
Müller, Vincent C. (2011), ‘On the possibilities of hypercomputing supertasks’, Minds
and Machines, 21 (1), 83-96.
http://www.sophia.de
http://orcid.org/0000-0002-4144-4957

On the Possibilities of Hypercomputing Supertasks1

Vincent C. Müller
Anatolia College/ACT

www.typos.de

December, 2010

Abstract

This paper investigates the view that digital hypercomputing is a good reason for
rejection or re-interpretation of the Church-Turing thesis. After suggestion that
such re-interpretation is historically problematic and often involves attack on a
straw man (the ‘maximality thesis’), it discusses proposals for digital hypercom-
puting with “Zeno-machines”, i.e. computing machines that compute an infinite
number of computing steps in finite time, thus performing supertasks. It argues
that effective computing with Zeno-machines falls into a dilemma: either they are
specified such that they do not have output states, or they are specified such that
they do have output states, but involve contradiction. Repairs though non-
effective methods or special rules for semi-decidable problems are sought, but not
found. The paper concludes that hypercomputing supertasks are impossible in
the actual world and thus no reason for rejection of the Church-Turing thesis in
its traditional interpretation.

1 I am very grateful to Paul Benacerraf, Adam Elga and Athanssios Kehagias for illuminat-
ing discussion. I am also very grateful to two anonymous reviewers for Minds and Ma-
chines, and two for the British Journal for the Philosophy of Science.

http://orcid.org/0000-0002-4144-4957
http://www.sophia.de

On the Possibilities of Hypercomputing Supertasks 2/2

1. Introduction: Church-Turing and Hypercomputing

1.1. Copeland and the Church-Turing Thesis

The philosophical literature on the notion of computing, whether it is in the con-
text of computationalism in the philosophy of mind, the possibility of artificial
intelligence or of computing machines in general, has traditionally assumed as
background consensus that what a computer can do in principle is identical to
what is “effectively computable”, i.e. what can be computed by the mechanical
application of a definite rule of finitely many instructions – of an algorithm.2 The
notion of computability was accordingly defined by Church, Turing and others in
what is now known as the “Church-Turing thesis”, one formulation of which is:
all and only the effectively computable functions can be computed by a Turing machine.
Strictly speaking, Church’s thesis is that all effectively computable functions are
recursive, and Turing’s thesis is that all effectively computable functions are
computable by the Turing-machine. Since the inversions to both theses are known
to be true, to call a procedure “effective”, “algorithmic”, “recursive” or “Turing
machine computable” all comes down to the same.3
In a series of papers, Jack Copeland and others have said that this traditional in-
terpretation of the Church-Turing thesis is a misunderstanding, arguing that the
Church-Turing thesis says nothing about what is computable by machines, or
computable in principle, but it concerns only what can be computed by humans. As
we shall see presently, this re-interpretation is motivated by the notion that ma-
chines, unlike humans, are capable of ‘hypercomputing’ and the Church-Turing
thesis must thus be re-interpreted in order not to come out false. All sorts of er-
rors in the philosophy of computing and mind are blamed on this alleged misun-
derstanding of the thesis (Copeland, 1997; 1998; 2000; 2002a; 2002b; 2003; 2004;
Copeland and Proudfoot, 1999; 2000; cf. Shagrir and Pitowsky, 2003). If this inter-
pretation were correct, one would have to distinguish one notion of computing

2 Indicative for the philosophy of mind: (Churchland, 2005; Fodor, 2000; Piccinini, 2004;
2007; Pinker, 2005; Scheutz, 2002); for artificial intelligence: (Copeland, 1993); for mathe-
matical logic: (Boolos, et al., 2007, ch. 3ff).
3 (Church, 1936; Turing, 1936; cf. Boolos, et al., 2007, ch. 3ff; Harel, 2000). The notion of
“Turing machine” is well explained in many places, see particularly (Penrose, 1989, ch. 2;
Floridi, 1999, p. 26ff; Davies, 2000, ch. 7; Copeland, 2003, p. 4ff).

On the Possibilities of Hypercomputing Supertasks 3/3

for both humans and machines (“effective”, “Turing machine computable”) and a
wider one for machines only (“algorithmic”, “recursive”).

1.2. Church-Turing and Church and Turing

Concerning the historical question what Church, Turing and other contemporar-
ies had in mind, Copeland rightly points out that in the 1930ies and 40ies, the
word “computer” meant a person doing computation, which is an indication that
Copeland’s historical thesis might be correct. While it is true that universal com-
puting machines did not exist before 1941 (the “Z3”), there had been non-
electronic calculating machines for centuries and Turing, of all people, was surely
aware of the possibility of programmable (universal) computing machines. There
are strong indications that Church (1936) and Turing thought the thesis to apply
to machines, too – the main motivation for saying otherwise appears to be not to
have Church and Turing say something wrong.
Turing states in the opening paragraph of his famous paper “‘On computable
numbers …”: “The ‘computable’ numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means. … Ac-
cording to my definition, a number is computable if its decimal can be written
down by a machine.” [my emphasis] (Turing, 1936). About this paper, he said in a
1947 address to the London Mathematical Society: “I considered a type of ma-
chine which had a central mechanism, and an infinite memory which was con-
tained on an infinite tape… One of my conclusions was that the idea of a ‘rule of
thumb’ process and a ‘machine process’ were synonymous.” (Turing, 1992, p.
106) (see also Hodges, 2006). His emphasis is on the ‘mechanical’ nature of the
process, not on who or what carries it out.
Finally, it would appear to be precisely the point of Turing’s 1936 paper to show
that all effectively computable functions are computable by his machine, and thus
that the halting problem of his machine is the Entscheidungsproblem. So it would
be odd to have the Entscheidungsproblem for humans, but not for machines. (It
would also constitute a dramatic inversion of the Penrose/Lucas argument,
which says that machines have the Entscheidungsproblem, but humans do not.)

On the Possibilities of Hypercomputing Supertasks 4/4

1.3. Church-Turing and the “Maximality Thesis”

Copeland focuses on the Church-Turing thesis for machines and calls this part of
the traditional strong interpretation the “maximality thesis”, stating it as follows:
“all functions that can be generated by machines (working on finite input in ac-
cordance with a finite program of instructions) are Turing machine computable”
(2000, p. 15). He says that while the Church-Turing thesis is true of humans, the
maximality thesis is “known to be false” if we take the machines to be “machines
in a possible world” (Copeland, 2000, pp. 15, cf 31). “It is straightforward to de-
scribe abstract machines that generate functions that cannot be generated by the
UTM [Universal Turing Machine]” (Copeland, 2004, p. 12). What remains conten-
tious on his view is merely whether the maximality thesis is true in the actual
world.
Before we enter into the details, we must specify two senses in which this may
well be correct – but which are beside the point, in my opinion.
First, we know that the set of all functions (even of all functions over the positive
integers) is larger than the set of Turing-computable functions, since the former is
not denumerable, while the latter is. But our issue here is not to delineate certain
classes of functions. What we want to find out is whether it is indeed “straight-
forward to describe abstract machines” that compute such functions; that is to de-
scribe systems whose states are causally determined by their previous states (only
then do they deserve the name of machines). If not, the burden of proof would be
shifted onto those who want to reject the traditional strong reading of the
Church-Turing thesis.
Second, the Church-Turing thesis concerns only digital or “discrete state” comput-
ing. This follows directly from the restriction to effective algorithmic procedures,
which proceed “step by step”, where steps are distinguished by a discrete state.
This is not to say that the inversion holds: one might well hold that some digital
procedures are not effective; for example those of hypercomputing. Whether non-
digital, i.e. “analogue”, or “continuous” computing deserves the name of “com-
puting” and whether analogue mechanisms could compute functions that are not
Turing-computable are matters not relevant to our point here – but see (Müller,
2008) for a discussion. As Hava Siegelmann (Siegelmann, 1995; 1997; Siegelmann
and Sontag, 1994) and others have shown, there is good reason to believe that
analogue mechanisms are possible which can compute functions that are not Tur-
ing-computable.

On the Possibilities of Hypercomputing Supertasks 5/5

Both of these points would not refute the traditional strong interpretation of the
Church-Turing thesis, however. The situation would still be very aptly described
by Floridi, when he says: “From Turing power up, computations are no longer
describable by algorithms” (1999, p. 36).
Accordingly, the strong Church-Turing thesis under discussion here is not identi-
cal to Copeland’s “maximality thesis”, since that thesis is restricted to machines.
What is more, the strong Church-Turing thesis does not even imply the “maxi-
mality thesis”, since the latter makes no mention of algorithms – an absence that
is used by Copeland to attack it with the possibility of analogue computers. The
“maximality thesis” is a straw man, and it is false.

1.4. Hypercomputing

The rejection of the Church-Turing thesis under its strong interpretation is moti-
vated by the idea that there could be machines that could compute what no hu-
man and no Turing machine could compute, and this computing of what is not
Turing-machine computable is now called “hypercomputing”.4 Proposed designs
for machines include Turing’s “O-machines” (“oracle machines” with a black box
that answers non-computable queries non-mechanically5), “Zeno machines” (that
can compute infinitely many steps, see below), analogue computers (but see
above), quantum computers, Putnam-Gold machines (computers that can
“change their mind”), probabilistic machines, machines in Malament-Hogarth

4 Note that it is strictly speaking misleading to talk about the computing of a “Turing ma-
chine” in this context. A Turing machine is a theoretical device that can perform a particu-
lar algorithm and the theoretical universal Turing machine is a theoretical machine that
can perform whatever any particular Turing machine can perform, i.e. it can be pro-
grammed to perform any algorithm. The Church-Turing thesis concerns the possibilities of
this universal Turing machine and its relation to the notion of “effective computability”.
However this machine is just a model for what any mathematician with enough time and
resources (paper and pencils - or tape and a read/write device) on his/her hand can com-
pute. So, while the computer on my desk is a universal computer, its abilities are the same
as that of the universal Turing machine (save its limited memory), but it is misleading to
shorten this property to “it is a Turing machine”.
5 O-machines are mentioned by Copeland, but they just serve a theoretical purpose in Tur-
ing, they are not a proposed design for a computing machine. For a discussion, see
(Cotogno, 2009).

On the Possibilities of Hypercomputing Supertasks 6/6

universes, machines using the expansion of “mixmaster” universes and others.
Despite all these proposals, it is probably fair to say that the various defenders of
hypercomputing have not themselves proposed a notion of computing, they have
restricted themselves to a rejection of the notion of computing expressed in the
strong Church-Turing thesis.6

1.5. Possibilities of Hypercomputing

The discussion about hypercomputing has focused on the question whether hy-
percomputing is possible in the actual world, given the physics of this world. A
negative answer is sometimes called the “physical Church-Turing thesis” (e.g.
Cotogno, 2003) or also, “Gandy’s thesis” (after Gandy, 1980). There are many in-
teresting problems with the view that such hypercomputing machines are possi-
ble in our world, given that the extant proposals involve infinity, such as infinite
memory, or infinitely large machines, infinitely many steps, infinitely small parts,
infinitely fast movement, infinitely fast information transfer, infinite amount of
information transfer, infinitely precise measurement of quantum states, survival
of infinite-energy states, infinitely expanding universes, etc.7
However, as long as no particular proposal is accepted this discussion can make
no headway on the general question of whether hypercomputing is possible. Af-
ter all, even if one rejects a particular proposal, it is prudent to remain agnostic
about the possibility of a more ingenious design. While that discussion is going
on, one has to accept that it is important to distinguish between the truth of the
strong (traditional) and of the weak (Copeland’s) interpretation of the Church-
Turing thesis, since one is discussing whether a particular proposal falls under
the one but not under the other. In order to secure the traditional strong reading
of Church-Turing, one would have to show that hypercomputing is impossible in
the actual world, or even in any possible world. Some attempts to refute the

6 Very useful surveys are in (Copeland, 1997; 2002b), more critically (Cotogno, 2003), also
(Potgieter, 2006) for the more mathematical literature. Special issues in Minds and Machines
12 (2002) and Theoretical Computer Science 317 (2004).
7 (Barrow, 2005, ch. 10) has a useful basic survey. For a quantum proposal, see (Kieu, 2002;
Ord and Kieu, 2005). For a relativistic proposal, (Shagrir and Pitowsky, 2003), cf. also
(Potgieter, 2006). For a proposal of “shrinking” Zeno-machines in a Newtonian universe,
see (Davies, 2001).

On the Possibilities of Hypercomputing Supertasks 7/7

physical Church-Turing thesis been made (esp. Cotogno, 2003), using Cantor’s
diagonal technique, but these have been rebutted successfully (Ord and Kieu,
2005; Welch, 2004), in my opinion. I will make a new attempt to shift the burden
of proof onto the supporters of infinite hypercomputing.
My impression from the mathematical literature is that there is little hope to
prove hypercomputing contradictory and thus impossible in any possible world.
– But on the other hand, the distinction between logical and actual possibility
might not be so clear after all: “The misconception is that the set of computable
functions (or the set of quantum-computational tasks) has some a priori privi-
leged status within mathematics. But it does not. The only thing that privileges
that set of operations is that it is instantiated in the computationally universal
laws of physics. It is only through our knowledge of physics that we know of the
distinction between computable and non-computable […], or between simple and
complex.” (Deutsch, 2004, p. 99)

2. Zeno Machines: Infinite Hypercomputing

Let us investigate the notion of a “Zeno machine”, a concept proposed by
Hermann Weyl (1927). A Zeno machine is specified in such a way that each step
takes a fraction of the time of its predecessor, so if the first step takes ½ a second,
for example, the times for each step could be: ½, ¼, 1/8, … This machine could
make a denumerable infinity of computing steps in finite time, in one second. It
starts at time t0, then runs through a series of steps tn and is done at time t1. This
machine shows clearly that we need to distinguish “in finitely many steps” from
“in finite time” in the formulation of the Church-Turing thesis.
Zeno machines are repeatedly presented by Copeland as examples of possible
hypercomputers (called “accelerating Turing-machines”), and they are the most
intensely discussed proposal for digital hypercomputing (cf. Ord and Kieu, 2005).
Zeno machines are not standard Turing machines since the latter produce results
only once they halt, after a last step (though they can be set to motion again, even
infinitely many times), while Zeno machines can go through infinitely many steps
– though they will be “done” in a different sense, namely in time.

On the Possibilities of Hypercomputing Supertasks 8/8

2.1. Background: Supertasks

The logical possibility of a physical object carrying out infinitely many tasks (e.g.
computing steps) in finite time was much discussed in the 1950ies and 60ies in the
context of Zeno’s paradoxes of movement (esp. Achilles and the tortoise, and the
racetrack) and such tasks were dubbed “supertasks” by James Thomson (1954). In
order to show that performing supertasks is impossible, Thomson had proposed
to consider a lamp that is switched on and off infinitely many times. He then said
that from the assumption that each time the lamp is switched on it is also
switched off afterwards, it follows that it can be neither on nor off after the
switchings are over - which he claimed to be a contradiction. Paul Benacerraf
(1962, p. 779ff) criticized this move, pointing out that, given the specification,
nothing follows from the states of the lamp inside the series about the state of the
lamp after the series. This criticism is widely regarded as correct.
The logical gap between what is the case inside the infinite series and what is the
case after the series is crucial for the following discussion and I shall call it the
“Benacerraf gap”. I propose that the defender of infinite hypercomputing has to
bridge the Benacerraf gap, in order to generate an output – and that is the prob-
lem which is ignored. The description of a Zeno machine is indeed unproblem-
atic, but as soon as it includes a device that ‘bridges the gap’, contradiction looms,
as we shall see presently.
It is crucial for the understanding of the Benacerraf gap to keep in mind that there
is no such thing as “the last step” or “the last state” in the series, and accordingly,
no last step that can determine the state of the lamp. Also, for any point in time
arbitrarily close to time t1, there is still a further step to take place later. Given that
there is no last state, one cannot measure/read out the last state and one can not
write a program that instructs “do the last step and then do this and halt”, neither
can we ask “what is the state after the last step?”
So, a first form of the fundamental problem is that a) we cannot have a computa-
tional output after the “last step”, but b) neither can we just look at the output
after the series is over in time, since “nothing follows”, as Benacerraf had pointed
out. So, whatever the state of the Zeno machine at t1, how can it be the effect of the
infinite t-series? Can we make sure that there is an output that can be generated
without reliance on contradictory notions like “the last step in an infinite series”?
As Benacerraf says, “Certainly, the lamp must be on or off at t1 (provided it has
not gone up in a metaphysical puff of smoke in the interval), but nothing we are
told implies what it is to be.” (Benacerraf, 1962, p. 768).

On the Possibilities of Hypercomputing Supertasks 9/9

I will suggest that we are faced with a dilemma: either we have a machine where
“nothing follows”, or we have a machine that bridges the Benacerraf gap but
computes impossible results. Let us first set up the situation with machines that
can bridge the Benacerraf gap.

2.2. A Proposal for Infinite Computing: Facing the Benacerraf Gap

One might, for example, want to know the answer to Brouwer’s classic question
(discussed repeatedly by Wittgenstein) whether there is a sequence of “777”
somewhere in the infinite expansion of π. This problem cannot be computed by a
Turing machine because a negative answer would require looking at all of the
infinite expansion of π. However, a positive answer is possible if one comes across
the sequence “777” somewhere in π – in fact this has happened, and we now
know that 777 does indeed occur in that expansion. Many famous mathematical
problems have this “semi-decidable” feature, e.g. Hilbert’s Tenth Problem
(claimed to be solvable by probabilistic quantum computing in Kieu, 2002; 2004)
and Turing’s halting problem. Since the halting problem is precisely the problem
whether the Turing machine will halt on a given problem, the Entscheidungsprob-
lem itself is one of these problems.
Copeland seems to think that a semi-decidable task is computable by Zeno ma-
chine in the following fashion: Our hypercomputer may be fitted with a lamp
and, for example, programmed in such a way that it switches on the lamp as soon
as it finds the sequence “777” in π. After the series of computing is over, at t1 or
later, you look at the lamp: if it is on, there is such a sequence, otherwise there is
not. In this fashion, any Boolean (true/false) decision over infinite domains could
be settled. (And it would appear that any formal problem that can be formulated
in binary code could be settled.)
Recall, however, that nothing followed from the specification of Thomson’s lamp
about the state of his lamp at t1 or later. Is this any different with our new, sepa-
rate, indicator lamp? What the specification does tell me is that I can check
whether the lamp is on at any time in the t-series, arbitrarily close to t1: if the lamp
is on, a “777” has been found. But this task, namely whether the sequence is to be
found in π up to a specific point, is a Turing-computable task. Does the specification
of our machine tell me what is the case with my lamp at t1 or later? No, it does
not. We have no reason to take the state of such a lamp as the output of the ma-
chine. More work needs to be done if we want to bridge the Benacerraf gap.

On the Possibilities of Hypercomputing Supertasks 10/10

If one wanted to provide a specification that bridges the gap, one has to avoid any
reference to a “step”, and instead talk about what is the case “after the series is
over in time”. One way to achieve this is to include in the specification that there
is an indicator (like the “lamp” above) separate from the actual machine, and to
add a bridging principle to the effect that “the indicator is wholly determined by
the machine”, in particular, it does not change other than by action of our ma-
chine. We can then check the indicator (a variable to read out, a lamp, or a dis-
play) after t1 and use this indicator for the output of computing results. This
bridging principle does the job of what Earman and Norton call the “persistence
property” of the natural world, the property of persisting unchanged after the t-
series (Earman and Norton, 1996, p. 238ff). This property causes the apparent
contradiction in Thomson’s lamp, on their analysis – and it is the property that
hypercomputing has to re-instate … calling for trouble.

2.3. Beyond the Benacerraf Gap – Into the Abyss

So, the bridged indicator might get us across the Benacerraf gap, but do we really
want to go there? In his 1954 paper, Thomson had also proposed a machine that
prints the digits of π on a tape which is generated at the same speed as the com-
putation. After the end of the computing series, we would have an infinitely long
tape with each digit of π printed on it. He additionally proposed a parity machine
connected to the π-machine, and asks “what appears on the dial after the first ma-
chine has run through all the integers in the expansion of π?” (Thomson, 1954, p.
5) – pointing out that any output is contradictory. So, would bridging the gap not
have the unacceptable consequences Thomson wanted to warn us about? It ap-
pears that we would now be able to compute impossible things like the highest
natural number, the parity of the last digit of π, the result of “0+1-1+1-1…”, etc.
Copeland concedes that this combination with a parity machine is logically im-
possible, and also concedes: “… Thomson’s query as to what state an infinity ma-
chine may consistently be supposed to be in after it completes its supertask is a
good one.” (Copeland, 2002a, p. 286f.). Indeed it is – in fact it is crucial. Copeland
then uses what I call the Benacerraf gap and says: “The answer to the Thom-
sonian question ‘Where is the scanner at that point?’ is: Nowhere.” (Copeland,
2002a, p. 289). But that is not an option. We are told is that this machine is com-
puting, but that we can not have an output, necessarily! I think it will be agreed
that a machine that necessarily has no output does not qualify as a computing
machine: it is “hypocomputing” rather than hypercomputing. The dilemma is

On the Possibilities of Hypercomputing Supertasks 11/11

that if we do not combine the first machine with the ‘second’ machine, we do not
bridge the Benacerraf gap and we do not get an output, but if we do bridge, con-
tradiction looms.
Let us illustrate the second horn of the dilemma by a closer look at a bridged π-
machine:
1) A Zeno machine will compute an infinite
 number of steps in finite time (Assumption)
2) There is a program (P) such that:
 a) it calculates the digits of π one by one, and
 b) it writes each calculated digit into a variable (N), and
 c) (N) changes if and only if (P) changes it (Assumption)
3) A Zeno machine can run (P) (Assumption)
4) After carrying out (P) on the Zeno machine,
 variable (N) holds one digit of π (D) (from 2 and 3)
But which digit is that (D)? After (N) has completed its own supertask, (D) cannot
really be any particular digit out of the infinite expansion of π. One way to put
this problem is this:
5) (D) is the last digit computed in time
 or
 (D) is not the last digit computed in time (from 4, Assumption)
But now we can see, that either of these options is unacceptable:
6) If (D) is the last digit computed in time,
 then it is the last digit of π (from 1, 2 and 4)
7) There is no last digit of π (Assumption)
8) (D) is not the last digit computed in time (from 6 and 7)
9) If (D) is not the last digit computed in time, then there is
 a digit computed later. (from 1, 2 and 4)
10) There is no digit computed later than (D) (from 2 and 3)
11) (D) is the last digit computed in time (from 9 and 10)
11) contradicts 8) and thus 5) must be false, and so must 4) – as we indicated al-
ready. In order to get out of this problem, one might drop any part of the assump-
tions 1), 2), or 3); say the bridging principle in 2c) is insufficient; or say 4) does not
follow. (If there is a worry about 4) being internal, you may add a line to the pro-

On the Possibilities of Hypercomputing Supertasks 12/12

gram (P) where a further variable (M) is set to the value of (N) and then read out
(M) after the series.) All of these moves, however, remove the necessary bridging
and result in a machine with no output.
More importantly, one might wish to drop 2a) and deny that the Zeno machine
proceeds step-by-step, i.e. that it computes ‘effectively’ in this sense. This is a pos-
sibility but it removes the motivation to infer anything about Church-Turing from
such non-effective Zeno machines. The argument would still show that effective
supertask hypercomputing can run into contradictions. If one wanted to use non-
effective methods, the question arises how ‘bridging’ can be achieved, i.e. how
the state of the output indicator can be considered as caused by the Zeno-
machine.
To put the argument in terms of a lesson from Thomson vs. Benacerraf: Thomson
argued that supertasks would result in impossible states, and Benacerraf showed
that nothing about the resulting states followed from the specification of Thom-
son’s machines (e.g. his lamp that is switched on and off), while he conceded that
these states are indeed impossible. To get a Zeno machine to compute, we must
specify it such that something does follow about the resulting states (so that we
can take them as output), but then we are back at Thomson’s impossible states.
So, while Copeland could say “No inconsistency in the notion of a π-machine was
ever demonstrated” (2002a, p. 284), we now have a dilemma of computing with
no output or bridged computing with a contradiction.
Perhaps this problem even generalizes to all other hypercomputers and the ques-
tion arises whether their feat of “completing” infinite steps in finite observer-time
(through fractions of time, quantum superpositions, relativistic space-times, or
whatever) does not allow for the same paradoxical results. (For example, any
Zeno hypercomputing machine that counts its own infinite steps would have to
calculate the “highest natural number”.)

3. Objections to the Proposed Dilemma

3.1. Infinity vs. Hypercomputing in Mechanisms

It may be thought that this second horn of the hypercomputing-dilemma must
show too much: could an infinite omniscient God not know mathematical facts

On the Possibilities of Hypercomputing Supertasks 13/13

over the infinite, are there no functions with truth values over the infinite? Indeed
there are, as we granted earlier, but that is not at issue. For example, there is noth-
ing inconsistent in the notion of a God digitally going through the extension of π
in a minute. In particular, if one removes the condition of the computational out-
put (as does Shagrir, 2004, p. 110f), no contradiction ensues. There is also nothing
impossible about a logical consequence from God going through some infinite
steps. But what even God cannot do is to perform an infinite effective digital com-
putation, say, hold up one of ten fingers (the original digit “indicator”) each time
he computes a digit of π and claim that nothing else changes the state of his fin-
gers after the computation (a bridging principle). What would his fingers show
once God is done the extension of π? We have seen that an infinite computing
machine with a bridging principle is impossible – at least if that machine writes
each digit of π, or keeps a counter, or switches an indicator lamp on/off after
every +1/-1 computation, etc.
The possibility of hypercomputing involves more than a formal specification of
the algorithm that is free from contradiction; it involves the possibility as a digital
computing mechanism,8 i.e. as a mechanism in which the state of the output (e.g.
indicator at t1 and after) is causally determined by the step-by-step workings of the
mechanism. Put in these causal terms, a bridged supertask is one where the su-
pertask has an effect that lasts beyond the time of the completion of the task, an
effect that can be taken as the output of the effective computation. Since this ar-
gument involves causation it concerns the physical possibility of such machines,
not the logical possibility of their specification.
The burden of proof is now on the defenders of hypercomputing, who have to
explain the specification of the machine such that it does have an output but does
not result in contradiction. They must explain how such an output can be the re-
sult of the total digital computation without being the result of effective step-by-
step computation and while avoiding the programs for a Zeno machine that re-
sult in contradiction.

8 I use “machine” and “mechanism” interchangeably in this paper, for lack of an adjective
in English that differentiates the property of a mechanism (“mechanical”) from that of a
machine (“machinical”).

On the Possibilities of Hypercomputing Supertasks 14/14

3.2. Hypercomputing Semi-decidable Problems Only?

For a machine that deals with semi-decidable problems, there is hope for specify-
ing such a reason, since the results themselves cannot be a source of contradic-
tion: no single answer to a well-formed true/false question results in a contradic-
tion. The only difference between the manifestly impossible machines and the
proposed machines for semi-decidable tasks appears to be that the bridged indi-
cator is changed infinitely many times in the former and only once (if at all) in the
latter - though perhaps infinitely close to t1. In fact, the indicator itself is perform-
ing a supertask in the impossible machines. Perhaps the defenders of hypercom-
puting could come up with a principle that would allow for the semi-decidable
machines, but rule out the manifestly impossible machines? Let us have a brief
look at some instructive candidates:
a) Nothing can be the effect of infinitely many causes9
This would prevent the existence of a bridged indicator for the impossible ma-
chines that has been updated infinitely many times. It also implies that the Zeno-
machine itself must go up in Bencerraf’s “puff of metaphysical smoke” after the t-
series, since its state at t1 would be a result of infinitely many steps. More impor-
tantly, it would also show that the state of the indicator cannot be the effect of all
of the infinite steps of the Zeno-machine. But the specification of the mechanism
must be such that the state of the indicator lamp at t1 can be taken as the “output”
of the computing procedure. This applies when the lamp is “off” as well as when
it is “on”. Not changing the indicator after a particular computation must also be
an effect if we want to take it as output – an effect of all the infinitely many com-
puting steps. We cannot take the indicator as output if the causal connection was
cut somewhere during the t-series and this cut caused the lamp to be “off”. (Re-
member, we are talking about semi-decidable tasks, where the result “on” is
computable in finitely many steps, only the result “off” is not.) This would return
to the first horn of the dilemma: computing without an output. Therefore infinite
hypercomputing would impossible. In fact, it implies a rejection of assumption 3)
above, so it is not a way out.

9 Meaning “… within finite time”. There can be no effect after an infinite time (for an ob-
server) anyway. (But see (Hamkins and Lewis, 2000) for an investigation of what is
mathematically possible.)

On the Possibilities of Hypercomputing Supertasks 15/15

b) Nothing can have infinitely many effects
This would prevent the Zeno-machine from updating the indicator infinitely
many times. But it would also prevent any Zeno-machine from running, since
starting it would have infinitely many effects. Caused supertasks and thus infinite
hypercomputing would be impossible. This also implies a rejection of 3), so it is
not a way out either.
c) If something changes infinitely many times, then it must go out of existence
afterwards, without any effect
This would force the Zeno-machine itself to go out of existence after its activity
(as is the case in the non-Newtonian proposals). It is weaker than a), but strong
enough to prevent a bridged indicator that has been updated infinitely many
times (resulting in contradictions), while possibly allowing a bridged indicator
that is changed once. However, as noted under a) above, even a bridged indicator
that is changed only once (or not at all) should be seen as being the result of the
entire workings of the Zeno machine (probably even of all its infinitely many
steps) – so the state of indicator for a semi-decidable task cannot be seen as the
result of the Zeno machine after computation is over if c) were true.
Another issue is what causes this “going out of existence”. If cannot be the conse-
quence of internally “having completed” the supertask, but neither can it be
caused from the outside by “time is up”. On the other hand, if going out of exis-
tence is due to some gradual process, it becomes implausible that an object
should have effects infinitely close to its going out of existence. – I think that ex-
planation c) looks ad hoc, but we should be open to arguments sustaining it.
To sum up, bridged supertasks require that something can be the effect of infi-
nitely many causes (~a), that something can have infinitely many effects (~b), and
that the bridged supertask does have effects (~c). Denying one of the three condi-
tions amounts to denying the possibility of bridged supertasks, thus the denial of
3) in the argument above - for any program (P). In other words, all three attempts
at repair throw the baby out with the bath water: they disallow contradictory ma-
chines but also all other machines for semi-decidable problems. I do not see any
further plausible way out. If there really is no other, we have to conclude that
bridged supertasks are impossible - whether or not they are considered comput-
ing machines. To put it the other way around, if bridged supertasks were possi-
ble, infinite hypercomputing should have been possible. But infinite hypercom-
puting is not possible, so bridged supertasks must be impossible.

On the Possibilities of Hypercomputing Supertasks 16/16

4. Conclusion: Zeno’s Supertasks and Computing the Incomputable

If the general conclusion could be established that bridged supertasks are impos-
sible (by a thorough rejection of all ways out), this would have ramifications for
Zeno’s classic paradoxes. If principle a) is true, it cannot be the case that moving
through a stretch from a point A to a point B is to perform a supertask, since the
arrival at B presumably is the effect of moving through that stretch - and we do
not vanish as soon as we complete a movement from A to B. Equally, if we prefer
only principle b), and take moving through a stretch from a point A to a point B
as a supertask, then our movement cannot have a cause – which seems false. If c)
is true, after all, we would have to vanish after a movement. So, on any of these
three explanations Zeno must be wrong when he says that one movement is to
make infinitely many movements. If any of these or any other explanations are
proposed, such ramifications must be considered.
Concerning our original question, I conclude that Thomson was right that if any-
thing follows from states inside the series to states outside the series, then contra-
diction ensues. And Benacerraf was right that nothing does follow from states
inside the series to states outside the series – unless one adds a bridging principle.
In other words, either the Zeno machine can be specified, does bridge the gap,
but then its specification involves contradictions; or it is underspecified, does not
bridge the gap, but then it does not compute an output. Either way, Zeno ma-
chine hypercomputers are impossible – and so are probably all bridged super-
tasks. Therefore, the notion of infinite digital hypercomputing is no reason to re-
ject the traditional interpretation of the Church-Turing thesis.

On the Possibilities of Hypercomputing Supertasks 17/17

References

Barrow, J.D. (2005). The infinite book: A short guide to the boundless, timeless
and endless. New York: Pantheon Books.

Benacerraf, P. (1962). ‘Tasks, supertasks, and the modern Eleatics’. Journal of Phi-
losophy, 765-784.

Boolos, G., Burghess J.P. & Jeffrey R.C. (2007). Computability and logic. Cam-
bridge: Cambridge University Press.

Church, A. (1936). ‘An unsolvable problem in elementary number theory’. The
American Journal of Mathematics, 58, 345–363.

Churchland, P.M. (2005). ‘Functionalism at forty: A critical retrospective’. Journal
of Philosophy, 33-50.

Copeland, J.B. (1993). Artificial intelligence: A philosophical introduction. Oxford:
Blackwell.

Copeland, J.B. (1997). ‘The broad conception of computation’. American Behav-
ioral Scientist, 690-716.

Copeland, J.B. (1998). ‘Turing’s O-machines, Penrose, Searle and the brain’.
Analysis, 128-138.

Copeland, J.B. (2000). ‘Narrow versus wide mechanism, including a re-
examination of Turing’s views on the mind-machine issue’. Journal of Phi-
losophy, 97, 5-32.

Copeland, J.B. (2002a). ‘Accelerating Turing machines’. Minds and Machines,
281-301.

Copeland, J.B. (2002b). ‘Hypercomputation’. Minds and Machines, 461-502.

Copeland, J.B. (2003). ‘Computation’. In Floridi, L., (Ed.), The Blackwell guide to
the philosophy of computing and information. Oxford: Blackwell 3-17.

Copeland, J.B. (2004). ‘Hypercomputation: Philosophical issues’. Theoretical
Computer Science, 317, 251-267.

Copeland, J.B. & Proudfoot D. (1999). ‘Review of ‘The Legacy of Alan Turing’, ed.
Peter Millican/Andy Clark’. Mind, 187-195.

On the Possibilities of Hypercomputing Supertasks 18/18

Copeland, J.B. & Proudfoot D. (2000). ‘What Turing did after he invented the uni-
versal Turing machine’. Journal of Logic, Language and Information, 491-
509.

Cotogno, P. (2003). ‘Hypercomputation and the physical Church-Turing thesis’.
British Journal for the Philosophy of Science, 181-223.

Cotogno, P. (2009). ‘A Brief Critique of Pure Hypercomputation’. Minds and Ma-
chines, 19, 391-405.

Davies, E.B. (2001). ‘Building infinite machines’. British Journal for the Philoso-
phy of Science, 671-682.

Davies, M. (2000). The universal computer: The road from Leibniz to Turing. New
York: W. W. Norton.

Deutsch, D. (2004). ‘It from qubit’. In Barrow, J.D., Davies P.C.W. & Harper C.L.,
(Eds.), Science and ultimate reality: Quantum theory, cosmology, and com-
plexity (Festschrift for John A. Wheeler). Cambridge: Cambridge University
Press 90-102.

Earman, J. & Norton J.D. (1996). ‘Infinite pains: The trouble with supertasks’. In
Morton, A. & Stich S.P., (Eds.), Benacerraf and his critics. Oxford: Blackwell
231-261.

Floridi, L. (1999). Philosophy and computing: An introduction. London: Rout-
ledge.

Fodor, J.A. (2000). The mind doesn’t work that way: The scope and limits of com-
putational psychology. Cambridge, Mass.: MIT Press.

Gandy, R. (1980). ‘Church’s Thesis and Principles of Mechanics’. In Barwise, J.,
Keisler H.J. & Kunen K., (Eds.), The Kleene Symposium. Amsterdam: North-
Holland 123-148.

Hamkins, J.D. & Lewis A. (2000). ‘Infinite time Turing machines’. The Journal of
Symbolic Logic, 65, 567-604.

Harel, D. (2000). Computers ltd.: What they really can’t do. Oxford: Oxford Uni-
versity Press.

Hodges, A. (2006). ‘Did Church and Turing have a thesis about machines?’ In Ol-
szewski, A., Woleński J. & Janusz R., (Eds.), Church’s Thesis after 70 years.
Frankfurt: Ontos 242-252.

On the Possibilities of Hypercomputing Supertasks 19/19

Kieu, T.D. (2002). ‘Quantum hypercomputability’. Minds and Machines, 541-561.

Kieu, T.D. (2004). ‘Hypercomputation with quantum adiabatic processes’. Theo-
retical Computer Science, 317, 93-104.

Müller, V.C. (2008). ‘Representation in digital systems’. In Briggle, A., Waelbers
K. & Brey P., (Eds.), Current issues in computing and philosophy. Amster-
dam: IOS Press 116-121.

Ord, T. & Kieu T.D. (2005). ‘The diagonal method and hypercomputation’. British
Journal for the Philosophy of Science, 147-156.

Penrose, R. (1989). The emperor’s new mind: Concerning computers, minds and
the laws of physics. London: Vintage.

Piccinini, G. (2004). ‘Functionalism, computationalism, and mental contents’.
Studies in the History and Philosophy of Science, 35, 811-833.

Piccinini, G. (2007). ‘Computationalism, the Church-Turing thesis, and the
Church-Turing fallacy’. Synthese, 154, 97-120.

Pinker, S. (2005). ‘So how does the mind work?’ Mind and Language, 20, 1-24.

Potgieter, P.H. (2006). ‘Zeno machines and hypercomputation’. Theoretical Com-
puter Science, 358, 23-33.

Scheutz, M. (Ed.) (2002). Computationalism: New directions. Cambridge: Cam-
bridge University Press.

Shagrir, O. (2004). ‘Super-tasks, accelerating Turing machines and uncomputabil-
ity’. Theoretical Computer Science, 317, 105-114.

Shagrir, O. & Pitowsky I. (2003). ‘Physical hypercomputation and the Church-
Turing thesis’. Minds and Machines, 13, 87-101.

Siegelmann, H.T. (1995). ‘Computation beyond the Turing limit’. Science, 545-
548.

Siegelmann, H.T. (1997). Neural networks and analog computation: Beyond the
Turing limit. Basel: Birkhäuser.

Siegelmann, H.T. & Sontag E.D. (1994). ‘Analog computation via neural nets’.
Theoretical Computer Science, 331-360.

Thomson, J.F. (1954). ‘Tasks and super-tasks’. Analysis, 1-13.

On the Possibilities of Hypercomputing Supertasks 20/20

Turing, A. (1936). ‘On computable numbers, with an application to the
Entscheidungsproblem’. Proceedings of the London Mathematical Society, 42,
230-256.

Turing, A. (1992). Collected works: Mechanical intelligence, ed. Sevenster, A.
Amsterdam: North-Holland.

Welch, P.D. (2004). ‘On the possibility, or otherwise, of hypercomputation’. Brit-
ish Journal for the Philosophy of Science, 739-746.

Weyl, H. (1927). Philosophie der Mathematik und Naturwissenschaft. Munich:
Oldenbourg.

