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Abstract 

This paper investigates the view that digital hypercomputing is a good reason for 
rejection or re-interpretation of the Church-Turing thesis. After suggestion that 
such re-interpretation is historically problematic and often involves attack on a 
straw man (the ‘maximality thesis’), it discusses proposals for digital hypercom-
puting with “Zeno-machines”, i.e. computing machines that compute an infinite 
number of computing steps in finite time, thus performing supertasks. It argues 
that effective computing with Zeno-machines falls into a dilemma: either they are 
specified such that they do not have output states, or they are specified such that 
they do have output states, but involve contradiction. Repairs though non-
effective methods or special rules for semi-decidable problems are sought, but not 
found. The paper concludes that hypercomputing supertasks are impossible in 
the actual world and thus no reason for rejection of the Church-Turing thesis in 
its traditional interpretation. 

1 I am very grateful to Paul Benacerraf, Adam Elga and Athanssios Kehagias for illuminat-
ing discussion. I am also very grateful to two anonymous reviewers for Minds and Ma-
chines, and two for the British Journal for the Philosophy of Science.
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1. Introduction: Church-Turing and Hypercomputing 

1.1. Copeland and the Church-Turing Thesis 

The philosophical literature on the notion of computing, whether it is in the con-
text of computationalism in the philosophy of mind, the possibility of artificial 
intelligence or of computing machines in general, has traditionally assumed as 
background consensus that what a computer can do in principle is identical to 
what is “effectively computable”, i.e. what can be computed by the mechanical 
application of a definite rule of finitely many instructions – of an algorithm.2 The 
notion of computability was accordingly defined by Church, Turing and others in 
what is now known as the “Church-Turing thesis”, one formulation of which is: 
all and only the effectively computable functions can be computed by a Turing machine. 
Strictly speaking, Church’s thesis is that all effectively computable functions are 
recursive, and Turing’s thesis is that all effectively computable functions are 
computable by the Turing-machine. Since the inversions to both theses are known 
to be true, to call a procedure “effective”, “algorithmic”, “recursive” or “Turing 
machine computable” all comes down to the same.3  
In a series of papers, Jack Copeland and others have said that this traditional in-
terpretation of the Church-Turing thesis is a misunderstanding, arguing that the 
Church-Turing thesis says nothing about what is computable by machines, or 
computable in principle, but it concerns only what can be computed by humans. As 
we shall see presently, this re-interpretation is motivated by the notion that ma-
chines, unlike humans, are capable of ‘hypercomputing’ and the Church-Turing 
thesis must thus be re-interpreted in order not to come out false. All sorts of er-
rors in the philosophy of computing and mind are blamed on this alleged misun-
derstanding of the thesis (Copeland, 1997; 1998; 2000; 2002a; 2002b; 2003; 2004; 
Copeland and Proudfoot, 1999; 2000; cf. Shagrir and Pitowsky, 2003). If this inter-
pretation were correct, one would have to distinguish one notion of computing 

                                                             
2 Indicative for the philosophy of mind: (Churchland, 2005; Fodor, 2000; Piccinini, 2004; 
2007; Pinker, 2005; Scheutz, 2002); for artificial intelligence: (Copeland, 1993); for mathe-
matical logic: (Boolos, et al., 2007, ch. 3ff). 
3 (Church, 1936; Turing, 1936; cf. Boolos, et al., 2007, ch. 3ff; Harel, 2000). The notion of 
“Turing machine” is well explained in many places, see particularly (Penrose, 1989, ch. 2; 
Floridi, 1999, p. 26ff; Davies, 2000, ch. 7; Copeland, 2003, p. 4ff). 
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for both humans and machines (“effective”, “Turing machine computable”) and a 
wider one for machines only (“algorithmic”, “recursive”).  

1.2. Church-Turing and Church and Turing 

Concerning the historical question what Church, Turing and other contemporar-
ies had in mind, Copeland rightly points out that in the 1930ies and 40ies, the 
word “computer” meant a person doing computation, which is an indication that 
Copeland’s historical thesis might be correct. While it is true that universal com-
puting machines did not exist before 1941 (the “Z3”), there had been non-
electronic calculating machines for centuries and Turing, of all people, was surely 
aware of the possibility of programmable (universal) computing machines. There 
are strong indications that Church (1936) and Turing thought the thesis to apply 
to machines, too – the main motivation for saying otherwise appears to be not to 
have Church and Turing say something wrong. 
Turing states in the opening paragraph of his famous paper “‘On computable 
numbers …”: “The ‘computable’ numbers may be described briefly as the real 
numbers whose expressions as a decimal are calculable by finite means. … Ac-
cording to my definition, a number is computable if its decimal can be written 
down by a machine.” [my emphasis] (Turing, 1936). About this paper, he said in a 
1947 address to the London Mathematical Society: “I considered a type of ma-
chine which had a central mechanism, and an infinite memory which was con-
tained on an infinite tape… One of my conclusions was that the idea of a ‘rule of 
thumb’ process and a ‘machine process’ were synonymous.” (Turing, 1992, p. 
106) (see also Hodges, 2006). His emphasis is on the ‘mechanical’ nature of the 
process, not on who or what carries it out. 
Finally, it would appear to be precisely the point of Turing’s 1936 paper to show 
that all effectively computable functions are computable by his machine, and thus 
that the halting problem of his machine is the Entscheidungsproblem. So it would 
be odd to have the Entscheidungsproblem for humans, but not for machines. (It 
would also constitute a dramatic inversion of the Penrose/Lucas argument, 
which says that machines have the Entscheidungsproblem, but humans do not.) 
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1.3. Church-Turing and the “Maximality Thesis” 

Copeland focuses on the Church-Turing thesis for machines and calls this part of 
the traditional strong interpretation the “maximality thesis”, stating it as follows: 
“all functions that can be generated by machines (working on finite input in ac-
cordance with a finite program of instructions) are Turing machine computable” 
(2000, p. 15). He says that while the Church-Turing thesis is true of humans, the 
maximality thesis is “known to be false” if we take the machines to be “machines 
in a possible world” (Copeland, 2000, pp. 15, cf 31). “It is straightforward to de-
scribe abstract machines that generate functions that cannot be generated by the 
UTM [Universal Turing Machine]” (Copeland, 2004, p. 12). What remains conten-
tious on his view is merely whether the maximality thesis is true in the actual 
world. 
Before we enter into the details, we must specify two senses in which this may 
well be correct – but which are beside the point, in my opinion. 
First, we know that the set of all functions (even of all functions over the positive 
integers) is larger than the set of Turing-computable functions, since the former is 
not denumerable, while the latter is. But our issue here is not to delineate certain 
classes of functions. What we want to find out is whether it is indeed “straight-
forward to describe abstract machines” that compute such functions; that is to de-
scribe systems whose states are causally determined by their previous states (only 
then do they deserve the name of machines). If not, the burden of proof would be 
shifted onto those who want to reject the traditional strong reading of the 
Church-Turing thesis. 
Second, the Church-Turing thesis concerns only digital or “discrete state” comput-
ing. This follows directly from the restriction to effective algorithmic procedures, 
which proceed “step by step”, where steps are distinguished by a discrete state. 
This is not to say that the inversion holds: one might well hold that some digital 
procedures are not effective; for example those of hypercomputing. Whether non-
digital, i.e. “analogue”, or “continuous” computing deserves the name of “com-
puting” and whether analogue mechanisms could compute functions that are not 
Turing-computable are matters not relevant to our point here – but see (Müller, 
2008) for a discussion. As Hava Siegelmann (Siegelmann, 1995; 1997; Siegelmann 
and Sontag, 1994) and others have shown, there is good reason to believe that 
analogue mechanisms are possible which can compute functions that are not Tur-
ing-computable. 
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Both of these points would not refute the traditional strong interpretation of the 
Church-Turing thesis, however. The situation would still be very aptly described 
by Floridi, when he says: “From Turing power up, computations are no longer 
describable by algorithms” (1999, p. 36).  
Accordingly, the strong Church-Turing thesis under discussion here is not identi-
cal to Copeland’s “maximality thesis”, since that thesis is restricted to machines. 
What is more, the strong Church-Turing thesis does not even imply the “maxi-
mality thesis”, since the latter makes no mention of algorithms – an absence that 
is used by Copeland to attack it with the possibility of analogue computers. The 
“maximality thesis” is a straw man, and it is false. 

1.4. Hypercomputing 

The rejection of the Church-Turing thesis under its strong interpretation is moti-
vated by the idea that there could be machines that could compute what no hu-
man and no Turing machine could compute, and this computing of what is not 
Turing-machine computable is now called “hypercomputing”.4 Proposed designs 
for machines include Turing’s “O-machines” (“oracle machines” with a black box 
that answers non-computable queries non-mechanically5), “Zeno machines” (that 
can compute infinitely many steps, see below), analogue computers (but see 
above), quantum computers, Putnam-Gold machines (computers that can 
“change their mind”), probabilistic machines, machines in Malament-Hogarth 

                                                             
4 Note that it is strictly speaking misleading to talk about the computing of a “Turing ma-
chine” in this context. A Turing machine is a theoretical device that can perform a particu-
lar algorithm and the theoretical universal Turing machine is a theoretical machine that 
can perform whatever any particular Turing machine can perform, i.e. it can be pro-
grammed to perform any algorithm. The Church-Turing thesis concerns the possibilities of 
this universal Turing machine and its relation to the notion of “effective computability”. 
However this machine is just a model for what any mathematician with enough time and 
resources (paper and pencils - or tape and a read/write device) on his/her hand can com-
pute. So, while the computer on my desk is a universal computer, its abilities are the same 
as that of the universal Turing machine (save its limited memory), but it is misleading to 
shorten this property to “it is a Turing machine”. 
5 O-machines are mentioned by Copeland, but they just serve a theoretical purpose in Tur-
ing, they are not a proposed design for a computing machine. For a discussion, see 
(Cotogno, 2009).  
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universes, machines using the expansion of “mixmaster” universes and others. 
Despite all these proposals, it is probably fair to say that the various defenders of 
hypercomputing have not themselves proposed a notion of computing, they have 
restricted themselves to a rejection of the notion of computing expressed in the 
strong Church-Turing thesis.6 

1.5. Possibilities of Hypercomputing 

The discussion about hypercomputing has focused on the question whether hy-
percomputing is possible in the actual world, given the physics of this world. A 
negative answer is sometimes called the “physical Church-Turing thesis” (e.g. 
Cotogno, 2003) or also, “Gandy’s thesis” (after Gandy, 1980). There are many in-
teresting problems with the view that such hypercomputing machines are possi-
ble in our world, given that the extant proposals involve infinity, such as infinite 
memory, or infinitely large machines, infinitely many steps, infinitely small parts, 
infinitely fast movement, infinitely fast information transfer, infinite amount of 
information transfer, infinitely precise measurement of quantum states, survival 
of infinite-energy states, infinitely expanding universes, etc.7 
However, as long as no particular proposal is accepted this discussion can make 
no headway on the general question of whether hypercomputing is possible. Af-
ter all, even if one rejects a particular proposal, it is prudent to remain agnostic 
about the possibility of a more ingenious design. While that discussion is going 
on, one has to accept that it is important to distinguish between the truth of the 
strong (traditional) and of the weak (Copeland’s) interpretation of the Church-
Turing thesis, since one is discussing whether a particular proposal falls under 
the one but not under the other. In order to secure the traditional strong reading 
of Church-Turing, one would have to show that hypercomputing is impossible in 
the actual world, or even in any possible world. Some attempts to refute the 

                                                             
6 Very useful surveys are in (Copeland, 1997; 2002b), more critically (Cotogno, 2003), also 
(Potgieter, 2006) for the more mathematical literature. Special issues in Minds and Machines 
12 (2002) and Theoretical Computer Science 317 (2004). 
7 (Barrow, 2005, ch. 10) has a useful basic survey. For a quantum proposal, see (Kieu, 2002; 
Ord and Kieu, 2005). For a relativistic proposal, (Shagrir and Pitowsky, 2003), cf. also 
(Potgieter, 2006). For a proposal of “shrinking” Zeno-machines in a Newtonian universe, 
see (Davies, 2001). 
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physical Church-Turing thesis been made (esp. Cotogno, 2003), using Cantor’s 
diagonal technique, but these have been rebutted successfully (Ord and Kieu, 
2005; Welch, 2004), in my opinion. I will make a new attempt to shift the burden 
of proof onto the supporters of infinite hypercomputing. 
My impression from the mathematical literature is that there is little hope to 
prove hypercomputing contradictory and thus impossible in any possible world. 
– But on the other hand, the distinction between logical and actual possibility 
might not be so clear after all: “The misconception is that the set of computable 
functions (or the set of quantum-computational tasks) has some a priori privi-
leged status within mathematics. But it does not. The only thing that privileges 
that set of operations is that it is instantiated in the computationally universal 
laws of physics. It is only through our knowledge of physics that we know of the 
distinction between computable and non-computable […], or between simple and 
complex.” (Deutsch, 2004, p. 99) 

2. Zeno Machines: Infinite Hypercomputing 

Let us investigate the notion of a “Zeno machine”, a concept proposed by 
Hermann Weyl (1927). A Zeno machine is specified in such a way that each step 
takes a fraction of the time of its predecessor, so if the first step takes ½ a second, 
for example, the times for each step could be: ½, ¼, 1/8, … This machine could 
make a denumerable infinity of computing steps in finite time, in one second. It 
starts at time t0, then runs through a series of steps tn and is done at time t1. This 
machine shows clearly that we need to distinguish “in finitely many steps” from 
“in finite time” in the formulation of the Church-Turing thesis. 
Zeno machines are repeatedly presented by Copeland as examples of possible 
hypercomputers (called “accelerating Turing-machines”), and they are the most 
intensely discussed proposal for digital hypercomputing (cf. Ord and Kieu, 2005). 
Zeno machines are not standard Turing machines since the latter produce results 
only once they halt, after a last step (though they can be set to motion again, even 
infinitely many times), while Zeno machines can go through infinitely many steps 
– though they will be “done” in a different sense, namely in time.  
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2.1. Background: Supertasks 

The logical possibility of a physical object carrying out infinitely many tasks (e.g. 
computing steps) in finite time was much discussed in the 1950ies and 60ies in the 
context of Zeno’s paradoxes of movement (esp. Achilles and the tortoise, and the 
racetrack) and such tasks were dubbed “supertasks” by James Thomson (1954). In 
order to show that performing supertasks is impossible, Thomson had proposed 
to consider a lamp that is switched on and off infinitely many times. He then said 
that from the assumption that each time the lamp is switched on it is also 
switched off afterwards, it follows that it can be neither on nor off after the 
switchings are over - which he claimed to be a contradiction. Paul Benacerraf 
(1962, p. 779ff) criticized this move, pointing out that, given the specification, 
nothing follows from the states of the lamp inside the series about the state of the 
lamp after the series. This criticism is widely regarded as correct. 
The logical gap between what is the case inside the infinite series and what is the 
case after the series is crucial for the following discussion and I shall call it the 
“Benacerraf gap”. I propose that the defender of infinite hypercomputing has to 
bridge the Benacerraf gap, in order to generate an output – and that is the prob-
lem which is ignored. The description of a Zeno machine is indeed unproblem-
atic, but as soon as it includes a device that ‘bridges the gap’, contradiction looms, 
as we shall see presently. 
It is crucial for the understanding of the Benacerraf gap to keep in mind that there 
is no such thing as “the last step” or “the last state” in the series, and accordingly, 
no last step that can determine the state of the lamp. Also, for any point in time 
arbitrarily close to time t1, there is still a further step to take place later. Given that 
there is no last state, one cannot measure/read out the last state and one can not 
write a program that instructs “do the last step and then do this and halt”, neither 
can we ask “what is the state after the last step?”  
So, a first form of the fundamental problem is that a) we cannot have a computa-
tional output after the “last step”, but b) neither can we just look at the output 
after the series is over in time, since “nothing follows”, as Benacerraf had pointed 
out. So, whatever the state of the Zeno machine at t1, how can it be the effect of the 
infinite t-series? Can we make sure that there is an output that can be generated 
without reliance on contradictory notions like “the last step in an infinite series”? 
As Benacerraf says, “Certainly, the lamp must be on or off at t1 (provided it has 
not gone up in a metaphysical puff of smoke in the interval), but nothing we are 
told implies what it is to be.” (Benacerraf, 1962, p. 768). 
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I will suggest that we are faced with a dilemma: either we have a machine where 
“nothing follows”, or we have a machine that bridges the Benacerraf gap but 
computes impossible results. Let us first set up the situation with machines that 
can bridge the Benacerraf gap. 

2.2. A Proposal for Infinite Computing: Facing the Benacerraf Gap 

One might, for example, want to know the answer to Brouwer’s classic question 
(discussed repeatedly by Wittgenstein) whether there is a sequence of “777” 
somewhere in the infinite expansion of π. This problem cannot be computed by a 
Turing machine because a negative answer would require looking at all of the 
infinite expansion of π. However, a positive answer is possible if one comes across 
the sequence “777” somewhere in π – in fact this has happened, and we now 
know that 777 does indeed occur in that expansion. Many famous mathematical 
problems have this “semi-decidable” feature, e.g. Hilbert’s Tenth Problem 
(claimed to be solvable by probabilistic quantum computing in Kieu, 2002; 2004) 
and Turing’s halting problem. Since the halting problem is precisely the problem 
whether the Turing machine will halt on a given problem, the Entscheidungsprob-
lem itself is one of these problems. 
Copeland seems to think that a semi-decidable task is computable by Zeno ma-
chine in the following fashion: Our hypercomputer may be fitted with a lamp 
and, for example, programmed in such a way that it switches on the lamp as soon 
as it finds the sequence “777” in π. After the series of computing is over, at t1 or 
later, you look at the lamp: if it is on, there is such a sequence, otherwise there is 
not. In this fashion, any Boolean (true/false) decision over infinite domains could 
be settled. (And it would appear that any formal problem that can be formulated 
in binary code could be settled.) 
Recall, however, that nothing followed from the specification of Thomson’s lamp 
about the state of his lamp at t1 or later. Is this any different with our new, sepa-
rate, indicator lamp? What the specification does tell me is that I can check 
whether the lamp is on at any time in the t-series, arbitrarily close to t1: if the lamp 
is on, a “777” has been found. But this task, namely whether the sequence is to be 
found in π up to a specific point, is a Turing-computable task. Does the specification 
of our machine tell me what is the case with my lamp at t1 or later? No, it does 
not. We have no reason to take the state of such a lamp as the output of the ma-
chine. More work needs to be done if we want to bridge the Benacerraf gap. 
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If one wanted to provide a specification that bridges the gap, one has to avoid any 
reference to a “step”, and instead talk about what is the case “after the series is 
over in time”. One way to achieve this is to include in the specification that there 
is an indicator (like the “lamp” above) separate from the actual machine, and to 
add a bridging principle to the effect that “the indicator is wholly determined by 
the machine”, in particular, it does not change other than by action of our ma-
chine. We can then check the indicator (a variable to read out, a lamp, or a dis-
play) after t1 and use this indicator for the output of computing results. This 
bridging principle does the job of what Earman and Norton call the “persistence 
property” of the natural world, the property of persisting unchanged after the t-
series (Earman and Norton, 1996, p. 238ff). This property causes the apparent 
contradiction in Thomson’s lamp, on their analysis – and it is the property that 
hypercomputing has to re-instate … calling for trouble. 

2.3. Beyond the Benacerraf Gap – Into the Abyss 

So, the bridged indicator might get us across the Benacerraf gap, but do we really 
want to go there? In his 1954 paper, Thomson had also proposed a machine that 
prints the digits of π on a tape which is generated at the same speed as the com-
putation. After the end of the computing series, we would have an infinitely long 
tape with each digit of π printed on it. He additionally proposed a parity machine 
connected to the π-machine, and asks “what appears on the dial after the first ma-
chine has run through all the integers in the expansion of π?” (Thomson, 1954, p. 
5) – pointing out that any output is contradictory. So, would bridging the gap not 
have the unacceptable consequences Thomson wanted to warn us about? It ap-
pears that we would now be able to compute impossible things like the highest 
natural number, the parity of the last digit of π, the result of “0+1-1+1-1…”, etc. 
Copeland concedes that this combination with a parity machine is logically im-
possible, and also concedes: “… Thomson’s query as to what state an infinity ma-
chine may consistently be supposed to be in after it completes its supertask is a 
good one.” (Copeland, 2002a, p. 286f.). Indeed it is – in fact it is crucial. Copeland 
then uses what I call the Benacerraf gap and says: “The answer to the Thom-
sonian question ‘Where is the scanner at that point?’ is: Nowhere.” (Copeland, 
2002a, p. 289). But that is not an option. We are told is that this machine is com-
puting, but that we can not have an output, necessarily! I think it will be agreed 
that a machine that necessarily has no output does not qualify as a computing 
machine: it is “hypocomputing” rather than hypercomputing. The dilemma is 
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that if we do not combine the first machine with the ‘second’ machine, we do not 
bridge the Benacerraf gap and we do not get an output, but if we do bridge, con-
tradiction looms.  
Let us illustrate the second horn of the dilemma by a closer look at a bridged π-
machine: 
1) A Zeno machine will compute an infinite  
 number of steps in finite time (Assumption) 
2) There is a program (P) such that:  
 a) it calculates the digits of π one by one, and 
 b) it writes each calculated digit into a variable (N), and  
 c) (N) changes if and only if (P) changes it (Assumption) 
3) A Zeno machine can run (P) (Assumption) 
4) After carrying out (P) on the Zeno machine,  
 variable (N) holds one digit of π (D) (from 2 and 3) 
But which digit is that (D)? After (N) has completed its own supertask, (D) cannot 
really be any particular digit out of the infinite expansion of π. One way to put 
this problem is this: 
5) (D) is the last digit computed in time 
 or 
 (D) is not the last digit computed in time (from 4, Assumption) 
But now we can see, that either of these options is unacceptable: 
6) If (D) is the last digit computed in time,  
 then it is the last digit of π (from 1, 2 and 4) 
7) There is no last digit of π (Assumption) 
8) (D) is not the last digit computed in time (from 6 and 7) 
9) If (D) is not the last digit computed in time, then there is  
 a digit computed later.  (from 1, 2 and 4) 
10) There is no digit computed later than (D) (from 2 and 3) 
11) (D) is the last digit computed in time (from 9 and 10) 
11) contradicts 8) and thus 5) must be false, and so must 4) – as we indicated al-
ready. In order to get out of this problem, one might drop any part of the assump-
tions 1), 2), or 3); say the bridging principle in 2c) is insufficient; or say 4) does not 
follow. (If there is a worry about 4) being internal, you may add a line to the pro-
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gram (P) where a further variable (M) is set to the value of (N) and then read out 
(M) after the series.) All of these moves, however, remove the necessary bridging 
and result in a machine with no output. 
More importantly, one might wish to drop 2a) and deny that the Zeno machine 
proceeds step-by-step, i.e. that it computes ‘effectively’ in this sense. This is a pos-
sibility but it removes the motivation to infer anything about Church-Turing from 
such non-effective Zeno machines. The argument would still show that effective 
supertask hypercomputing can run into contradictions. If one wanted to use non-
effective methods, the question arises how ‘bridging’ can be achieved, i.e. how 
the state of the output indicator can be considered as caused by the Zeno-
machine. 
To put the argument in terms of a lesson from Thomson vs. Benacerraf: Thomson 
argued that supertasks would result in impossible states, and Benacerraf showed 
that nothing about the resulting states followed from the specification of Thom-
son’s machines (e.g. his lamp that is switched on and off), while he conceded that 
these states are indeed impossible. To get a Zeno machine to compute, we must 
specify it such that something does follow about the resulting states (so that we 
can take them as output), but then we are back at Thomson’s impossible states. 
So, while Copeland could say “No inconsistency in the notion of a π-machine was 
ever demonstrated” (2002a, p. 284), we now have a dilemma of computing with 
no output or bridged computing with a contradiction.  
Perhaps this problem even generalizes to all other hypercomputers and the ques-
tion arises whether their feat of “completing” infinite steps in finite observer-time 
(through fractions of time, quantum superpositions, relativistic space-times, or 
whatever) does not allow for the same paradoxical results. (For example, any 
Zeno hypercomputing machine that counts its own infinite steps would have to 
calculate the “highest natural number”.) 

3. Objections to the Proposed Dilemma 

3.1. Infinity vs. Hypercomputing in Mechanisms 

It may be thought that this second horn of the hypercomputing-dilemma must 
show too much: could an infinite omniscient God not know mathematical facts 
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over the infinite, are there no functions with truth values over the infinite? Indeed 
there are, as we granted earlier, but that is not at issue. For example, there is noth-
ing inconsistent in the notion of a God digitally going through the extension of π 
in a minute. In particular, if one removes the condition of the computational out-
put (as does Shagrir, 2004, p. 110f), no contradiction ensues. There is also nothing 
impossible about a logical consequence from God going through some infinite 
steps. But what even God cannot do is to perform an infinite effective digital com-
putation, say, hold up one of ten fingers (the original digit “indicator”) each time 
he computes a digit of π and claim that nothing else changes the state of his fin-
gers after the computation (a bridging principle). What would his fingers show 
once God is done the extension of π? We have seen that an infinite computing 
machine with a bridging principle is impossible – at least if that machine writes 
each digit of π, or keeps a counter, or switches an indicator lamp on/off after 
every +1/-1 computation, etc. 
The possibility of hypercomputing involves more than a formal specification of 
the algorithm that is free from contradiction; it involves the possibility as a digital 
computing mechanism,8 i.e. as a mechanism in which the state of the output (e.g. 
indicator at t1 and after) is causally determined by the step-by-step workings of the 
mechanism. Put in these causal terms, a bridged supertask is one where the su-
pertask has an effect that lasts beyond the time of the completion of the task, an 
effect that can be taken as the output of the effective computation. Since this ar-
gument involves causation it concerns the physical possibility of such machines, 
not the logical possibility of their specification. 
The burden of proof is now on the defenders of hypercomputing, who have to 
explain the specification of the machine such that it does have an output but does 
not result in contradiction. They must explain how such an output can be the re-
sult of the total digital computation without being the result of effective step-by-
step computation and while avoiding the programs for a Zeno machine that re-
sult in contradiction. 

                                                             
8 I use “machine” and “mechanism” interchangeably in this paper, for lack of an adjective 
in English that differentiates the property of a mechanism (“mechanical”) from that of a 
machine (“machinical”). 
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3.2. Hypercomputing Semi-decidable Problems Only? 

For a machine that deals with semi-decidable problems, there is hope for specify-
ing such a reason, since the results themselves cannot be a source of contradic-
tion: no single answer to a well-formed true/false question results in a contradic-
tion. The only difference between the manifestly impossible machines and the 
proposed machines for semi-decidable tasks appears to be that the bridged indi-
cator is changed infinitely many times in the former and only once (if at all) in the 
latter - though perhaps infinitely close to t1. In fact, the indicator itself is perform-
ing a supertask in the impossible machines. Perhaps the defenders of hypercom-
puting could come up with a principle that would allow for the semi-decidable 
machines, but rule out the manifestly impossible machines? Let us have a brief 
look at some instructive candidates: 
a) Nothing can be the effect of infinitely many causes9 
This would prevent the existence of a bridged indicator for the impossible ma-
chines that has been updated infinitely many times. It also implies that the Zeno-
machine itself must go up in Bencerraf’s “puff of metaphysical smoke” after the t-
series, since its state at t1 would be a result of infinitely many steps. More impor-
tantly, it would also show that the state of the indicator cannot be the effect of all 
of the infinite steps of the Zeno-machine. But the specification of the mechanism 
must be such that the state of the indicator lamp at t1 can be taken as the “output” 
of the computing procedure. This applies when the lamp is “off” as well as when 
it is “on”. Not changing the indicator after a particular computation must also be 
an effect if we want to take it as output – an effect of all the infinitely many com-
puting steps. We cannot take the indicator as output if the causal connection was 
cut somewhere during the t-series and this cut caused the lamp to be “off”. (Re-
member, we are talking about semi-decidable tasks, where the result “on” is 
computable in finitely many steps, only the result “off” is not.) This would return 
to the first horn of the dilemma: computing without an output. Therefore infinite 
hypercomputing would impossible. In fact, it implies a rejection of assumption 3) 
above, so it is not a way out. 

                                                             
9 Meaning “… within finite time”. There can be no effect after an infinite time (for an ob-
server) anyway. (But see (Hamkins and Lewis, 2000) for an investigation of what is 
mathematically possible.) 
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b) Nothing can have infinitely many effects 
This would prevent the Zeno-machine from updating the indicator infinitely 
many times. But it would also prevent any Zeno-machine from running, since 
starting it would have infinitely many effects. Caused supertasks and thus infinite 
hypercomputing would be impossible. This also implies a rejection of 3), so it is 
not a way out either. 
c) If something changes infinitely many times, then it must go out of existence 
afterwards, without any effect 
This would force the Zeno-machine itself to go out of existence after its activity 
(as is the case in the non-Newtonian proposals). It is weaker than a), but strong 
enough to prevent a bridged indicator that has been updated infinitely many 
times (resulting in contradictions), while possibly allowing a bridged indicator 
that is changed once. However, as noted under a) above, even a bridged indicator 
that is changed only once (or not at all) should be seen as being the result of the 
entire workings of the Zeno machine (probably even of all its infinitely many 
steps) – so the state of indicator for a semi-decidable task cannot be seen as the 
result of the Zeno machine after computation is over if c) were true. 
Another issue is what causes this “going out of existence”. If cannot be the conse-
quence of internally “having completed” the supertask, but neither can it be 
caused from the outside by “time is up”. On the other hand, if going out of exis-
tence is due to some gradual process, it becomes implausible that an object 
should have effects infinitely close to its going out of existence. – I think that ex-
planation c) looks ad hoc, but we should be open to arguments sustaining it. 
To sum up, bridged supertasks require that something can be the effect of infi-
nitely many causes (~a), that something can have infinitely many effects (~b), and 
that the bridged supertask does have effects (~c). Denying one of the three condi-
tions amounts to denying the possibility of bridged supertasks, thus the denial of 
3) in the argument above - for any program (P). In other words, all three attempts 
at repair throw the baby out with the bath water: they disallow contradictory ma-
chines but also all other machines for semi-decidable problems. I do not see any 
further plausible way out. If there really is no other, we have to conclude that 
bridged supertasks are impossible - whether or not they are considered comput-
ing machines. To put it the other way around, if bridged supertasks were possi-
ble, infinite hypercomputing should have been possible. But infinite hypercom-
puting is not possible, so bridged supertasks must be impossible. 
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4. Conclusion: Zeno’s Supertasks and Computing the Incomputable  

If the general conclusion could be established that bridged supertasks are impos-
sible (by a thorough rejection of all ways out), this would have ramifications for 
Zeno’s classic paradoxes. If principle a) is true, it cannot be the case that moving 
through a stretch from a point A to a point B is to perform a supertask, since the 
arrival at B presumably is the effect of moving through that stretch - and we do 
not vanish as soon as we complete a movement from A to B. Equally, if we prefer 
only principle b), and take moving through a stretch from a point A to a point B 
as a supertask, then our movement cannot have a cause – which seems false. If c) 
is true, after all, we would have to vanish after a movement. So, on any of these 
three explanations Zeno must be wrong when he says that one movement is to 
make infinitely many movements. If any of these or any other explanations are 
proposed, such ramifications must be considered. 
Concerning our original question, I conclude that Thomson was right that if any-
thing follows from states inside the series to states outside the series, then contra-
diction ensues. And Benacerraf was right that nothing does follow from states 
inside the series to states outside the series – unless one adds a bridging principle. 
In other words, either the Zeno machine can be specified, does bridge the gap, 
but then its specification involves contradictions; or it is underspecified, does not 
bridge the gap, but then it does not compute an output. Either way, Zeno ma-
chine hypercomputers are impossible – and so are probably all bridged super-
tasks. Therefore, the notion of infinite digital hypercomputing is no reason to re-
ject the traditional interpretation of the Church-Turing thesis. 
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