||1\rangle \langle 1|)^{1/2}\right. \\&\qquad \left. +\, \sum _{n \ne 0,1} P(n||0\rangle \langle 0|)^{1/2} P(n||1\rangle \langle 1|)^{1/2} \right) \\&\quad \le 2\Vert \mathsf {A}\Vert \left( P(0||1\rangle \langle 1|)^{1/2} +P(1||0\rangle \langle 0|)^{1/2} \right. \\&\left. \qquad +\left( \sum _{n\ne 0,1} P(n||0\rangle \langle 0|)\right) ^{1/2} \left( \sum _{n \ne 0,1}P(n||1\rangle \langle 1|)\right) ^{1/2}\right) \\&\quad \le 6\Vert A\Vert \sqrt{P_{error}}. \end{aligned}$$

Thus we obtain \(D(\rho _+, \rho _-):= \sup _{\mathsf {A}: \Vert \mathsf {A}\Vert =1} | \text{ tr }[(\rho _+ -\rho _-)\mathsf {A}] | \le 6 \sqrt{P_{error}}\). To estimate the magnitude of this perturbation we consider unitary evolution governed by the Hamiltonian \(H_S\). In time \(\tau \), this “unperturbed” dynamics changes \(|\pm \rangle \) to a pair of orthogonal states \(|\pm '\rangle \) of the system. We then estimate \(F(\rho _{+}, |+'\rangle \langle +'|)\) and \(F(\rho _-, |-'\rangle \langle -'|)\). As \(|\pm '\rangle \) are orthogonal, we have

$$\begin{aligned}&F(\rho _+, |+'\rangle \langle +'|)^2 + F(\rho _-, |-'\rangle \langle -'|)^2 \\&\quad = \langle +'| \rho _+|+'\rangle + \langle -'| \rho _- |-'\rangle \\&\quad = \langle +'|\rho _+ |+'\rangle + \langle -'|\rho _+|-'\rangle +\langle -'| \rho _- - \rho _+|-'\rangle \\&\quad \le \text{ tr }[\rho _+] + D(\rho _+, \rho _-) \\&\quad \le 1 + 6 \sqrt{P_{error}}. \end{aligned}$$

Thus we can conclude

$$\begin{aligned} \min \{ F(\rho , |+'\rangle \langle +'|), F(\rho , |-'\rangle \langle -'|)\} \le \sqrt{ \frac{1+6 \sqrt{P_{error}}}{2}}. \end{aligned}$$

We assume \(F(\rho , |+'\rangle \langle +'|)\le \sqrt{ \frac{1+6 \sqrt{P_{error}}}{2}}\). Combining it with Theorem 2 by putting \(\rho (t_0)=|+\rangle \langle +|\), we obtain

$$\begin{aligned} \cos \left( \frac{\tau \Delta H_A}{\hbar } \right) \le \sqrt{ \frac{1+6 \sqrt{P_{error}}}{2}}. \end{aligned}$$

This ends the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyadera, T. Energy-Time Uncertainty Relations in Quantum Measurements. Found Phys 46, 1522–1550 (2016). https://doi.org/10.1007/s10701-016-0027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0027-6

Keywords

Navigation