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Abstract

The paper puts forward a branching-style framework for the anal-
ysis of determinism and indeterminism of scientific theories, start-
ing from the core idea that an indeterministic system is one
whose present allows for more than one alternative possible fu-
ture. We describe how a definition of determinism stated in terms
of branching models supplements and improves current treat-
ments of determinism of theories of physics. In these treatments
we identify three main approaches: One based on the study of
(differential) equations, one based on mappings between tempo-
ral realizations, and one based on branching models. We first
give an overview of these approaches and show that current ortho-
doxy advocates a combination of the mapping- and the equations-
based approaches. After giving a detailed formal explication of
a branching-based definition of determinism, we consider three
concrete applications, and end with a formal comparison of the
branching- and the mapping-based approach. We conclude that
the branching-based definition of determinism most usefully com-
bines formal clarity, connection with an underlying philosophical
notion of determinism, and relevance for the practical assessment
of theories.

∗This is a preprint version, as of April 27, 2015, of the article to appear in The British
Journal for the Philosophy of Science. Copyright by the authors.
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1 Introduction
In this paper we describe how a definition of determinism based on branch-
ing models supplements and improves current treatments of determinism of
scientific theories in physics. Our focus is on a definition of determinism that
takes a scientific theory as input, and delivers a verdict as to the theory’s
determinism as output, providing one bit of information. This may seem to
be a simple matter, but in practice, a number of subtle issues are involved:
In which form is a theory fed into the definition? When does a (semi-)formal
definition have a claim to providing an explication of the philosophical notion
of determinism, rather than something else? And what is the use of the def-
inition: Does failure of determinism signal a defect in the theory (this may
be a practitioner’s sentiment), or rather a useful insight about the theory
or perhaps even about metaphysical issues (which may be a philosopher’s
view)? It turns out that in the actual assessment of a physical theory as
deterministic or indeterministic, all these matters play an important role, so
that deciding about a theory’s determinism is a delicate practice rather than
a simple call upon a definition. Still, a general definition provides a useful
overarching perspective on the determinism of scientific theories, functioning
both as a guideline for practical assessment and as an interface to discussions
in other areas of philosophy. Our contribution is aimed at this general level.

In current philosophy of science there are three subtly different approaches
to defining determinism for physical theories, which we label DEQN, DMAP,
and DBRN. Figure 1 gives a schematic overview. According to DEQN, a
theory is assessed via a study of the behavior of its defining (differential)
equations. Definition DMAP is in terms of mappings between the linear
temporal developments of systems allowed for by the theory. Finally, DBRN
is in terms of partially ordered, branching models of such systems’ behavior.
Our main claim is that DBRN gives the most useful general definition of
determinism for physical theories, despite the fact that DMAP enjoys the
status of current orthodoxy in philosophy of science, and DEQN is typically
invoked by practitioners. We believe that this insight into the usefulness of
a DBRN-type analysis of determinism in fact carries over to other areas of
philosophy as well.

We argue for this main claim in the following way. In order to provide a
basis for discussion, in §2, we briefly describe the general background notion
of determinism and introduce the three approaches to determinism of scien-
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Figure 1: Three definitions of determinism for a theory: DEQN, based on
equations; DMAP, based on mappings between linear temporal realizations,
and DBRN, based on branching models.

tific theories in physics, DMAP, DEQN, and DBRN. §3 offers an overview of
currently dominant definitions of determinism, thereby showing in which way
DMAP enjoys the status of orthodoxy, and which role DEQN plays in the
actual assessment of theories. §4 provides the DBRN definition of determin-
ism in formal detail, including questions of topology. In §5, which comprises
the bulk of the paper, we compare the three mentioned approaches to defin-
ing determinism, with a view to making good our claim of the usefulness of
DBRN. We proceed in two steps: First (§5.1), we give three examples of the
application of the three approaches to physical theories, referring to New-
tonian mechanics, quantum mechanics and general relativity. We show in
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which way the DBRN definition comes naturally, including the construction
of an explicit mathematical model. A perhaps surprising result from our case
studies is that the DMAP definition, despite its status as official orthodoxy,
is hardly ever used, and that the DEQN definition is inappropriate when it
comes to quantum mechanics. In a second step (§5.2), we offer a formal com-
parison of the DMAP and the DBRN definitions. We point out the subtle
role that a class of isomorphisms plays for the DMAP analysis, and we show
that the DBRN and DMAP definitions can give rise to different assessments
in such a way that DMAP classifies a theory as indeterministic too easily.
Finally, §6 sums up the paper and recapitulates our conclusions.

2 Determinism in philosophy of science: three
approaches

The question whether our world is deterministic or not—whether the future
is genuinely open, or whether there is just one real possibility for the future—
is one of the fundamental concerns of metaphysics. And the impact of that
question is not limited to theoretical metaphysical speculation. Determin-
ism is a topic that cuts across many philosophical sub-disciplines, including
ethics, action theory and philosophy of science.

In philosophy of science, the question of determinism is addressed in re-
lation to scientific theories, and provides an important means of assessing
theories in various respects. There are many reasons to ask the question
whether a given scientific theory is deterministic or not. One is metaphys-
ical: We may be convinced that the theory gives an appropriate picture of
what the world is like, and therefore use the theory in order to find out
about the determinism or indeterminism of the world as a whole. Another
one is epistemological: Finding out whether a theory is deterministic, can
tell us something about in-principle limitations on predictions (or retrodic-
tions) that the theory affords. It has also turned out that asking the question
about determinism is often a good way to deepen one’s understanding of the
theory itself, since many subtle technical issues have to be addressed in order
to provide a verdict on whether the theory is deterministic or not.

Assessing a given theory as to its determinism or indeterminism is a
tricky issue. Earman [1986] has done a great service to the philosophy of
science community by tracing out in detail the questions involved for physical
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theories, and the decisions that need to be made along the way. His work
closely follows the discussions of practitioners, showing how issues such as
the behavior of differential equations, the identification of gauge degrees of
freedom, the notion of a physical state, and considerations of the physicality
of specific set-ups can all play a role. (We will mention some of these issues
later on.) Nevertheless, what is being done in assessing the determinism of a
theory, must in some important sense be the same in all cases, for otherwise,
there would be no unity of the notion of determinism of a theory to begin
with. It is therefore reasonable to ask what it is that is the same in all these
cases, that is, what the common definition of determinism is that is being
employed.

2.1 Determinism: the core idea and how to spell it out

The core idea behind the philosophical (metaphysical) notion of determinism
is that given the way things are at present, there is only one possibility for the
future to turn out.1 Accordingly, indeterminism (which we equate with the
negation of determinism) amounts to there being more than one possibility
for the future to turn out, given the way things are at present. This core
idea lends itself immediately to a branching representation of indeterminism:
graphically, indeterminism can be pictured as a tree-like structure of possible
histories overlapping at present and branching into the future. This idea of
branching histories has been rigorously developed in tense logic (by Prior
[1967] and Thomason [1970]), leading also to fruitful applications in other
fields such as the theory of agency (Belnap et al. [2001]; Horty [2001]). In a
branching approach, alternative future possibilities are represented by models
that are ‘modally thick’, in the sense of containing more than one overlapping
history (see Müller [2012] for a comparison with other modal notions). This
feature is central to the DBRN definition to be detailed below (see esp. §4.1).

The core idea of determinism appeals to future possibilities, but this
notion does not immediately transfer to mathematical physics. After all, the
concept of future possibilities does not belong to the repertoire of physics;
it thus needs to be spelled out what this concept amounts to in the context
of a given physical theory. Laplace’s [1820, p. 4] popular metaphor of a
demon computing the future of the universe suggests a characterization of

1It is possible to express this core idea without tensed notions, by saying that each
event permits at most one possible subsequent course of events. We will stick to the
tensed version in terms of present state and future development in what follows.
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determinism in terms of laws of nature. The resulting doctrine is called
nomological state-determinism: Given the laws and a state of the world,
there is only one way the world can turn out to be. Both the notion of state
and the notion of laws require analysis.2

Nomological state-determinism with respect to a given theory can be
spelled out in at least two different ways. The first requires a philosophical
concept of laws of nature and the notion of a possible world satisfying (or
being governed by) such laws. Less metaphysically, the concepts of a theory
and of a theory’s models rather than those of laws of nature and of possible
worlds can be taken as starting points. The DMAP analysis of determinism
employs exactly these two conceptual ingredients: A theory T is said to be
deterministic just in case whenever models w and v of T agree with respect
to their state at one time, then w and v agree with respect to their states at
all times.

The other way to spell out nomological state-determinism begins with the
observation that a theory’s mathematical representation typically supplies
all the resources needed for assessing the theory’s determinism: A theory’s
defining differential equations assume the role of laws of nature, and solutions
to these equations stand in for physically possible worlds. On the assumption
that different solutions to a theory’s defining equations represent different
physically possible worlds, determinism then boils down to the existence of a
unique solution for each appropriate initial value—this is the essence of the
DEQN approach.

2.2 The three approaches in more detail

We now turn to characterizing in more detail the three approaches: DEQN,
DMAP, and DBRN. All three presuppose that a theory is given to us as an
object to be diagnosed as to its determinism or indeterminism—the general
structure is depicted in Figure 1.3

2Thanks to Balázs Gyenis for a discussion of this point.
3As Wilson [1989] remarks, this picture may be unjustified when it comes to assessing,

e.g., the determinism or indeterminism of classical mechanics: Breakdowns of the deter-
minism of the theory will normally lead to the incorporation of additional assumptions or
additional bits of theory, rather than a flat-out admission of indeterminism. The point
remains, however, that at any given stage of practical assessment, one can consider ‘what’s
currently on the table’, and a definition of determinism has to apply at any such stage.
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DEQN. The equation-based definition of determinism represents the math-
ematical perspective of present physicists, focusing on a theory’s defining
(differential) equations. The leading question is whether for each initial con-
dition there exists a unique solution of these equations. It turns out that the
answer depends on what kind of differential equations one considers. For or-
dinary differential equations (ODEs) there are general methods that allow for
a conditional statement of the existence and uniqueness of solutions. In con-
trast to this tractable landscape of ordinary differential equations, there are
no useful general results concerning the existence and uniqueness of solutions
to partial differential equations (PDEs).

It is important to distinguish here between global existence and local
existence of solutions, where ‘global’ refers to the full range of the time
parameter, and ‘local’ indicates a neighborhood (possibly arbitrarily small)
of a given moment of time. The question of the existence and uniqueness of
solutions thus splits into two problems. First, is there a unique local solution
for each moment of time? And if the answer to that question is positive: Are
such local solutions uniquely extendible to the full, global range of the time
parameter? Now, for an ODE dx

dt
= f(x, t), the Peano theorem establishes

that for every initial condition there is at least one local solution of the
equation—provided that the function f is bounded and continuous. Further,
the Picard-Lindelöf theorem states that, provided the function f satisfies the
so-called Lipschitz condition, for every initial condition an ODE has at most
one local solution. These results extend to ODEs of arbitrary order and
carry over to sets of ODEs as well.4 As to the extendibility of local solutions
to an ODE to a global solution, in general, the answer is in the negative,
though for some classes of ODEs, under certain conditions, extendibility
holds. This is highly pertinent to the assessment of determinism, as it is
global uniqueness that naturally corresponds to determinism, whereas the
mentioned theorems conditionally assure the existence and uniqueness of
merely local solutions. Non-extendability then points to a possible failure
of determinism due to lack of a unique global solution—despite there being
unique local solutions everywhere (for some topological details, see §4.3).
Note thus that mathematics alone indicates how subtle determinism or its
failure, indeterminism, can be.

A disadvantage of DEQN is that not all theories can be described neatly
4For a rigorous statement of the mentioned theorems and some useful discussions, see

Arnol’d [1992].
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in a form that allows for the application of the DEQN recipe. A notable case
in point is quantum mechanics, for which the defining Schrödinger equation
is very well behaved, but which is often regarded as a main example of an
indeterministic theory: the Born rule, which is an integral part of quantum
mechanics, prescribes probabilities for possible measurement outcomes (see
§5.1.2 below for discussion).

DMAP. The mapping-based approach to defining determinism amounts
to current orthodoxy in philosophy of science (see §3). That approach takes
determinism to be a matter of the existence of suitable mappings in the
whole space of a theory’s temporal realizations. The approach is grounded
in Montague’s pioneering formal investigations of deterministic theories from
a logical point of view (Montague [1962]). Speaking abstractly, the diagnosis
of determinism according to DMAP is a two-stage affair. In a first step, all
of the individual realizations of the linear temporal development of systems
falling under the theory are put side by side. These are the separate possible
ways a world could be that are admitted by the theory. Depending on the
theory in question, these could be all the solutions to the theory’s defining
equations, or a class of temporal realizations that is given in some other,
perhaps more complex manner (quantum mechanics in a consistent histories
formulation would be a case in point here; see §5.1.2). In a second step, this
class of temporal developments is checked for instances of indeterminism,
in the following way: If there are two realizations that can be identified at
one time,5 but whose future segments after that time cannot be identified,
this signals indeterminism. If the test fails, that is, if all realizations that
can be identified at one time, can also be identified at all future times, then
the theory is deterministic. The type of mapping that is used to identify
different realizations at different times, plays a subtle but crucial role for this
definition (see §3).

The DMAP definition corresponds to a divergence analysis of future pos-
sibilities, which is popular in current metaphysics (Lewis [1986]). Individual
realizations (ways a world could be) are ‘modally thin’ in that they harbor
no possibilities. Possibilities are present only extrinsically, via the existence
of suitable mappings between the realizations.

5Instead of identification at a time, for some theories it is necessary to consider iden-
tification over an arbitrarily short interval of time, or over initial segments of temporal
developments.
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DBRN. An alternative understanding of future possibilities underlies the
branching-based DBRN characterization of the determinism of theories. Do-
ing justice to the philosophical idea of alternative future possibilities, in a
branching conception a single model is so construed that it can contain mul-
tiple possibilities. The existence of possibilities is intrinsic to a model, and a
model can therefore be ‘modally thick’. Rather than opting for linearly or-
dered temporal realizations as in DMAP, a branching model is generally only
partially ordered in a tree-like manner; the individual realizations form linear
chains (histories) within that partial ordering. Within one partial ordering,
these histories are bound together by overlapping up to a certain time, so
that there is no need to look for the identifying mappings needed for DMAP.
The diagnosis of indeterminism is very simple: If there is a model that is
not linearly ordered (such a model contains more than one history), then the
theory is indeterministic. A deterministic theory is one all models of which
are linear.

2.3 Representing indeterminism

Figure 2 shows what indeterminism, that is, failure of determinism, looks
like according to the three mentioned definitions. For DEQN, such a failure
comes down to a differential equation admitting globally different solutions
for the same initial data. For DMAP, indeterminism is witnessed by the
existence of two linear temporal realizations that can be mapped at one time
(lower arrow) but not at all future times (upper, crossed arrow). For DBRN,
a witness of indeterminism is a model that is branching rather than linear.

3 Orthodoxy: DMAP, with invocations of DEQN
In order to have a point of reference for our work on a formal branching-style
analysis of determinism, we first characterize the dominant approach to defin-
ing determinism for scientific theories. This dominant approach owes much
to the work of Jeremy Butterfield and John Earman. Their views are sum-
marized in two influential encyclopedia entries (Butterfield [2005]; Earman
[2006]) and an earlier book (Earman [1986]), on which we will focus.6 Both
authors define determinism along the lines of DMAP: any two realizations

6For affirmations of a similar general outlook, see, e.g., Bishop [2006] and Hoefer [2010].
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Figure 2: Failure of determinism according to the three definitions of deter-
minism: DEQN, DMAP, and DBRN.

(separate mathematical structures) that agree (can be suitably identified by
a mapping) at one time, have to agree at all later times.

Butterfield starts by stressing the need to study determinism in terms of
isolated systems. A model7 of a theory is ‘a sequence of states for such a single
system, that conforms to the laws of the theory’ (Butterfield [2005]). The
concept of state, as Butterfield notes, is philosophically loaded: states should
be maximal and intrinsic, and in many actual theories, different mathematical
states correspond to the same physical state (see below). This precludes a
direct use of DMAP in terms of identity. Butterfield accordingly appeals to
the notion of isomorphism:

Determinism is [. . . ] a matter of isomorphic instantaneous slices
implying that the corresponding final segments are isomorphic

7In this section we stick to Butterfield’s use of ‘model’ for what we generally call
‘realization’ or ‘history’, i.e., for a single, linear temporal time-course of development of a
system.
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(where ‘corresponding’ means ‘starting at the time of the instan-
taneous slice’). That is: we say that a theory is deterministic if,
and only if: for any two of its models, if they have instantaneous
slices that are isomorphic, then the corresponding final segments
are also isomorphic. (Butterfield [2005])

The notion of isomorphism appealed to above needs clarification. Butterfield
says that while he uses ‘model’ in the broad sense of philosophy of science, he
uses ‘isomorphism’ in the ‘usual sense used by logicians’ (Butterfield [2005]).
A theory’s model is thus not a model in the logical sense, but a realization.
For Newtonian, special relativistic, and general relativistic theories, a the-
ory’s realization takes the form 〈M, O1, . . . , On〉, whereM is a differentiable
manifold, and Oi are geometrical object fields on M. Realizations of that
form are used quite generally in discussions of a theory’s determinism in
philosophy of science.8

An isomorphism, in the logical sense, is a structure-preserving bijection
between the domains of two models, where the relevant structure depends on
the characteristics of a language: its class of constants, its relation symbols,
and its function symbols (Hodges [1993], 5ff.). There is no intuitively ade-
quate notion of isomorphism that is language-independent.9 Since Butterfield
does not say which language and which symbols need to be considered, the
admissible class of mappings (isomorphisms) remains underspecified. Chari-
tably one can read the reference to isomorphisms as a promissory note: For
each given theory, a linguistic presentation shall be specified, from which the
sought-for notion of isomorphism would follow.10

8Note that a defining feature of manifolds, local Euclidicity, together with the Hausdorff
property (typically assumed for manifolds in physics applications), implies that there is
no branching in M. As a consequence, there is no way for M to represent alternative
possible events;M is only interpretable as a totality of spatiotemporal events. One might
worry that to account for alternative possible events via branching, either local Euclidicity
or the Hausdorff property for spacetimes must be sacrificed. We will return to this worry
and dismiss it in section 4.3.

9See (Halvorson [2012]) for similar issues that arise for attempts to specify a theory in
language-independent terms.

10For general relativity the promissory note is repaid (although not in a strictly logical
sense, as no language is specified) in (Butterfield [1989]). ‘Isomorphism’ is used there in
the sense applicable to manifolds. A diffeomorphism is a smooth bijection between two
manifolds M and M′. Two models 〈M, Oi〉 and 〈M′, O′i〉 are called isomorphic iff there
is a diffeomorphism d between the manifolds M and M′, and for the objects Oi, we have
d∗(Oi) = O′i (where d∗(Oi) is the object Oi dragged along by the diffeomorphism d). The
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In view of the difficulties involved in specifying the correct notion of
isomorphism, it is tempting to phrase the concept of determinism in terms
of identical instantaneous states, but this calls for carefully distinguishing
between states as represented within a given theory and physical states. This
issue is stressed by Earman, whose point of departure is the explication of
determinism for pre-relativistic, pre-quantum theories. Such theories specify
a set of candidates for genuine physical magnitudes, call it O. It is assumed
that each such magnitude takes a definite value at every moment of time
t ∈ R. The explication then is as follows:11

A history H is a map from R to tuples of values of the basic
magnitudes, where for any t ∈ R the state H(t) gives a snap-
shot of behavior of the basic magnitudes at time t. The world is
Laplacean deterministic with respect to O just in case for any pair
of histories H1, H2 satisfying the laws of physics, if H1(t) = H2(t)
for some t, then H1(t) = H2(t) for all t. (Earman [2006], 1370)

Here, the correspondence between the set O and the set of genuine physical
states is crucial. Since elements of O may have mathematical surplus struc-
ture, the failure of the requirement that ‘if H1(t) = H2(t) for some t, then
H1(t) = H2(t) for all t’ need not signal indeterminism. It is a typical situ-
ation in physics, and not some mere philosophical possibility of theoretical
underdetermination, that a theory’s mathematical descriptions correspond
many-one to physical states, so that the identity in the above quotation
needs to be replaced by a broader notion of agreement. Consider classical
electromagnetism, where the electric field E and the magnetic field B are
derived from a scalar potential ϕ and a vector potential A. The relation be-
tween A, φ and E,B is many-one: for any smooth function ψ, the potentials

definition of determinism is then as follows:

A theory with models 〈M, Oi〉 is S-deterministic, where S is a kind of region
that occurs in manifolds of the kind occurring in the models, iff: given any
two models 〈M, Oi〉 and 〈M′, O′i〉 containing regions S, S′ of kind S respec-
tively, and any diffeomorphism α from S onto S′:
if α∗(Oi) = O′i on α(S) = S′, then:
there is an isomorphism β from M onto M′ that sends S to S′, i.e.
β∗(Oi) = O′i throughout M′ and β(S) = S′. (Butterfield [1989, 9])

11Although Earman focuses on future- and past-oriented determinism, whereas Butter-
field analyses future-oriented determinism, each explication can be readily extended to
accommodate both versions of determinism.
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A, ϕ, and the potentials

A′ = A +∇ψ, ϕ′ = ϕ− ∂ψ

∂t

represent the same physical situation, and the same E and B fields. The
transformation A 7→ A′, ϕ 7→ ϕ′ is called a gauge transformation. The arbi-
trariness of the choice of ψ means that the theory has surplus mathematical
structure (‘gauge freedom’). For a theory with gauge freedom, the fact that
two realizations have the same mathematical state at a certain t, but different
states at some later t′, is not of itself indicative of indeterminism: it could
also be that the states at t′ represent the same physical state by different
mathematical means. It will not do to demand that only theories without
gauge degrees of freedom are considered, since there are good scientific rea-
sons for allowing that kind of freedom in our physical theories.12 Thus, to
decide the question of determinism of a theory requires to decide whether
the divergence of realizations results from gauge freedom or not. This is con-
ceptually difficult, as one main motivation for believing gauge freedom to be
operative in a theory is to maintain determinism. We will return to this issue
in a more formal setting in §5.2, where we compare the DMAP and DBRN
approaches to determinism.

Our final observation is that although both Butterfield and Earman ex-
plicate determinism in terms of mappings (DMAP), they both add a gloss to
the effect that for theories given via differential equations, their definitions
correspond to the existence of unique solutions to such equations,13 which
amounts to DEQN. The nature of this correspondence is, however, left open.

Four marks of orthodoxy To summarize, the current orthodoxy in treat-
ing the question of determinism has the following four marks:

1. A theory is represented by the class of its realizations (‘models’)—
possible total time courses of evolution of a system to which the theory

12As (Earman [2006], 1381) points out, attempts at treating gauge degrees of freedom
as physical quantities subject to dynamical laws are generally not fruitful.

13Cf. (Butterfield [2005], 98): the given ‘definition [. . .] corresponds to such a set of
equations having a unique solution for future times, given the values at the initial time’.
Similarly, (Earman [2006], 1371f.): ‘[. . . ] [T]he laws of physics typically take the form of
differential equations, in which case the issue of Laplacean determinism translates into the
question of whether the equations admit of an initial value formulation, i.e. whether for
arbitrary initial data there exists a unique solution agreeing with the given initial data’ .
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applies. The realizations are ‘modally thin’: a single realization does
not contain different possibilities. Such possibilities (whose existence
implies indeterminism) thus have to be represented via relations be-
tween realizations.

2. Accordingly, the question of whether a theory is deterministic or not,
is understood as a question about the structure of the class of its real-
izations, to be spelled out in terms of suitable mappings: determinism
means that agreement of two realizations at one time implies agreement
at all later times.

3. The notion of ‘agreeing at a time’ is crucial, and gives rise to complica-
tions. The agreement is meant to be with respect to physical states of
the system, but the class of realizations contains mathematical objects
that may have surplus structure, for instance due to gauge freedom.

4. It is assumed that the practical assessment of determinism or indeter-
minism of a given theory mostly depends on the behavior of that the-
ory’s defining differential equations: a strong link is claimed between
determinism in the mapping sense (DMAP) and the well-posedness of
the initial value problem, if the laws of a theory in question are formu-
lated by differential equations.

Points (1)–(3) show that the orthodox definition of determinism amounts
to DMAP, with point (3) constraining the suitable mappings. Point (4),
however, makes a strong link to a DEQN-style definition of determinism.

4 Branching-style determinism (DBRN)
We turn now to a branching characterization of determinism. As we said,
that characterization is an attempt to capture directly the core idea of deter-
minism: the present has exactly one possible future. The crucial concept of
alternative future possibilities is analyzed by means of branching histories; a
system is assessed as indeterministic iff 14 some initial segment of its evolution
can be continued in more than one alternative way. Although a branching
analysis of future possibilities is rarely used in philosophy of science, it has
been rigorously developed in logic and its applications, for instance in theories

14We follow the custom of using ‘iff’ as an abbreviation for ‘if and only if’.
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of agency. The branching concept is also sometimes used in natural sciences
(see below). The general definition of determinism according to DBRN is as
follows:

Definition 1 (Determinism of a theory) A theory is indeterministic iff
it has at least one faithful indeterministic model. The theory is deterministic
iff all of its faithful models are deterministic.

So far, this is of course just passing the buck. To see in which way branching is
involved, we need to specify a sense of ‘model’, ‘faithful’ and ‘indeterministic’
such that a model of a theory can be both faithful and indeterministic.

4.1 Models and realizations

In the orthodox DMAP approach described in §3, ‘model’ is often used as a
synonym for ‘realization’, or ‘history’. Our proposed usage here is broader: A
model of a theory is whatever fulfills the requirements of that theory. Thus,
a model can be modally thick (containing structures representing alternative
possibilities), or modally thin (containing no such structures). ‘Realization’,
on the other hand, is tied to a linear temporal development, and thus, real-
izations are always modally thin. More formally, a realization 〈T,<, S, f〉 of
a theory specifies a function f from a linearly ordered set of times 〈T,<〉 to
mathematical states S.15 The function f must be admitted by the dynam-
ics of the theory; typically, it must be a solution to the theory’s dynamical
equations given some initial data.

With a view to Def. 1, we are looking for a broader formal notion of a
model of a theory that allows such a model to be intrinsically indeterministic.
We can take a lead from logic (see for instance (Thomason [1970])), where
indeterministic models are discussed in the context of so-called ‘branching
time’,16 and from the stochastic processes literature (for example, (van Kam-
pen [2007], Ch. III)), in which a model of a stochastic process includes not
just a single realization, but many incompatible realizations. The consis-
tent histories approach to quantum mechanics (see (Griffiths [2002]) and

15We will mostly take 〈T,<〉 to be 〈R, <R〉, but we also allow for discrete time or other
temporal structures.

16See also (Belnap et al. [2001], Ch. 7A) and, for the related framework of branching
space-times, (Belnap [1992, 2012]).
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§5.1.2 below) also employs a ‘branching time’ representation. In all these ap-
proaches, a model is allowed to be ‘modally thick’ by representing different,
incompatible future possibilities in one mathematical structure.

We will thus take a model 〈M,<, S, f〉 to specify a function f from a pos-
sibly branching, tree-like partial ordering 〈M,<〉 of moments to the allowed
states S, and such that the restriction of f to each realization accords with
the theory’s dynamics. Formally, we require of 〈M,<〉, for x, y, z ∈M :

• asymmetry: if x < y, then not y < x,

• transitivity: if x < y and y < z, then x < z,

• backwards linearity: if x < z and y < z, then either x = y or x < y or
y < x, and

• connectedness: for any x and y there is some z such that z 6 x and
z 6 y.

A chain in 〈M,<〉 is a linear subset; by virtue of Zorn’s lemma, there are
maximal chains in M . A tree-like order 〈M,<〉 can contain more than one
maximal chain, as the lower right of Figure 2 (see also Figure 3).17 It is
usually sensible to require that all maximal chains inM be order-isomorphic,
for example, all isomorphic to 〈R, <R〉.

Based on this notion of a model, the following definition of determinism
is adequate:

Definition 2 A model 〈M,<, S, f〉 is indeterministic iff 〈M,<〉 contains
more than one maximal chain. The model is deterministic iff 〈M,<〉 contains
just one maximal chain.

The existence of more than one maximal chain in 〈M,<〉 means that there
is more than one realization in the model 〈M,<, S, f〉, since each maximal
chain h ⊆ M in the model specifies a realization 〈h,<|h , S, f|h〉, simply by
restricting f to h, as 〈h,<|h〉 is a linear order. Accordingly, a deterministic
model of a theory contains just one realization, whereas an indeterminis-
tic model bundles together a number of realizations in one branching tree.
These realizations branch in the following sense: for any pair h, h′ of distinct

17Provably, M contains more than one maximal chain iff it contains at least one upward
fork, i.e., three moments x, y, z for which x < y, x < z but there is no common upper
bound for y and z, which holds iff neither y 6 z nor z < y.
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maximal chains, h ∩ h′ 6= ∅ (by connectedness), and for every x ∈ h ∩ h′,
we have f|h(x) = f(x) = f|h′ (x). Viewed from such an x, the realizations
〈h,<|h , S, f|h〉 and 〈h′, <|h′ , S, f|h′ 〉 thus describe (alternative) possible future
developments of the system in question. We may therefore interpret real-
izations as (alternative) possibilities, and call them possible histories. As a
single model can contain different histories, a model in our sense can capture
modality intrinsically.

4.2 Faithfulness

There is one loose end left to tie: So far, it would be possible to produce an in-
deterministic model from a linearly ordered, deterministic model 〈M,<, S, f〉,
simply by adding a disjoint copy of a final segment of M to create a forward-
branching structure, and extending f on the new branch by copying. This
would be indeterminism on the cheap. We will require a faithful branch-
ing model to contain no difference in the ordering without a corresponding
difference in states.18 On a strict reading, faithfulness requires a difference
in states at, or immediately after, the splitting of any two histories. In the
case of what we will call case-(b) branching (such that branching histories
have a first moment of disagreement, see §4.3), this boils down to the re-
quirement that the first moments of difference in two histories have different
states assigned.19 In case-(a) branching, where there is a maximal moment
in the intersection of two histories, faithfulness means that states should be
different immediately after such a maximal moment. This can be made more
precise by adding a further structure that identifies moments occurring at
the same time in different histories.20

In §5.2, where we construct a DBRN representation of a system out of
a DMAP representation of a system, we will use a weaker concept of faith-
fulness which simply requires that two branching histories must be different

18In some cases we may want to drop the requirement of faithfulness. E.g., if we know
that a process is indeterministic and thus, has to be modeled by a branching model, but
the assigned states agree on two different maximal chains, this may signal that the theory
is incomplete. In the present context, however, our aim is to diagnose (in)determinism,
and so we are methodologically required to assume completeness.

19In the case of Figure 3(b), we thus want f(01) 6= f(02).
20See (Belnap et al. [2001], 194–196) on instants as partitions of the set of moments.

In the case of Figure 3(a), if these instants have the plausible form 〈t1, t2〉 for t ∈ R+, so
that we can identify the time of a moment t1 on the upper track with the time of t2 on the
lower track, we thus want that for any t > 0 there is some t′ < t, t′ > 0, s.t. f(t′1) 6= f(t′2).
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state-wise. In that section we will also discuss how to formally represent
sameness of physical states, given that physical states might have non-unique
mathematical representations, resulting from gauge freedom or from the sym-
metries of a theory.

4.3 Two types of branching topologies

Consider a branching order 〈M,<〉 in which there are two maximal chains
h1 and h2, both order-isomorphic to R. What does such a model look like?
Mathematically, this is equivalent to asking how we can glue together two
copies of the real line, Ri = {〈t, i〉 | t ∈ R}, i = 1, 2, via an equivalence
relation ∼ on R1∪R2 such that M = R1∪R2/ ∼, with the obvious ordering.
Let us agree that the branching should happen at 0, so that 〈t, 1〉 ∼ 〈t, 2〉
for t < 0 but not for t > 0. There are two possibilities, pointing to two
different sensible options for branching topologies: Either (case (a)), we add
the condition 〈0, 1〉 ∼ 〈0, 2〉—in this case, the histories h1 and h2 have a
maximum 0 := {〈0, 1〉, 〈0, 2〉} in their intersection. Or (case (b)) we demand
〈0, 1〉 6∼ 〈0, 2〉—then, there is an upper bounded chain in M that has two
different minimal upper bounds 0i := {〈0, i〉}, i = 1, 2. See Figure 3 (a) and
(b), respectively. Both of these cases are related to a failure of determinism
in the following sense (assuming that the histories after the branching repre-
sent physically distinct developments of the system; the mentioned times are
arbitrary): Both in case (a) and in case (b), at t = −1, there is a unique state
of the system, but at t = 1, two different states are possible, corresponding
to different moments 11 and 12. So, the system at t = −1 has two alternative
possible future developments. The cases are different, however, in that at
t = 0, there is a unique state in case (a), but not in case (b). In case (a),
the branching of the system’s development happens immediately after t = 0,
whereas in case (b), the branching has happened already at t = 0, but at
no time prior to t = 0. Considered as topological spaces,21 if one imposes
the plausible restriction that open subsets of R in the copies away from the
branching should be open and the resulting space should be connected, one
sees that case (a) fails to be locally Euclidean (any open set containing 0 has
to contain some initial segment of both tracks), whereas case (b) is a gener-
alized manifold (a locally Euclidean space, in which however the Hausdorff

21For topological notions, see, e.g., (Munkres [2000]).
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(a)
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11

12

(b)
-1

11
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01

02

Figure 3: Two types of branching. Both (a) and (b) depict two continuous
histories branching at point 0. In (a), point 0 is the shared maximum in the
intersection. In (b), the intersection of the histories has no maximum, and
points 01 and 02 are different minimal upper bounds of the intersection.

condition fails for 01 and 02).
In terms of the behavior of differential equations, that is, taking the

function f to be provided by solutions to such equations, case (a) represents
a situation in which unique initial data can be given for some time t, but
there is no unique local solution immediately after t. Case (b) represents a
different and somewhat trickier affair, since a system of differential equations
giving rise to this case need not exhibit any failure of local uniqueness. In
Figure 3(b), at any time t− < 0, there is a unique solution for at least a
little while (e.g., until t−/2), and for the moments t+i , where t+ > 0 and
i = 1, 2, the development along hi is unique for all times. Indeterminism
reigns, however, in the sense that, like in case (a), the state at any t < 0 does
not determine a unique state for all t > 0. In a discussion of such cases from
the point of view of DEQN, it is not local well-posedness (this is satisfied),
but the existence of solutions for some longer time, or the extendability of
locally unique solutions past some crucial time, that is decisive. A branching
representation helpfully allows one to understand indeterminism as a local
affair even in case (b): In a topologically obvious sense, the points 01 and 02,
which witness the first instance of non-uniqueness, are actually closer than
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any two distinct points in case (a); they are non-Hausdorff related, meaning
that they cannot be separated by disjoint open sets.

A worry may arise at this point that the DBRN approach permits branch-
ing within a system’s history, or that time (or space-time, in a spatiotem-
poral extension of the framework—see (Belnap [1992])) is not Hausdorff. A
physical spacetime without the Hausdorff property has dire consequences,
described in (Earman [2008]).22 The worry, however, is groundless, since in
each possible realization, time has the topological structure of R (or, respec-
tively, space-time is a Hausdorff manifold). It is just that an indeterministic
model represents the different possibilities for a system’s future temporal de-
velopment in one single structure. A mapping-based representation of the
system has to represent exactly the same modal facts; it just brushes under
the carpet the topological aspect of the development of the system’s states
by using a non-overlapping representation.—For a discussion of topological
facts about (in)determinism in space-time theories, as well as for a proof that
each spacetime in Belnap’s (1992) theory of branching space-times is Haus-
dorff, see (Placek and Belnap [2012]), (Müller [2013]), and (Placek, Belnap,
and Kishida [2014]).

5 Comparing the approaches
In comparing the three approaches, DEQN, DMAP, and DBRN, we will focus
on two aspects. First, we would like to learn how the three approaches work
in actual cases, that is, how a particular theory (or a system falling under
the theory) is assessed through the lens of each approach. To this end, we
explore three examples: Norton’s dome (§5.1.1), quantum mechanics (§5.1.2),
and general relativity (§5.1.3). We draw some general conclusions from these
examples in §5.1.4.

Second, since both DMAP and DBRN offer rigorous definitions of de-
terminism, we will investigate how the respective representations of deter-
minism and indeterminism are formally related. Do these two approaches
always deliver the same verdicts with respect to a theory’s determinism or
indeterminism? Answers to these questions might cast some light on which
of the approaches provides the more adequate analysis of determinism. We
turn to a formal comparison of DMAP and DBRN in §5.2.

22The same paper voices the worry that branching implies a failure of the Hausdorff
property.
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5.1 Case studies

5.1.1 Norton’s dome

Norton’s (2008) dome is a system of Newtonian physics whose indeterminism
results from a failure of the Lipschitz condition mentioned above in §2. At
time t = 0, a point particle of unit mass is at the apex r = 0 of a dome,
whose surface satisfies the constraint h = (2/3g)r3/2, where g is the strength
of the homogeneous vertical gravitational field, r is the radial distance from
the apex, and h is the vertical distance from the apex. Since the dome is
discussed in the context of point particle mechanics and the mass point is
restricted to one dimension, the set of system states is the set of possible
radial distances, S = R.23

Newton’s second law yields

d2r/dt2 = r1/2. (1)

Given the initial data r(0) = 0, dr/dt(0) = 0, eq. (1) has a stationary solution
r∞(t) = 0 as well as a family of solutions rb, parametrized by the real-valued
parameter b > 0:

rb(t) =

{
0 if t 6 b

(t− b)4/144 if t > b.
(2)

Let us look at the three approaches to defining determinism in turn.
DEQN offers the most straightforward analysis, delivering the verdict of in-
determinism: There is no unique solution to eq. (1) for the initial data. On
its own, DEQN does not say how massive this indeterminism is, that is, ,
how many different possibilities there are. There are continuum many func-
tions rb(t), b ∈ R+

0 , which suggests continuum many possibilities. But on the
assumption that the point particle has been located at the apex of the dome
forever before t = 0, all rb-type solutions are related by a time-translation
symmetry, which suggests that all these solutions represent a single possibil-
ity.24 In that case, there would be exactly two possibilities, r∞ and rb.

23We stick to this simple choice of S here in order to keep the exposition simple. Nothing
of substance is changed if we take the system’s state at a moment to specify, not just the
particle’s radial distance from the apex (S = R), but that radial distance together with
the particle’s instantaneous momentum (S = R2).

24It is important that the particle has been at the apex for all t < 0. If there is some
first time t0 < 0 at which the particle is placed on the apex, the solutions have to satisfy
rb(t) = 0 only for t0 6 t 6 b, and will not be time-translation symmetric. This would
speak against counting them as just one possibility.
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To apply the DMAP analysis, one needs first to have a grip on the set
of realizations. Recall that the canonical form of a realization is based on
manifolds (see §3), and observe that the real line is a differentiable manifold.
Accordingly, each 〈R, <R, rb〉 as well as 〈R, <R, r∞〉 is a realization. To decide
on determinism, we then ask if realizations with isomorphic initial segments
are globally isomorphic. As above, any two rb-type realizations are plausibly
related by a time-translation trt : rb → rb+t, a clear case of isomorphism.
Thus, these realizations are not witnesses for indeterminism. Nevertheless,
DMAP delivers the verdict of indeterminism, which is secured by the exis-
tence of the r∞ solution: This solution cannot be derived from any of the rb
by a time-translation.

DBRN calls for a construction of a branching-style model for Norton’s
dome. We begin with an auxiliary set M̃ := {〈t, b〉 | t, b ∈ R, b > 0}, define
the relation ≈ on M̃ by putting 〈t, b〉 ≈ 〈t′, b′〉 iff t = t′ and (b = b′ or (t 6
b and t 6 b′)) (which is provably reflexive, symmetric, and transitive) and
define our base set M as the quotient structure, (i) M := M̃/≈. We write
elements of M as [t, b] := {〈t′, b′〉 ∈ M̃ | 〈t′, b′〉 ≈ 〈t, b〉} and define the
relation l on M as (ii) [t, b] l [t′, b′] iff t < t′ and [t, b] = [t, b′]. It can be
proved that 〈M,l〉 satisfies the postulates for a tree-like partial ordering.
〈M,l〉 has a family {hb}b∈R+

0,∞
of maximal chains, where R+

0,∞ = R+ ∪{0}∪
{∞}. We will associate h∞ with the stationary solution, and hb, for 0 6 b <
∞, with a solution in which the mass point begins to move immediately after
time t = b.

We now construct the actual branching model. The function f for the
model is (iii)

f([t, b]) =

{
0 if t < b

(t− b)4/144 if t > b
(3)

Now we can define:

Definition 3 The branching model for Norton’s dome is the quadruple 〈M,l,
R, f〉, where M,l, and f are defined by conditions (i), (ii), and (iii), respec-
tively.

Note that the model has a ‘stationary’ history, 〈h∞,l,R, f|h∞〉, representing
the mass point remaining stationary on the dome’s apex, as well as a family of
‘dynamic’ histories of the form 〈hb,l,R, f|hb〉 (0 6 b <∞), representing the
mass point remaining on the apex till time b, and then moving in accordance
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with eq. 2.25 The model exhibits (a)-type branching, since every intersection
hb ∩ hb′ (with b 6= b′) has a maximum [c, c] (where c = min{b, b′}). Finally,
the model constructed above is faithful in our sense: If two maximal chains
hb and hb′ branch at a moment, then there is a difference in states assigned
to elements of hb and of hb′ immediately after that moment. The verdict thus
is: Norton’s dome is indeterministic.

We draw some morals from the application of DEQN, DMAP, and DBRN
to Norton’s dome in §5.1.4—after discussing two more cases.

5.1.2 Quantum mechanics

With respect to the determinism question, standard quantum mechanics is
the odd one out: That theory is based on a very well behaved differential
equation (suggesting determinism), but its essential ingredient is a proba-
bilistic algorithm that answers what, and how probable, are the possible
results of a measurement (which suggests indeterminism). In order to pass
a final verdict about the determinism of quantum mechanics one would thus
need to resolve the conflict between these two aspects of the theory (known
as the measurement problem).

It is our contention, however, that controversies surrounding determinism
of quantum mechanics partially derive from a failure to distinguish between
various senses of determinism, as captured in the three approaches, DEQN,
DMAP, and DBRN. Without thus proposing a solution to the measurement
problem, or any other grand thing, we will sketch how determinism of quan-
tum mechanics is to be analyzed through the lens of each of the three ap-
proaches, focusing in particular on a branching-style representation of that
theory.

For the DEQN approach, the main fact is the form of the Schrödinger
equation,

i~
∂ψ

∂t
= Ĥψ

which governs the temporal evolution of isolated quantum-mechanical sys-
tems. The question then is whether for different Hamiltonians Ĥ (which
characterize different quantum-mechanical systems) the Schrödinger equa-
tion yields a set of differential equations that has a unique solution for each
appropriate initial value. There is a wealth of information on this subject

25Note that the model involves continuous branching, since if the mass point is at rest
at some t > 0, it can start moving at any later time.
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(and related subjects) in the mathematical literature.26 One class of results
points to Newtonian systems for which uniqueness of solutions does not ob-
tain, but the quantum counterparts of which are deterministic: in contrast
to the former systems, for the latter systems there exist unique solutions to
the ensuing set of equations. Such results suggest that quantum mechanics
is more deterministic than classical mechanics. On the other hand, certain
Hamiltonians27 allow for multiple temporal evolutions. It is then a matter of
controversy whether those Hamiltonians are physically meaningful. Although
this question is pertinent to the issue of determinism of quantum mechanics,
it is clear that considerations of the evolution equation alone fail to pro-
vide an adequate picture of quantum mechanics—DEQN simply ignores the
quantum probabilistic algorithm.

One might hope that DMAP may be more helpful, as it is not restricted
to comparing solutions to the Schrödinger equation: Its data for comparison
are the theory’s realizations, and there seems to be no obstacle to include
in the latter other entities referred to by quantum mechanics, in particular,
measurement results. There is, however, virtually no DMAP-style analysis
of quantum mechanics, although a Montague-style language-based notion of
realization seems to be readily available.

In contrast to the above mentioned modally-flat notion of realization,
DBRN calls for producing branching models for quantum mechanics. There
is a formalism for standard QM, the so-called consistent histories approach
((Gell-Mann and Hartle [1993]), (Griffiths [2002])), that explicitly employs a
branching time representation. A family of histories is a set {Y h | h ∈ H}
of mutually exclusive histories (chains of projectors) of the form28

Y h = P 1
h � P 2

h � · · · � Pm
h ,

where at each chosen time ti, i = 1, . . . ,m, the family contains projectors P i
h

from an exhaustive set of ni mutually exclusive projectors P i
1, . . . , P

i
ni
,

P i
j · P i

k = δjkP
i
j ;

ni∑
j=1

P i
j = I.

26A good introduction to this field is (Earman [1986]). For a more mathematically
advanced treatment, see (Earman [2006]).

27Those that admit multiple self-adjoint extensions; cf. (Earman [2006], 1401).
28A more general setup in terms of POVMs is possible; see, e.g., (Peres [2000]). See also

(Müller [2007]) for more details about the relation of consistent histories and branching
time representations.
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A consistency condition constrains the set of admissible families of histories.
Such a family of histories directly specifies a model in the sense of Defini-
tion 2, and when such a family has more than one member, that model is
indeterministic. Topologically, the indeterminism is of the case-(b) variety,
as at the times chosen, different projectors are assigned. This assignment of
different projectors also ensures that the branching model is faithful in our
sense.

The formalism can be, and usually is, extended to allow for a branch-
dependent selection of the set of projectors at any given moment. This also
leads to a faithful branching model in our sense, and the same criterion for
(in)determinism applies: once a family contains more than one history, it is
indeterministic. Note that the formalism allows one to assign probabilities for
the members of a branching family in agreement with experimental results.

5.1.3 General relativity

In philosophical discussions of the determinism of general relativity (GR), the
DMAP approach is the most prominent one. As the theory has realizations
of the required form (differentiable manifolds), and a notion of isomorphism
for segments of such models can be rigorously defined (via diffeomorphisms),
GR is amenable to the DMAP analysis. Since the late 1980’s the DMAP
analysis has been applied to GR in a particular way in the philosophy of
physics, having been driven by Einstein’s hole argument.29 This argument is
an appeal to a special transformation on manifolds, the so-called hole diffeo-
morphism, which is used to produce a different manifold out of a given one,
with the resulting pair of manifolds (seemingly) witnessing indeterminism of
GR. Importantly, all parties in the debate were unanimous that this phe-
nomenon does not show indeterminism in GR. The consensus is rather that
the argument raises the question whether two differential manifolds related
by a diffeomorphism represent one physical spacetime or two.

In contrasts to philosophers’ uses of the DMAP analysis in the hole ar-
gument, physicists concerned with the (in)determinism of GR appeal to the
DEQN analysis. They investigate whether or not GR admits a globally well-
posed initial value problem, that is, whether the data on an appropriate
space-like slice of a spacetime can be uniquely extended to that spacetime.
This question is typical of the DEQN approach.30 In this section we investi-

29See (Earman and Norton [1987]) and (Butterfield [1989]).
30Since physicists see the well-posedness of the initial value problem as a criterion any
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gate whether the practitioners’ approach to the initial value problem exhibits
similarities to DBRN characterization of determinism, and whether these can
be used to construct branching models for GR.

The basic context of the practitioners’ debate on the initial value prob-
lem in GR is provided by so-called globally hyperbolic spacetimes.31 Such
spacetimes admit a global time function; surfaces of constant value of such a
function are Cauchy surfaces. Thus, for a globally hyperbolic spacetime we
are in the familiar setting of a global time with momentary states (identi-
fied with Cauchy surfaces with appropriate data on them).32 In this context
the starting point of both the determinism issue and the initial value prob-
lem is the question of whether a 3-dimensional Riemannian manifold with
appropriate data on it fixes a unique 4-dimensional Lorentzian manifold of
a specified kind. ‘A specified kind’ refers here to a particular form of Ein-
stein’s field equations, depending on whether a spacetime includes matter,
then what the model for matter is, and whether the equations include a non-
zero cosmic constant Λ, or not. These decisions are also highly relevant to
what the appropriate initial data (3-dimensional Riemannian manifolds with
some objects on them) are.

We consider here only globally hyperbolic spacetimes that are vacuum
solutions of the Einstein equations, that is, for which the Ricci curvature
tensor Rαβ = 0. In this case the initial data are triples 〈M, g, k〉, where M
is a 3-dimensional manifold, g is a Riemannian metric, and k a symmetric
covariant tensor (coding incremental changes of g in the direction normal
to the manifold). Further, for 〈M, g, k〉 to be embeddable in a globally hy-
perbolic spacetime satisfying Einstein’s equations, it should satisfy certain
equations, called initial value constraints. Triples 〈M, g, k〉 satisfying these
constraints are called ‘vacuum data sets’.

The following theorem (Choquet-Bruhat and Geroch [1969]) is relevant
to whether or not GR is deterministic in the vacuum case:
Let 〈M, g, k〉 be a vacuum data set. Then there is a unique, up to isometry,
maximal vacuum Cauchy development (MVCD) of 〈M, g, k〉.

good theory should satisfy, their interest is biased toward determinism. It is thus striking
to see them concede that in some cases GR is indeterministic.

31A spacetime is globally hyperbolic if it admits a Cauchy surface—for further pertinent
definitions see (Wald [1984], 200ff.).

32Another determinism-friendly feature of a globally hyperbolic spacetime is that the do-
main of dependence of a Cauchy surface is, by definition, identical to the whole spacetime,
which, roughly speaking, excludes influences coming from nowhere.
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To explain, a vacuum Cauchy development of 〈M, g, k〉 is a globally hyper-
bolic 4-dimensional Lorentzian spacetime in which 〈M, g, k〉 is embeddable.
Two spacetimes 〈M, gαβ〉 and 〈M′, g′αβ〉 are isometric if there is a diffeomor-
phism ϕ : M → M′ such that ϕ∗(gαβ) = g′αβ (it is not required that other
objects be dragged along by ϕ).

Theorems similar to the one quoted above hold for the Einstein equations
with other data.33 From our perspective, the interesting point is that these
theorems do not prohibit a maximal Cauchy development of an initial data
set from having more than one non-isometric extension—the theorems only
prohibit these extensions from being globally hyperbolic. A case in point
is provided by the so-called polarized Gowdy spacetime. This is a globally
hyperbolic spacetime, defined for a restricted set of values of one coordinate,
a vacuum solution to the Einstein equations, and an MVCD of an appropri-
ate initial data set. When this spacetime is extended for the full range of
the coordinate, some of its maximal extensions turn out not to be isomet-
ric (Chruściel and Isenberg [1993], 1623ff). These non-isometric extensions
might be viewed as possible histories of a faithful indeterministic model,
yielding the verdict that GR is indeterministic.34

The issue is, however, complicated. The mentioned non-isometric maxi-
mal extensions of the polarized Gowdy spacetime do not admit global time
functions and contain closed timelike curves (CTCs). This spells trouble for
any definition of determinism based on partial orderings, since there is no
natural antisymmetric ordering on a CTC. Accordingly, the notion of alter-
natives for the future, which is basic to the core idea of indeterminism, makes
sense only locally, but not globally any more.35

33Notably, (Ringström [2009], Thm. 16.6) proves the existence of a maximal globally
hyperbolic development of the data for a specific model with matter, the so-called non-
linear scalar field model (ibid., 147). In this case the initial data sets are different from
their counterparts in the vacuum solution case, and embeddability applies to the matter
field as well.

34Non-isometric extensions of a maximal Cauchy development are deemed non-generic
by the Strong Cosmic Censorship Conjecture. In this spirit, (Chruściel and Isenberg
[1993]) prove that non-isometric extensions of a polarized Gowdy spacetime are rare, in
a measure-theoretical sense, in the set of all extensions of that spacetime. As there is
little ground to equate ‘rare’ with ‘non-physical’, the example cannot be discounted easily.
For a discussion of the Strong Cosmic Censorship Conjecture in the context of polarized
Gowdy spacetimes, see (Chruściel et al. [1990]).

35This calls for spelling out our Definition 2 of indeterminism in terms of modal forks,
that is: ‘A model is indeterministic iff it contains at least one modal fork’; for the definition
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Certainly more work is needed to fully develop the core idea of indeter-
minism with respect to spacetimes admitting CTCs. With respect to our
approach laid out in §4, we note the following. The main definition of the
DBRN approach, Def. 1, is still adequate due to its abstract nature. It will,
however, be necessary to extend the definition of an indeterministic model
(Def. 2) such that spacetimes admitting CTCs are covered as well, by tak-
ing local alternatives into account.36 In parallel to this development, it will
be necessary to scrutinize the arguments of the practitioners. For example,
invoking the DEQN approach, it is claimed that ‘[t]he fact that there are
inequivalent maximal extensions means that the initial data do not uniquely
determine a maximal development. In this sense, the general theory of rela-
tivity is not deterministic’ (Ringström [2009], 18). Depending on details of
the definition, DMAP and DBRN may here come to opposing verdicts; see
our discussion of the interrelation of the two approaches in §5.2 below.

5.1.4 Morals from the applications

We have illustrated above how the three approaches to determinism fare in
analyzing the theories of Newtonian mechanics, non-relativistic quantum me-
chanics, and general relativity. Our first observation is that it is DEQN that
is mostly used in the cases considered (and also, in actual discussions among
practitioners). The existence of non-unique solutions to Newton’s equations
in Norton’s dome indicates indeterminism; in a similar vein, the fact that
Einstein’s field equations allow for non-isometric extensions to a maximal
vacuum Cauchy development counts against determinism of general relativ-
ity. The behavior of the Schrödinger equation, however, does not account
for the general sentiment that quantum mechanics is an indeterministic the-
ory: In this case, the DEQN approach is severely limited, as it does not
accommodate the quantum measurement algorithm.

Second, the DMAP characterization of determinism does not seem to be
really used. That is, in cases like that of Norton’s dome, the construction of
realizations needed by the DMAP analysis is straightforward and completely
relies on solutions to the theory’s defining equations. The construction does

of modal forks, see (Placek et al. [2014], 423). The two formulations coincide in the context
of branching time, as any two histories in BT form such a fork. The formulation in terms of
modal forks is, however, also applicable in the context of more complex branching theories
in which histories are not linearly ordered.

36A theory of this sort is developed in (Placek [2014]).
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not add any new value to what is achieved by the DEQN analysis. In the
case of quantum mechanics, DMAP looks promising, as it offers a chance
to account for measurement results, apart from the Schrödinger evolution.
However, that promise of a DMAP analysis of quantum mechanics has never
been fulfilled, as far as we know.

Third, approaching the question of determinism of GR from the per-
spective of the initial value problem refers one to the DEQN approach. Non-
isometric spacetimes that witness indeterminism in GR might then be viewed
as diverging realizations according to the DMAP definition. Since these
spacetimes contain CTCs, a full DBRN analysis will need to be based on an
extended notion of an indeterministic spacetime model.

Finally, we have seen that the branching analysis of determinism comes
naturally—a DBRN-style representation is often quite literally out there.
For quantum mechanics, DBRN-style models are immediately available, in
the formalism of quantum histories. For other cases, such models need to
be constructed. We showed such an explicit construction for Norton’s dome.
These constructions are quite natural, and we conclude that the the notion of
an indeterministic DBRN model supplies a useful representation of a theory’s
indeterminism.

5.2 Formal comparison of the the DMAP and DBRN
frameworks

We now turn to a formal comparison of the DMAP and DBRN frameworks,
in order to find out about their interrelation. The comparison will be at the
level of a single system falling under the theory in question, which means that
we are treating the set of the system’s states, S, as fixed and given.37 We
will compare formal mapping and branching representations of the system’s
dynamics, using the following data format:

A mapping representation of the system’s dynamics is a pair

M = 〈(Mj)j∈J , A〉; Mj = 〈Tj, <j, fj〉,

with J some index set. Here, the Mj are the realizations characterizing the
system: any 〈Tj, <j〉 is a linear ordering of times (typically, 〈R, <R〉), and

37Given an assessment of single systems as deterministic or indeterministic, the verdict
transfers immediately to the theory itself: A theory is indeterministic iff there is at least
one indeterministic system falling under it.

29



fj : Tj 7→ S is a specification of system states for times t ∈ Tj. Furthermore,
A is a class of isomorphisms between realizations, allowing for the fact that
different mathematical structures may represent the same physics (see our
discussion of gauge transformations in §3 above.). Technically, each α ∈
A is a mapping between realizations that preserves their structure, which
means that it specifies an order-preserving bijection identifying the times
across different realizations, and it maps corresponding system states onto
physically equivalent system states. In line with typical considerations in
physics, we will assume that the set of isomorphisms A has the structure of
a group, i.e., elements of A can be combined such that (i) there is a neutral
element (the identity mapping, id), (ii) each element α ∈ A has an inverse
α−1 ∈ A for which αα−1 = α−1α = id, and (iii) composition of elements is
associative, that is, α(βγ) = (αβ)γ. As we will see, for the DMAP approach
it is crucial to identify the right set A of isomorphisms; the verdict as to a
theory’s determinism depends sensitively upon the choice of A.

A branching representation of the system’s possible developments has the
form

B = 〈(Bi)i∈I , A〉; Bi = 〈Bi, <i, fi〉,

with I some index set. The Bi are the faithful branching models of the
system’s development, in which 〈Bi, <i〉 is a branching (tree-like) partial
ordering (see §4.1) and fi : Bi 7→ S is a specification of system states for
moments m ∈ Bi. The set A is a group of isomorphisms between branching
models: if such models Bk and Bl are connected by some α ∈ A, this
means that they represent the same physics. Similarly as in the DMAP
case, such α ∈ A thus specifies both an order-preserving bijection between
the sets of moments Bk and Bl, and a mapping of physically equivalent
states. Observe however that in contrast to the DMAP case, α ∈ A relates
(typically) non-linear models. Derivatively α specifies isomorphisms between
linear realizations as well, which can be used to check a model’s faithfulness
(see below). In this sense, two realizations 〈h1, <|h1 , S, f|h1〉 and 〈h2, <|h2
, S, f|h2〉 that belong to branching modelsB1 = 〈B1, <1, f1〉 andB2 = 〈B2, <2

, f2〉, respectively, are isomorphic if for some α ∈ A:

α|h1(〈h1, <|h1 , S, f|h1〉) = 〈h2, <|h2 , S, f|h2〉,

where hi are maximal chains in 〈Bi, <i〉. We will say that an isomorphism αh
restricted to a maximal chain h of some branching model is a linearization of
α. There is a certain subtlety concerning the issue where the linearizations
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come from. Clearly, the set A contains automorphisms among branching
models (minimally, the identity), and these give rise to linearizations (one
takes B1 = B2 in the formula above.) But the linearizations can also be
derived from isomorphisms reaching across different branching models (take
B1 6= B2 above). (These linear mapping are partial automorphisms within
a branching model, but they are not derived from an automorphism, but
from an isomorphism between different models.) Faithfulness of a branching
model is assessed by both sorts of isomorphisms between linear realizations.
A branching model Bi will be declared unfaithful if it has two maximal
chains h1 and h2 such that α|h1(〈h1, <|h1 , S, f|h1〉) = 〈h2, <|h2 , S, f|h2〉 for some
α ∈ A. Observe that this isomorphism-based assessment uses a weaker no-
tion of faithfulness, which does not require a difference immediately after
branching—it only requires absence of total isomorphism of linear realiza-
tions (compare §4.2 above). This weaker constraint will make it easier to
meet the demand of deriving a branching representation from a mapping
representation (see below).

Given the above data structures, our definitions of indeterminism (and
thereby, of determinism as indeterminism’s negation) take the following form:

DBRN. A system with faithful branching representation B is indetermin-
istic iff there is some Bi, i ∈ I, for which there are m,m′ ∈ Mi, m 6= m′,
such that neither m <i m

′ nor m′ <i m. (I.e., indeterminism corresponds to
there being a non-linear, branching structure among the Bi.)

Note that the set of isomorphisms A plays no direct role in the assessment
of a theory’s determinism according to this recipe. We did, however, have
to assume that the branching representation was faithful, and as discussed
above, linearizations of the isomorphisms in A provide a security check for
faithfulness.

DMAP. In terms of the DMAP approach, the core idea of determinism
translates into the thought that agreement of two realizations up to some
time implies their total agreement.38 Thus, indeterminism means that there
are two realizations that agree up to some time, but disagree later on. Here,
‘agreement’—both with respect to states and with respect to times—has to

38This idea is somewhat more general than the idea that agreement at some time, or in
some small region around some time, should imply global agreement. Our choice makes
the DMAP/DBRN comparison somewhat more transparent.
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be spelled out in terms of isomorphisms. In line with (Butterfield [2005]),
the definition is as follows: A system with mapping representation M is
indeterministic iff there are realizations Mk = 〈Tk, <k, fk〉, Ml = 〈Tl, <l, fl〉,
k, l ∈ J , for which there is some t0 ∈ Tk and some α ∈ A such that

• for all t 6 t0, fk(t) = (αfl)(t), i.e., the states on an initial segment can
be identified, but

• there is no β ∈ A mapping Mk wholly onto Ml, i.e., no isomorphism
β ∈ A for which fk = βfl.39

It should be clear from the form of the definition that the choice of A
matters greatly. Minimally, the set of isomorphisms has to contain the iden-
tity, but it is a difficult matter to decide which other mappings are to be
included for a given system. The verdict about determinism can depend on
that choice.

Comparing DMAP and DBRN. We now move to our main task, which
is to establish whether the verdicts as to a system’s determinism delivered by
DMAP and by DBRN agree or not. Technically, we will tackle these ques-
tions by describing how to derive a mapping representation from a branching
representation and conversely, and then checking the verdicts as to determin-
ism.

DBRN→DMAP. Starting with a given branching modelB = 〈(Bi)i∈I , A〉,
we derive the corresponding mapping representation in three steps: For each
Bi, i ∈ I, that is, for each individual branching model, we extract the linear
realizations, lump these together, and derive the appropriate set of isomor-
phisms between realizations from the given A. In more detail: For i ∈ I, the
branching model Bi = 〈Bi, <i, fi〉 has histories hki , k ∈ Ji, where Ji is an
index set enumerating the histories in branching model Bi. We individuate
these histories as a set of realizations by restriction:

Ci = {〈hki , <i |hki , fi |hki 〉 | k ∈ Ji}.

39Our notation, αfl or βfl, indicates that an isomorphism α ∈ A maps a function fl to
a function αfl, thereby taking care of two things in accordance with our discussion above:
mapping of times and mapping of states.
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We construct the set AM of isomorphisms by restricting the isomorphisms
α ∈ A to linear realizations:

AM = {α′ | α′ a linearization of some α ∈ A}.

Finally, we collect all the linear realizations in one set ∪i∈ICi, arriving at the
mapping structure

M = 〈∪i∈ICi, AM〉.

Let us now consider how the verdict of determinism or indeterminism
for the branching structure B fares with respect to the derived mapping
structure M.

If B is indeterministic, then M will be diagnosed as indeterministic as
well. This can be seen as follows: Indeterminism of B means that there
is some Bi containing histories hki , hli that are not globally isomorphic (by
faithfulness). These two histories reappear, by construction, as realizations
Mk = 〈Tk, <k, fk〉 and Ml = 〈Tl, <l, fl〉 in M. We can show that these re-
alizations provide a witness of indeterminism in the mapping sense. As (by
the definition of a branching model) hki ∩ hli 6= ∅, there is some t0 ∈ Tk such
that fk(t′) = fl(t

′) for all t′ 6 t0. So, the realizations Mk and Ml have an
isomorphic initial segment (using the identity as isomorphism, which belongs
to AM by construction). But these realizations are not globally isomorphic,
since that would contradict the faithfulness of the original branching repre-
sentation B.

If B is deterministic, the verdict as to the derived M need not coincide,
depending on how much information about isomorphisms is given through
A. As stated above, for branching structures the set A plays a double role.
On the one hand, A can provide information about the global fact that two
different branching models picture the same physical situation, because (for
instance) they correspond to a different choice of gauge. On the other hand
A gives rise to a set of linearized isomorphisms; this latter set provides a local
criterion for faithfulness of an individual branching model Bi from B: no
two histories within one such branching model may be globally isomorphic.
(Note that any two of them are, by overlap of histories, isomorphic on an
initial segment, with the isomorphism provided by the identity.)

A deterministic B means that all branching models Bi are in fact linear,
i..e, contain just a single history. Thus, eachBi already has the mathematical
structure of a realization Mi. Following exactly the same procedure as in the
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indeterministic case described above, we arrive at the mapping structure

M = 〈(Bi)i∈I , AM〉.

Whether thisM is judged to be deterministic or indeterministic, now depends
on whether AM gives rise to partial but not global isomorphisms. To illus-
trate how the verdicts could diverge, consider the case of electromagnetism
described in §3 above. A branching representation for a system falling under
that theory will contain only linear models. The different models correspond
to different initial conditions, or to different choices of gauge, or both. The
verdict on this representation will be determinism—after all, all branching
models are linear, there is no case of branching. This holds even if the gauge
transformations are excluded from the set of isomorphisms (for instance, if A
contains just the identity). In that case, the derived mapping representation
will, however, be judged to be indeterministic: Some realizations will agree
initially, but diverge later, due to a difference in gauge. The set AM will be
too small to capture the fact that these realizations picture the same physics
by different mathematical means. This is exactly the dialectics of diagnos-
ing gauge freedom via spurious indeterminism described in §3 above. So we
see that in order to have a reliable verdict of determinism in the mapping
representation, care needs to be taken to correctly identify all the physical
isomorphisms for the system in question. There is no formal procedure for
that step.

DMAP → DBRN. Let us now consider how the verdict of determinism
or indeterminism for a mapping structure M fares with respect to a derived
branching structure B. It turns out that the construction is somewhat in-
volved and not unique, but the verdicts agree.

We will derive a branching representation from a mapping representation
by successively constructing branching models from appropriate sets of real-
izations. In such a set, any two realizations must be partially isomorphic, but
not globally isomorphic. More formally, let us call a subset {Mk | k ∈ K}
of the set of realizations good iff for any two k, l ∈ K, k 6= l, there is some
t0 ∈ Tk and some α ∈ A such that

• for all t′ 6 t0, fk(t′) = (αfl)(t
′), i.e., the states on an initial segment

can be identified, but

• there is no β ∈ A mapping Mk wholly onto Ml, i.e., no isomorphism
β ∈ A for which fk = βfl.
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By Zorn’s lemma, there are maximal good sets (note that a singleton set is
good), and the whole set of realizations of the given mapping representation
can be partitioned into good sets: Successively take out a maximal good set
and identify the next maximal good set in what remains. Note, however,
that this partitioning is not unique.40

For any resulting good set {Mk | k ∈ K} we can derive a branching model
in the following way.41 We pick one realization M0 = 〈T0, <0, f0〉, which will
form a reference history in the resulting branching model. By goodness, for
every other realization Mk we can pick an isomorphism αk ∈ A that identifies
M0 and Mk up to some tk ∈ T0 (but not for all times). Call the mapped
realization

M′
k = 〈T ′k, <′k, f ′k〉 := 〈αk(Tk), αk(<k), αk(fk)〉.

So, for all k ∈ K − {0} we have

f0(t
′) = f ′k(t

′) for all t′ 6 tk.

Exactly as in the construction for Norton’s dome in §5.1.1 above, we now
define a base set and derive the branching model by dividing out an equiv-
alence relation. To save some ink, we set T ′0 := T0, <′0:=<0, f ′0 := f0. We
set

B̃ :=
⋃
k∈K

(T ′k × {k}).

For the equivalence relation ≈, we set

〈t, n〉 ≈ 〈s,m〉 iff t = s and for all t′ 6 t we have f ′n(t′) = f ′m(t′).

Next, our set of moments (the base set for the partial branching order) is

B := B̃/ ≈,

and we define the state-assignment function f on B to be

f([〈t, n〉]) = f ′n(t).

40This is connected to the fact that the relation of being partially but not globally
isomorphic is not transitive, i.e., it is not an equivalence relation.

41The following construction is not unique, and it is not guaranteed to deliver branching
models that are intuitively satisfying. The construction does, however, fulfill all formal
requirements.
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Note that the definition of ≈ guarantees well-definedness, meaning that for
〈s,m〉 ∈ [〈t, n〉] we have f ′n(t) = f ′m(s). It remains to define the partial
ordering < on the set of moments B:

[〈t, n〉] < [〈s,m〉] iff t <′n s and for all t′ 6′n t we have f ′n(t′) = f ′m(t′).

Pulling things together, adding all these branching models for all the good
sets into which the given set of realizations was partitioned, will give a full
branching representation for the system in question. It remains to specify the
set AB of isomorphisms. For the verdict of determinism or indeterminism,
this subtle issue is, however, not important, so that we can set AB to contain
just the identity.

It is easy to see that by the given construction, a verdict as to determin-
ism or indeterminism of the mapping structure is retained in the branching
structure. In the case of determinism, all good sets are singletons, giving rise
to only linear, deterministic branching models. In the case of indeterminism,
there will be at least one non-trivial good set, giving rise to a faithful branch-
ing model with at least two histories. Such a non-linear structure triggers
the verdict of indeterminism.

Summing up. As we saw, the relations between two representations of de-
terminism, as offered by DMAP and DBRN, are somewhat intricate. Their
verdicts with respect to a system’s determinism usually agree, but not always.
That is, if DBRN diagnoses a system as indeterministic, DMAP will concur.
However, if DBRN’s verdict is ‘determinism’, a DMAP analysis might dis-
agree. In the opposite direction verdicts agree, that is, if DMAP deems a
system as deterministic / indeterministic, DBRN will come with the same
diagnosis. Although the two approaches agree on the verdict in such cases,
they might view the underlying details differently, as the DMAP represen-
tation of determinism (or indeterminism) does not translate uniquely into a
DBRN representation of determinism (or indeterminism). This last subtlety
and a possible divergence of verdicts about determinism derives from the
different roles the set of isomorphisms plays in the two approaches, and from
the status of the faithfulness assumption.

The dialectics here is as follows. Given a physical system in whose de-
terminism or indeterminism we are interested, we need to construct a math-
ematical representation with respect to which we can study the question of
determinism in a formally precise way—that is the overarching framing of

36



the determinism issue in philosophy of science. The three approaches under
discussion here differ with respect to their mathematical representation of a
system. We have pointed out that DEQN makes good sense in most, but not
all applications, quantum mechanics being a notable exception. Here we have
considered the interrelation between the two remaining approaches, DMAP
and DBRN. In our discussion of case studies in §5.1 we have seen that the
actual construction of DBRN models typically leads to models whose faith-
fulness is guaranteed. In the case of Norton’s dome, the behavior of the
differential equation secured the necessary difference in physical state (here,
position of the particle); in quantum mechanics, the assignment of different
projectors in different histories did the same. A set of isomorphisms between
branching models, which we have included in our formal description in this
section, can be helpful to provide a more adequate picture, showing that two
different branching models may depict the same physical situation. This,
however, does not affect the verdict as to determinism or indeterminism,
which is based on the ordering structure of the individual branching models
whose faithfulness is assured beforehand. Our discussion of the DMAP ap-
proach, on the other hand, shows that the choice of the set of isomorphisms
is crucial for the assessment as to determinism or indeterminism. Trouble
can arise if too few isomorphisms are identified, since then, a spurious as-
sessment of indeterminism threatens. There is nothing in the construction
of a DMAP representation of a system that secures the identification of a
physically adequate group of isomorphisms.

Our diagnosis of this state of things is as follows. Branching is the nat-
ural representation of indeterminism—we directly understand a non-linear
branching structure as representing an indeterministic scenario. Typically, an
investigated problem contains information about grouping of realizations into
sets of alternative mutually possible developments: this information comes
in a statement of an initial value problem, or a system’s symmetries, or even
similarities of processes considered. This information, and the partition of
realizations it affords, is lost, or is not being used, in the mapping-based
account. Instead, a lot of mathematical surplus structure needs to be consid-
ered. The worry is that in the end, getting this surplus structure right will
only be possible in case we have a different underlying representation (for
example, a branching-based representation) that anchors our assessment in
the first place.
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6 Conclusions
Our aim in this paper was to elaborate formally the core idea of determinism
according to which a deterministic system has no alternative future devel-
opments, and to apply the resulting framework to theories of physics. That
framework is based on branching theories that are well known in tense logic;
a novelty of this paper consists in showing how to construct branching models
for theories of physics. A salient feature of branching models is their modal
thickness: a single model of that sort has resources to represent alternative
possible evolutions of a system. Technically speaking, a branching model
may contain more than one history (maximal chain), in which case we call it
‘indeterministic’; otherwise we call it ‘deterministic’. We say that a theory
is indeterministic if it has at least one faithful indeterministic model; other-
wise, the theory is deterministic. This topic of a branching-style analysis of
determinism of theories was discussed in §4.

To locate our analysis with respect to extant debates on determinism, in
§2 we singled out three styles of thinking about determinism: DEQN char-
acterizes determinism in terms of solutions to a theory’s defining equations,
DMAP proceeds in terms of mappings between linear temporal realizations
admitted by the theory, and DBRN uses the concept of alternative possible
future continuations. In §3 we focused on the dominant approach to deter-
minism in current philosophy of science, as exemplified in writings of Earman
and Butterfield. We pointed out that both these authors advocate a position
that combines the DMAP and DEQN approaches; this combination seems,
however, to call for further elaboration, as no proof of the equivalence of (or
of other logical relations between) DMAP and DEQN is known. Another
critical issue is the orthodoxy’s appeal to the notion of isomorphism, which
(we claim) is used rather loosely, since a theory’s models are not required
to be models in the logical sense. Two further troubling issues, which arise
in a similar way for other approaches, are the identification of times across
different realizations, and the possible difference between mathematical and
physical states.

Having provided a detailed exposition of the DBRN framework in §4, in
section §5.1 we compared the three approaches with respect to how they apply
to particular cases. Focusing on Norton’s dome and quantum mechanics, we
found (perhaps surprisingly) that the DMAP analysis is not used in the
literature. In contrast, the formalism of consistent histories for quantum
mechanics is immediately translatable into branching models. Branching
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models also provide a natural representation of Norton’s dome. By adding
some extra structure these branching models can be transformed into DMAP
models, but no extra value appears to be provided by such a move. For
General Relativity, the core idea of indeterminism becomes problematic in
the absence of a global time function. All three approaches need to be based
on the notion of a local alternative for the future. This is natural for the
DEQN approach; DMAP and DBRN may come to diverging conclusions.
This highlights the fact that these approaches are closely related, but not
equivalent.

Accordingly, in §5.2 we investigated the formal interrelations between the
DMAP and DBRN definitions of determinism. The comparison highlights
that DMAP models need some extra structure as compared to DBRN models.
This extra structure (coded in a set of isomorphisms) reflects two decisions:
which times across realizations should be identified and which mathematical
states represent the same physical state. We described the representations
of determinism offered by DMAP and DBRN, respectively, and showed how
one representation can be derived from the other, noting that there is no
uniqueness in the construction of a DBRN representation out of a DMAP
representation. We also showed that although in most cases the verdicts
of the two representations of determinism agree, a divergence is possible: a
DBRN verdict of indeterminism might be rejected in the DMAP approach.

These discrepancies are a consequence of the different role isomorphisms
play in the two representations of determinism, and we believe these differ-
ent roles cut to the bone of the controversy between the two approaches.
Informally speaking, whether a system is deterministic or not, depends on
whether it has a possible development to which there is a true alternative.
For instance, multiple developments from shared initial conditions are true
alternatives, but multiple developments produced by exercising gauge free-
dom, or freedom of coordinate choice, are not true alternatives. Accordingly,
any good analysis of determinism requires a way of partitioning a set of re-
alizations into subsets of ‘truly alternative’ realizations. In DBRN this is
achieved by lumping subsets of realizations into tree-like branching mod-
els, whereas in DMAP a similar effect is simulated via a set of isomorphisms.
Now, a typical question of determinism contains information about partition-
ing a set of realizations into subsets of truly alternative realizations. This
kind of information is directly used in the construction of a DBRN model;
in contrast, it is not directly used in the mapping-based account. Instead, a
lot of mathematical surplus structure is postulated to derive a partition of
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realizations mimicking that of the DBRN approach. Whether that surplus
structure is of the right sort, appears to be decided by consulting the infor-
mation utilized in the construction of branching models. This, we believe,
tells strongly in favor of the greater simplicity and conceptual primacy of the
DBRN approach relative to the DMAP approach.

The final message of this paper is that branching is a natural representa-
tion of a theory’s indeterminism, which moreover is rendered mathematically
rigorous by the definitions we proposed. It is naturally used in the particular
cases we considered. Branching represents exactly the kind of structure that
is needed to assess a theory’s determinism or indeterminism.
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