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Abstract Branching space-times (BST; Belnap, Synthese 92:385-434, 1992) is
the most advanced formal framework for representing indeterminism. BST
is however based on continuous partial orderings, while our natural way
of describing indeterministic scenarios may be called discrete. This paper
establishes a theorem providing a discrete data format for BST: it is proved
that a discrete representation of indeterministic scenarios leading to BST
models is possible in an important subclass of cases. This result enables the
representation of limited indeterminism in BST and hopefully paves the way
for the representation of substances with capacities in that framework.
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Nuel Belnap’s Branching Space-Times (BST; [1]) is the most advanced formal
framework for indeterminism that is out there: it combines successfully the
notion of an open future with a relativistic view of space and time. Historically,
BST grew out of considerations of agency in the stit (“seeing to it that”) frame-
work:! the relativistic notion of space-like separation was meant to provide
an objective basis for the “independence of different agents’ simultaneous
choices” postulate, which in branching-time (BT) based stit theory appeared
as a deus ex machina.> After much technical development of both BST and

LCf. Belnap et al. [8] for a full overview. The earliest paper on the theory is Belnap and Perloff [7].

2I’d like to thank several participants of the Nuelfest, April 2009, for helpful remarks on the early
history of BST.
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396 T. Miiller

stit theory separately, Belnap himself has made the link between the two
explicit in one of his most recent papers [6], once again proving the benefit
of perseverance in formal philosophical work.

On a somewhat broader and less technical level, he has also described the
key motivation behind BST as providing a framework for indeterminism that
is “equally proto-scientific and proto-humanistic” [5, p. 19].The theory should
thus not be limited to what Sellars [24] called the “manifest image” of man
(including, e.g., our concept of agency), nor to what he called the “scientific
image” (including, e.g., relativity theory).? Rather, by staying at a formal level
the theory should lend itself to applications in both of the great theoretical
endeavors in which we engage: coming to grips with the world in which we live
in terms growing out of our lived experience, as well as in terms provided by
science. In bridging that gap, BST would help to establish the “humanistic”
and the scientific respectability of the concept of indeterminism.

This approach is superior to most if not all other approaches to the deter-
minism/indeterminism issue out there: Remaining formal and neutral about
the manifest/scientific image divide is to be preferred above a “Lebenswelt
only” ideology and, perhaps more importantly since that is the option more
commonly chosen, above a scientistic excommunication of Lebenswelt con-
cepts. The latter approach often goes together with an unargued but strong
conviction that being precise necessitates being a determinist; so establish-
ing indeterminism as scientifically respectable with formal rigor is especially
important.

1 On BST’s Status as Both Proto-scientific and Proto-humanistic

For a theory to be proto-scientific and proto-humanistic, that theory must
preclude neither the findings of empirical science nor central concepts of our
Lebenswelt.* Belnap honors these constraints by providing a sophisticated
formal framework that, in contradistinction to earlier approaches to indeter-
minism, is not at odds with relativity theory,’ and which provides elbow room
for a substantive theory of indeterminism in action. The theory remains proto-

3By employing Sellars’s terminology I am not claiming that Belnap endorses the dichotomy as
strict.

4 Arguably such a theory may nibble away some concepts on both sides. Probably at any historical
stage of development there’s bad science as well as superstition. But the dialectical starting point
has to be science and life as we find them, phlogiston, witches and all. Argument is needed to
weed out anything on either side, and the historical course of events testifies to that.—Note that
by “science” I mean empirical science, not free-floating theorizing. Thus, e.g., at the present stage
of development I do not think that any constraints flow forth from the several approaches to
quantum gravity, except for the fact that there are both quantum effects and gravitational effects
in our world.

5Tt is known that there is a remaining problem concerning some models of general relativity theory.
But the theory is compatible with many models of the general theory and with all models of the
special theory, which is a great achievement.
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Limited Indeterminism in BST 397

scientific by not implementing any actual scientific claims (in fact, even the
instruments for representing such claims are left open), and it remains proto-
humanistic in not implementing any Lebenswelt concepts (such as action, or in
fact even plain things—substances—and their properties).

The abstractness of BST is an advantage that comes, one could say, with
a set of promissory notes: BST’s status as a proto-theory invites comple-
mentation, and in both directions. The challenge for such complementation
is to proceed in such a way as to maintain the original balance, or rather
impartiality, between scientific and manifest image: to build forth on some-
thing that would leave us and the world whole.

Since the publication of the original BST article in 1992, some progress
has been made towards the implementation of scientific concepts in BST,
especially with respect to an understanding of quantum theory within BST.6
The implementation of Lebenswelt concepts has however remained a recalci-
trant problem, despite Belnap’s success at applying BST to agency mentioned
above. Part of the reason for that may be the following: While BST is not
a physical theory, it shares many structural properties of current space-time
theories (while going significantly beyond them in representing modality as
well). Such theories are, to use an image employed by Butterfield [10], pointil-
liste, or atomistic: BST’s most basic notion is that of a “possible point-event”,
much as space-time theories build upon a notion of (actual) point event. Now
from a Lebenswelt perspective, points may be (idealized) locations of things,
but they aren’t things themselves, and the notion of a point having properties
may sound fishy. Note that this is not a criticism of the BST approach but
a comment on the scientific image; in straddling two domains, BST has to
accept this basic underlying structure as given by current physical theory. But
pointillisme, as Butterfield points out, leads to problems already with respect
to the interpretation of physical theories, and all the more so with respect to
Lebenswelt concepts.

The successful application of scientific theories in everyday technology
certainly testifies to the practical possibility of bridging the gap between
science and Lebenswelt. In this paper I try to approach that gap theoretically.
Ideally I would like to look at the prospects for capturing our Lebenswelt
notion of a substance—a thing with properties and capacities—within the
formal framework of BST. This in turn would be preparatory work for a fuller
theory of agency since agents with their bodies are, finally, also things with
properties and capacities. At the present stage of the theory’s development,
however, I see no hope of arriving at a sufficiently rich notion of a substance
directly. I will have some brief comments on that notion below (Section 3),
but the bulk of the paper will be devoted to working out some formal aspects

SFor this development, cf. the work of Placek [20, 21] and also Belnap and Szabé [9], Miiller and
Placek [19], and Miiller [16, 17].
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of the representation of limited indeterminism in BST, which I consider to be
necessary preparatory work for tackling the notion of a substance.’

2 Discrete and Continuous Representations of Limited Indeterminism

The phrase “limited indeterminism” I take from a short and, as far as I can
see, not very well-known paper by Arthur Prior [23] in which he discusses an
argument of the 18th century American philosopher and theologian Jonathan
Edwards. In the paper Prior shows that it is wrong to spell out indeter-
minism as “anything whatsoever can happen”, and he emphasizes the role
of ordinary things in ordinary situations for limiting what is and what isn’t
possible in an indeterministic setting. Indeterminism has to be thought of as
limited indeterminism—indeed the notion of unlimited indeterminism is most
probably incoherent.?

In one respect, BST already comes with a built-in notion of limited indeter-
minism that forms part of its technical core. Here I want to make the role
of limited indeterminism in BST more explicit by providing an alternative
approach to BST that is directly based on specifying indeterminism in a
limited and discrete fashion. Heeding Nuel Belnap’s advice that we should be
proving theorems, in the following I will prove, as my Theorem 1, that there
is an alternative “data format” for BST that I think is closer to Lebenswelt
applications while still giving access to the technical machinery of BST worked
out so far.

2.1 Rudiments of BST

BST is formally based on a given partial ordering of possible point-events,
OW = (W, <). Belnap has suggested, usefully, to call such a set “our world”,
emphasizing the fact that indeterminism and an open future are nothing other-
worldly. Furthermore, OW is unified by “suitable external relations” [13,
p. 208], viz., by the tempora-causal relation <, so that it fulfills even Lewis’s
definition of what a world is.

A crucial step in generalizing branching time to yield the theory of branch-
ing space-times was to note that the notion of a history (a complete possible
course of events), which is defined as a maximal linear subset in BT, should

7Let’s hope that the fruitful use of promissory footnotes in BST theory continues in this case as
well.

8Still, that notion, or some vague variant of it, is behind most arguments against a libertarian
account of free will: from the compatibilist side, which holds that freedom and determinism go
together, one often hears it said that indeterminism can only deliver chance instead of choice.
This contrast is faulty, which one realizes once one sees that indeterminism always has to mean
the selection of one of a precisely circumscribed, non-random set of options. So much is clear
for indeterminism in physics, but the standard seems to shift once agency under indeterminism is
considered.
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Limited Indeterminism in BST 399

be generalized to an upward directed set. Histories play a decisive role in any
branching theory.

Definition 1 (Chain; directed set; history) A set E € W is linearly ordered or a
chain iff for any e}, e, € E, we have e} < e, ore; <e;. Aset E C W is upward
directed iff for any e}, e, € E thereis some e; € E for whiche; < e3 ande; < es.
A history in W is a maximal upward directed set, i.e., an upward directed set
no proper superset of which is directed. (We often use “directed” as short for
“upward directed”, and we use “<” for the strict order corresponding to < but
excluding equality.)

By defining histories to be upward directed, one enforces different readings
for an upward vs. a downward fork in the ordering. A downward fork (i.e.,
three possible point events ey, e;, e3 for which e; < e3, e; < e3, but e; and e,
are incomparable) belongs to one history and thus is not to be read modally,
but spatio-temporally, in terms of special relativity’s notion of space-like
separation of e; and e,.” This corresponds to our intuition that the past is
ontologically fixed. An upward fork (i.e., three possible point events ey, e, €3
for which e; < e}, e3 < e,, but e; and e, are incomparable) however allows for
two different readings, a spatio-temporal as well as a modal one: if there is
some ey for which e; < e4 and e, < e4, then the fork belongs to a single history
and is thus modally consistent—again, e; and e; are space-like related. If there
is no such e4, however, then e; and e, belong to different histories and are thus
modally separated, meaning that from the point of view of e3, e; and e, belong
to two different, incompatible future courses of events.

The following requirements characterize the partial orderings OW that are
models of BST, i.e., they give the axioms of BST:

Definition 2 (BST model) A partial ordering OW = (W, <) is a model of
BST iff

1. (W, <) is a non-empty, dense partial ordering that has no maxima.

2. Every lower bounded chain C € W has an infimum in W.

3. Every upper bounded chain C C A, k a history, has a supremum in /.

4. (Prior Choice Principle). Given two histories 41, h; and a lower bounded
chain C C hy — hy, there is some e € h; N h, such that e < C (i.e., e < ec
for all ec € C) and e is maximal in &; N Aj;.

Requirements (1)-(3) enforce a continuous structure of the models. The
prior choice principle (4) requires the existence of particular upward forks in
line with an intuitive notion of causal explanation: If C occurs in /; but not in
h,, then there has to be a point e in the causal past of the chain C immediately

9Two space-time points are space-like separated iff they cannot be compared via the causal-
temporal ordering, meaning that they cannot influence one another causally.
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400 T. Miiller

after which the two histories come apart. Such a point e, maximal in A; N Ay,
is called a choice point for hy and h,, and we write h; 1, h,. The natural
counterpart to two histories splitting at a point is two histories being undivided
at a point: hy =, h, iff e € hy N h,, but e is not maximal in the intersection
(i.e., there is some € € h; N h; s.t. e < €'). It can be shown [1] that “=,” is an
equivalence relation partitioning the set of histories containing e, H(), into
local alternatives at e. We write this partition as I1., and the unique member of
I1, containing some h € H, is written I1.(h). Based on these definitions, we
can define the important notion of a basic transition:

Definition 3 (Basic transition) Given OW = (W, <), a basic transition is a pair
t; = {e;, H;) (also written t; = ¢; — H;), where ¢; is a choice point in OW (i.e.,
an indeterministic point, maximal in the intersection of two or more histories),
and H; is one of the immediate possibilities at that ¢; (i.e., H; € I1,,).

Thus, for H € I1,, the basic transition (e, H) or e — H captures the concept
of initial e having the immediate outcome H.

2.2 The Continuous Nature of BST as a Problem

By Definition 2(2, 3), the partial ordering of BST is required to be continuous,
meaning that the cardinality of a model of BST is always (at least) that of the
continuum. The way we specify indeterministic scenarios, e.g., in telling stories,
is however different: often a finite amount of information is sufficient to
specify what is (possibly) going on. From such a perspective, the continuity of
BST should be separated into the continuity of space-time (which is required,
but can be viewed as a merely potential infinity) together with a discrete
means of specifying indeterministic scenarios in space-time.!° The question is
whether there is something like a “discrete data format for BST”. Such a data
format would, by the way, not only allow one to connect BST with aspects
of Lebenswelt such as the telling of stories, but may also be a prerequisite
for making BST computationally tractable and thus, for linking BST with
applications in computer science and elsewhere. Additionally, having such
a data format, in which the modal aspect of branching is clearly separated
from the spatio-temporal aspect of the location of choice points, may help to
clarify the nature of BST’s branching. This seems important as Earman [11]
has raised the worry that BST’s branching might amount to branching within a
single space-time, showing that such a theory would violate some rather basic
requirements of what a space-time theory could be. It will thus be good to

10The terminology “discrete” is not entirely satisfactory, but T will stick to it for lack of a better
term. Typically, a means of specifying indeterministic scenarios before a given continuous space-
time background will be discrete and in fact finite, but I do not wish to exclude from the outset
scenarios in which the indeterminsm involved itself is of a dense or continuous nature. Cases of
“busy choice” such as discussed in Belnap et al. [8] are certainly not meant to be excluded.
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Limited Indeterminism in BST 401

provide a representation for BST models in which the modal branching is
clearly separated from the spatio-temporal ordering.

In BT, the theory of branching time out of which BST was developed,
the transition from discrete to continuous and back is effected quite easily.
Assuming that continuous histories should be isomorphic to the real line, a
continuous model of BT has a discrete submodel given by the choice points
labeled by the histories these are elements of, and such a discrete structure
can in turn easily be embedded in a continuous model.!! Three things are
helpful here: for one, it seems quite clear that a continuous history should be
one that is isomorphic to the real line. Second, the topology of the branching
doesn’t play any decisive role in BT (cf. McCall [14] for discussion). And third,
since histories in BT are linear, in a given discrete set of moments from which
to build a continuous BT model, incomparable moments have to belong to
different histories.

In BST the situation is more complex. First, there is no totally obvious
default for a continuous history, and even though 4-dimensional Minkowski
space-time may be a natural candidate, the theory allows for many more con-
tinuous histories, even non-isomorphic ones within a single BST model [16].
Thus, there seems to be too large a class of continuous models within which
a given discrete “data set” could be embedded. Second, BST is topologically
intricate because of the prior choice principle, meaning that in building a
continuous structure from given data, care will have to be taken in order to
get the branching right. And third, assuming that the discrete data structure
for BST will involve a partial ordering, the double reading of the upward
fork (modal vs. spatio-temporal) obviously needs attention. An additional
challenge is the possibility of so-called modal funny business, for which see
below.

2.3 From BST to BST+SN

In what follows I will suggest a discrete data structure for BST models that
meets the mentioned challenges. I will have to restrict myself to those BST
models for which the individual histories are isomorphic—models, that is,
within which one and the same space-time canvas is filled in differently in
different histories without itself being affected. While this goes against the
spirit of general relativity theory, it is well known that BST has difficulties
representing that theory anyway, so that this limitation is at least not something
specific to the discrete data format for BST. An important class of BST
models for which this restriction is unproblematic is the class of Minkowskian
branching structures, in which each history is a Minkowski space-time of the
same dimension [15, 22, 25].

Tn calling such a structure discrete we gloss over cases in which the choice points themselves
form a dense or continuous set; cf. footnote 10 above.
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402 T. Miiller

Technically, my starting point for the continuous theory is not BST in
full generality, but BST with space-time locations, called BST+S in Miiller
[16],'? further restricted by requiring the absence of modal funny business (see
below). The resulting theory will be called BST+SN (“N” for “No modal funny
business”).

Space-time locations can be added to BST by the following requirement,
which is slightly adapted from Miiller [16]:

Definition 4 (Branching space-times with space-time locations) A triple
(W,<,S) is a model of branching space-times with space-time locations
(BST+S) iff (W, <) is a model of branching space-times and S is a partition
of W such that

1. For each history 4 in W and for each s € §, the intersection 4 N s contains
exactly one element. (Abusing notation, we sometimes identify the single-
ton & Ns = {e} with its unique element e.)

2. Srespects the ordering, i.e.,fors, s’ € Sand hy, h, histories,s N hy =5 Nk,
iff s N hy, = s’ N h», and the same for ‘<’ and for ‘>’.

We will write “S(e)” for the (unique) member of S to which e belongs; S(e)
specifies the space-time location of e. The induced partial ordering <5 on S is
defined as follows: For s;,5; € S, let s; <g s; iff there is a history A s.t. s, Nh =
{ei}, siNh = {e;}, and ¢; < e;. Space-like relatedness in S is then defined in the
obvious way, i.e., s; SLRgs; iff 5; £ s;and s; £5 ;.

Note that, following usage in physics, “space-time location” implies a
(frame-independent) reference to the space-time continuum, not a (frame-
dependent) reference to a place and a time.

The induced partial ordering <g on the non-empty set S is dense and
continuous, and S itself is directed with respect to this ordering; the proof of
this fact is obvious (simply fix one history and look at the intersection with S).
We spell this out for future reference:

Fact1 Theset S is directed w.r.t. the partial ordering <s. Furthermore, (S, <g) is
non-empty, dense and has no maximal elements, and every upper bounded chain
in S has a supremum in S, just as every lower bounded chain has an infimum.

The additional requirement of “no modal funny business” will be discussed
in the following section, once the necessary Definition 7 has been introduced.

2In that paper it is also proved that such models of BST automatically satisfy an additional
intuitive postulate about the ordering of suprema in different histories, originally due to Weiner.
Cf. Miiller [16] for details.
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Limited Indeterminism in BST 403

2.4 Picking the Right Data Format I: Distilling Discrete Structures

Earlier approaches to Minkowskian branching structures, cited above, also
suggested what amounts to a discrete data structure for BST+SN in the special
case in which S is isomorphic to Minkowski space-time. These approaches
specified what were to be the histories in a resulting continuous model by
a pasting construction that relied on the specification of the spatio-temporal
location of the choice points for each history, together with the notion of un-
dividedness of the past. These approaches seem to handle situations involving
finitely many histories well enough, but the general case remains problematic
in a number of ways."?

In order to find a more adequate and more transparent discrete represen-
tation of BST+SN models, I will here first look at the way in which one can
extract discrete information from a continuous BST+SN model. Belnap [4] has
pointed out clearly the importance of basic transitions (Definition 3 above) for
BST theory. A first step towards distilling discrete structure from OW is to
consider the set of basic transitions in OW:

TR(OW) :={t; | t; is a basic transition in O W}.

There is a sense in which the set TR(OW) may be called “discrete”: it
contains as elements not all the (continuously many) possible point events of
OW, but is based on just those “where the action is”, i.e., the indeterministic
choice points.

In another sense, however, it is misleading to call TR(OW) “discrete”.!*
After all, its elements are basic transitions #; that are represented not just via
a discrete, point-like initial, e;, but also a set of histories, H;—and histories,
being maximal directed subsets of OW, are continuous. This means that
the full continuous history structure of OW is contained in TR(OW), so
that it will not be possible to specify something like 7TR(OW) without first
specifying something as “big” as the histories in OW itself. In other words:
while TR(OW) does single out a discretized version of OW, it cannot be
used as a generic discrete data format for BST models because it is internally
continuous.

It is possible to distill a truly discrete structure from 7 R(OW) via the
following consideration: All that is important for a transition is, first, the
location of its initial and, second, the compatibility or incompatibility with
other transitions, i.e., the information which transitions can occur together in
one history. The latter information is very conveniently contained in the set
of histories specifying a transition’s outcome in the 7 R(OW) data format ( H;

BIn fact, Miiller [15] got a cardinality requirement wrong, cf. Wronski and Placek [25]. The
newer papers of Placek and Wrorniski [22] and Wronski and Placek [25] successfully remove some
limitations, but are still faced with the possibility of unwanted histories arising through the pasting
construction. Also, I find Condition 6 of Wronski and Placek [25] difficult to grasp intuitively.
140Of course, the reservations about the term “discrete” mentioned in footnote 10 apply in any
case. The point here at issue is an additional complication that will be remedied.
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simply gives one the histories in which ¢ occurs), but the information can be
represented in a leaner fashion. To see this, we define a partial ordering on
the set TR(OW), <7, as follows (where ; = (e;, H;), and similarly for other
subscripts):

L <rtj iff ¢ < ej and H(ej) C H;.

That is, a transition # precedes the transition ¢; iff the latter’s initial, e}, is
causally later than that of # and can occur in the outcome of #. It is obvious
that <7 is a partial ordering (from the respective properties of < and Q).

A set of transitions TR = {t; = (e;, H;) | i € I} is called consistent iff there is
a history in the intersection of all outcomes, i.e., iff N;c; H; # #. We note as a
fact that a common upper bound w.r.t. <7 secures consistency:

Fact2 Let TR = {t; = (e;, H;) | i € I} be a set of transitions, and let t; be a
transition s.t. t; <t ty foralli € 1. Then T R is consistent.

Proof By the definition of the ordering, H,,) € H; foralli € I. m|

Let us also note as a fact that in TR(OW), no transition has a “lonely”
initial:

Fact3 Ift = (e, H) € TR(OW), then there is also somet = (¢/, H) € T, t # ¢,
for whiche = ¢'.

Proof Basic transitions ¢t = (e, H) by definition have an indeterministic initial,
i.e., there are at least two H, H' € I1,. Thus together with ¢, also some ¢ =
(e, H) e TR(OW). ]

Given the concept of consistency of a set of transitions and the partial order
<r, we can finally give a succinct definition of the requirement of “no modal
funny business” invoked in Section 2.3. The definition given here corresponds
to what is called “explanatory funny business” in Miiller et al. [18]. First, two
preparatory definitions:

Definition 5 (Blatant inconsistency) A set of transitions 7' R is blatantly incon-
sistent iff there are t; = (e¢;, H;) € TR and t; = (e}, H};) € TR, t; # t}, for which
e =e;j.

Definition 6 ((Proper) downward extension) A set of transitions TR’ is a
downward extension of a set of transitions TR iff (i) TR € TR’ and (ii) for
all (new) t; € TR’ — TR there is (already) some ¢; € TR for which t; <7 t;. A
proper downward extension is one for which TR C TR'.

A set of transitions that is blatantly inconsistent contains two incompatible

local alternatives from some IT,. It is thus immediately obvious why such a set
of transitions cannot occur in one history: after all, I, partitions the histories
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Limited Indeterminism in BST 405

containing e, and partitions do not overlap. A downward extension of a set
of transitions can be viewed as the addition of more causal information and
thus, as possibly providing an account of why, e.g., some set of transitions
is inconsistent. Intuitively, such an account should always be available. This
intuition is captured in the following definition of “modal funny business”:

Definition 7 (Modal funny business) In a BST-model OW = (W, <) there
is modal funny business if there is an inconsistent set of transitions 7R C
T R(OW) such that no downward extension of 7 R is blatantly inconsistent.

Modal funny business thus means that there are transitions that are incon-
sistent (that cannot occur together in one history) even though we cannot
give an account of that inconsistency in terms of local inconsistency. Such
would be the case, e.g., when an outcome ‘+’ is possible here, and an outcome
‘+’ is possible over there, but there is no history in which ‘4’ occurs both
here and over there—a modal correlation of a sort that has been accused
of involving “spooky action at a distance”.!> In what follows, working with
BST+SN models we exclude such cases—certainly not because they are not
interesting, but just because it seems prudent to tackle the easier case first.

The partial ordering <7, together with the initials’ location, turns out to
be sufficient to represent the initial BST model OW. On our way towards
a discrete data structure, we can remove the continuous aspect of TR(OW)
(contained in the set of histories specifying the outcome) explicitly by the
following maneuver:

Definition 8 (Discrete representation of OW) Let OW = (W, <, S) be a
BST+SN model, let TR(OW) be its set of basic transitions, <7 the partial
ordering on 7 R(OW) defined above, and let I be an index set of the cardinality
of TR(OW) such that TR(OW) = {t; = (e;, H;) | i € I}. Then the quadruple

D(OW) := (S, <s, T, <),
where <j is the partial ordering on § induced by <,
T:={y:=@s)|iel si= S},
and the partial ordering < is defined via
(i, 8:) < (Josj) iff 4 <7ty

is called the discrete representation of OW.

5Such a case would also fulfill the original definition of “modal funny business” by Belnap [2, 3];
the definition given here, taken from Miiller et al. [18], extends these earlier approaches.

As is well known, quantum mechanics predicts space-like correlations [12], and such correlations
have been experimentally verified since the 1980s. It is not clear, however, that modal correlations
of the kind discussed here are involved. See also footnote 20 below.
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406 T. Miiller

The terminology is adequate: in D(O W), the continuous aspect of TR(OW)
has been removed, and a structure like D(OW) can be specified without
specifying continuous histories.!®

2.5 Picking the Right Data Format II: Discrete Proto-BST+SN-structures

So far we have shown that from a given BST+SN model one can distill
an alternative representation that one can call, perhaps cum grano salis,
“discrete”. We will now continue by establishing facts about that discrete
representation and giving a fully explicit definition of our chosen discrete data
format (Definition 10 below).

By the construction, D(OW) fulfills a compatibility requirement for the
orderings <g and <:

Fact4 Let D = D(OW) = (S, <5, T, <) be derived from a BST+SN-model
OW via Definition 8, and let v; = (i,s;), t; = (j,s;) € T be s.t. v; < ;. Then
§i <§ ;.

Proof t; = (i, s;) € T corresponds tot; = (e;, H;) € TR(OW), and similarly for
7;. By definition, 7; < 7; iff ; <7 t; iff ¢; < ¢; and H(,) C H;. Since s; = S(e;)
and s; = S(e;), the claim follows by compatibility of the orderings < and <g
(cf. Definition 4 above). o

The partial ordering (7, <) has some further meshing properties that follow
from Fact 2. These properties show that a “downward fork” in T has to be
read purely spatio-temporally and not modally, thus sustaining the intuition of
uniqueness of the past:

Fact5 Let D = D(OW) = (S, <s, T, <) be derived from a BST+SN-model
OW, and let 7;, tj, ©c € T be such that 7; < 1y and tv; < t. Then:

If s; = s, then 7; = t;. (Uniqueness of past outcomes.)

Ifs; <s s}, then v; < t;. (Consistency of the past.)

Ifs; <s s;, then tj < 1;. (Consistency of the past.)

If 5; SLRs j, then for all Ty € T for which both s; <, s; and s; <s s}, we have
7 < 1 iff u < t;. (Consistency of the common past of SLR events.)

el s

Proof By assumption, the t, are derived from BST-transitions ¢,, and by
Fact 2, t; = (¢;, H;) and t; = (e;, H;) are consistent since H,) € H;N H;. In
case (1), by consistency we have e; = e; and also H; = H}, thus t; = ¢}, giving

160f course, the space-time background S will be continuous. What is important is that the
specification of an indeterministic scenario happening before such a background does not addi-
tionally introduce a continuous amount of information, as was the case with 7T R(OW).—Again
we gloss over the possibility that the transitions in 7' themselves might form a dense or continuous
set.
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rise to i = j and thus t; = 7;. In case (2), consistency gives ¢; < e; and again
H, < H;, which yields #; <7 t; and therefore 7; < 7;. Case (3) works in he
same way. In case (4), assume that thereis; <7 ¢; for whichs; <g s;ands; <g s
(the argument for #; <7 t; works the same way). Pick some history h € H,); we
have e;, ej, e; € h and thus, via s; <5 5;, also ¢; < e;. To establish that 7, <7 ¢;
and thus 7, < 7;, we need to show that H,, C H;. From f; <7 t; <7 1} we get
he H N Hey, so Hy =T, (h) ={h"| i =, h}. Now let i’ € H,; as e < e},
we have /' =, hand thus /' € H,. O

Just given the information contained in the partial ordering (7, <), we can
already reconstruct the important relations of initial-equivalence and space-
like relatedness via the following definition.

Definition 9 Let (7, <) be a partial ordering of transitions, and let 7; =
(i,si), 1 = (J,5;) € T. We define:

1. 7 and 7; are initial-equivalent, ; 1E 7, iff s; = sjand forall p € T, 14 < 7;
iff o < 7.

2. 1; and t; are space-like related, t; SLR 1, iff 5; SLRgs; and for all 7 =
(k,sk) € T for which sx <g s; and s, <ss), 7 < 1 iff 7 < 7.

The idea behind these definitions is to read the modal structure out of the
partial ordering < on 7. As to (1), the fact that two transitions 7; and z; from T’
have initials located at the same spatio-temporal position (s; = s,) of itself does
not prove that these initials should correspond to one and the same possible
point event in a corresponding BST model. If however the past indeterministic
happenings do not give a reason for modal differentiation, then the initials are
equal as possible point events. A similar motivation lies behind definition (2).
Two possible point events in a BST model are space-like related if they are
order-incompatible, but nonetheless members of one and the same history.
Again, space-like relatedness of the positions of the initials (s; SLRgs;) is not
enough: there must be no transition in the common past differentiating the
initials either, i.e., the initials have to be SLR as possible point events.!’

In the following lemma, clauses (1) and (2) show that for a discrete structure
derived from a BST model, Definition 9 in fact captures the corresponding
BST relations. Clauses (3)—(5) note some further useful facts that follow from
the prior choice principle together with the absence of modal funny business;

17The notion of space-like relatedness suggests modal compatibility. By extending this notion from
point events to transitions, we rely on the absence of modal funny business: on that assumption
the space-like relatedness of initials of two basic transitions is enough to guarantee the existence
of a history in which both transitions occur. The simplest cases of modal funny business involve
space-like related initials but modally incompatible transitions from these initials; cf. footnote 15
above and the discussion in Belnap [2].

@ Springer



408 T. Miiller

clause (3) captures the possibility of downward extension that is noted in
Miiller et al. [18].

Lemmal Let OW be a BST+SN model and D(OW) = (S, <s, T, <) the
corresponding discrete representation. Then for t; = (i, s;) and t; = (], s;) cor-
responding to BST-transitions t; = (e;, H;) and t; = (e;, H ), we have

1. wlIEt;iffe; = e (Thus, no transition in T is initial-lonely, by Fact 3.)

2. T; SLR Tj lff €; SLR ej.

3. Ifs; <ssjbut v; £ 1, then there is a pair of previous transitions Ty # 1; s.t.
7 IE 1 that splits of f t; from tj: 7 < v; and v, < t; (and thus, t 4 t; and
T A T)

4. If s;SLRgs; but not 7; SLR v}, then there is a pair of previous transitions
T # 1 s.t. 7 IE 1 that splits of f t; from t;: 7 < v; and v < v (and thus,
T A Tjand 1 £ ).

5. LetU;, Uj S T be maximally consistent, and let C C S be a lower bounded
chain in S; set s| =inf C. If for all s € C there are 7; = (i,s;) e U; — U; or
1= (jsj) e Uj—U;s.t. s; <5 (5j <y 5), then there are also t; = (k,si) €
Uiand vy =(l,s;)) e Ujs.t. v # v, 7w IE 7, and sg = 5; <g 51.

Proof

(1) “«": Givene; = ej, clause (1) of Definition 9 follows directly.

“=7: Lete; # e;ands(e;) = s(ej); by uniqueness of history-intersections
with S there is no history containing both e; and e;. By the prior
choice principle there is some ¢t = (e, H) in OW with e < ¢; and
t <ttt £7t;. This t corresponds to a t € T separating 7; from 7;.

(2) “«" Let ¢;SLRej; by no modal funny business there is a history
he H N H; Let tp = (k,s¢) € T with s <gs; and s; <g5; be
one of the transitions relevant for clause (2) of Definition 9; 7
corresponds to t = (e, H), a transition in OW for which s(e) = sx.
It he Hthene <e and e < e;and in fact t <7 f; and ¢ <7 ¢;. If,
on the other hand, & ¢ H, then neither ¢ <7 t; nor ¢ <7 t;. The
corresponding facts about 7;, 7; and 7; follow directly.

“=": Let ¢; and e; be such that s(e;) SLRg s(e;) but not ¢;SLRe;;
this means that there is no history containing both e; and e;.
Similarly to (1 “="), by the prior choice principle and no modal
funny business there is a transition ¢t = (e, H) with initial e in the
common past of ¢; and e; that separates the two; this ¢ corresponds
to a v € T separating t; from 7;.

(3) The antecedent translates as H; N H, =@. Let h; € H; and h; € H; C
H,. We distinguish two cases:

(i) h; L., hj. We can derive the required 7 and 7 from # = ¢ and f; =
ei = T, (hj).
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4)

®)

(if) Otherwise the prior choice principle for e; € h; — h;, together with
the requirement of no modal funny business, delivers the required
pair of transitions.

The definition of SLR on T already gives one distinguishing transition.
Similarly to (3), the prior choice principle together with no modal funny
business gives the required pair of transitions.

This condition captures the topological content of the prior choice princi-
ple. U; and U, correspond to maximally consistent sets of transitions from
TR(OW), where consistency means that all outcomes share a history.
Let h; and £ be respective histories. As all histories are isomorphic to S,
the chain C in S has an isomorphic image C; in /;. The antecedent then
means that no element of C; is in hj, ie., C; € h; — hj. Let e; =infCj;
by isomorphy of histories we have S(e,) = s, . The prior choice principle
assures us of a choice point in the past of C;, i.e., there is some e € h; N h;
for which e < C; and which is maximalin #; N h;. Ase < e, (e, being the
infimum of C;), we have S(e) < s,, and we can choose 7, and 7; to be the
T-representatives of ty = e — Il (h;) and {; = e — T1.(h}). O

In the following we will be working with a discrete data structure that could
be given as some D(OW), but also independently, e.g., via some story we
might tell about indeterministic happenings. This data structure thus forms the
interface between BST’s technical machinery and our Lebenswelt concepts.
The motivation for the following definition is therefore twofold: It describes
structures such as can be distilled from a given BST4+SN model (cf. Fact 6
below), and it describes structures that we can specify in everyday terms.
In full detail, we define the notion of a discrete proto-BST+SN-structure as
follows:

Definition 10 (Discrete proto-BST+SN-structure) A quadruple D = (S, <g,
T, <) is called a discrete proto-BST+SN-structure iff

1.

2.

e

(S, <s) is a non-empty, continuous, upward directed partial ordering
without maxima;

(T, <) is a partial ordering, the elements of 7" have the form t; = (i, s;) with
s; € 8, and T is left-unique (i.e., if (i, s;), (j,s;) € T with i = j, then s; = s;
as well);

if ; < 7, thens; <gs;;

T fulfills the uniqueness of the past requirements mentioned in Fact 5: For
7;, Tj, 7x € T such that 7; < ¢ and t; < 7, the following conditions hold:

(a) ifs;=sjtheny =1

(b) ifs; <gsj thent < )3

(c) ifsj<gs;, thent; < 133

(d) ifs;SLRgsj, then for all 7; € T for which both s; <, s; and s, <g 5, we
have 7; < 7; iff 7 < 7
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5. T fulfills the prior choice principle related requirements noted in Fact 3
and in Lemma 1(3-5): For 7;, 7; € T,

(a) 7; is not initial-lonely, i.e., there is some 1 € T, t; # %, for which
T; 1IE Tk,

(b) ifs; <gsjbutt; 4 7, then there is a pair of previous transitions 7 # 7
st.wIEy, 7w < and 77 < 7

(c) if s5;SLRgs; but not 7; SLR 7;, then there is a pair of previous transi-
tions i # yst. wlIE7, i < yand iy < 7

(d) if U;, U;j € T are maximally consistent and C C §is a lower bounded
chain in § with s, = inf C, and if for all s € C there are 7; = (i, s;) €
U —Ujortj=(jsj) e Uj— U st. s; <¢5 (5] <y 5), then there are
also iy = (k,sx) e Upand iy = ([, 5)) € Ujs.t. o # 1, i IE 7, and s =
S| <§S1.

We note as a fact that any D(OW) derived from a BST+SN-model OW
indeed fulfills this definition:

Fact 6 Let OW be a BSTH+SN model, and let D(OW) be the corresponding
discrete representation. Then D(OW) is a discrete proto-BST-structure.

Proof The proof is obvious, given (1) Fact 1, (2) the construction of D(OW),
(3) Fact 4, (4) Lemma 5 and (5) Fact 3 and Lemma 1. o

Conditions (1) and (2) allow us, conveniently, to use the set I := {i | (i, s;) €
T} as an index set for T, and (3) is a precondition for interpreting the ordering
< on T in the sense of BST. (4) is required for assuring that the given partial
ordering can be interpreted in terms of a consistent past, and (5) assures the
presence of causal accounts of “why this rather than that” and the absence of
modal funny business.

Fact 6 provides ample motivation for this choice of data format from the
formal point of view of BST theory. We cannot state a motivation for the
definition from the Lebenswelt side with equal rigor, but the following should
be noted: (1), which ensures that the resulting BST+SN model will be contin-
uous and without maxima, arguably captures our concept of space-time,'® (2)
is just a technical convenience, and (3) is needed for a causal interpretation
of transitions in space-time.'” As to (4), (a)—(d) are indeed expressions of the

18This is of course a tricky business. Since—I would argue—we have to start with separate Lebens-
welt concepts of space and time, space-time is a theoretical notion. Not all space-time models in
the theoretical physics literature satisfy the partial order and the directedness requirement. (E.g.,
space-times with causal loops fail to be partially ordered.) For present purposes we can state that
it is a known desideratum of the future development of BST theory in general to allow for such
extensions. At the present state of development, the requirements seem reasonable because they
allow us to make at least some progress, and the Minkowski space-time of special relativity as well
as many space-times of general relativity do fulfill the requirements.

19 Again, worries about backward causation may crop up; cf. the previous note.

@ Springer



Limited Indeterminism in BST 411

intuition that “... is in the past of ...” is a transitive relation, and that the
past of any event is unique. (5) cashes out three requirements of the causal
completeness of stories: (a) Alternatives are alternatives to something else,
and in a complete story we need to be told to what, so there can be no initial-
lonely initials. (b, c) If transitions are not compatible, we want to be told why
that is so, and an answer to that question consists in pointing out a pair of
simultaneous local alternatives such that one enables the one transition and
the other, the other. (d) In line with the prior choice principle, “giving reasons”
should also extend to chains.?’

2.6 From the Discrete Data Structure Back to BST+SN

In order to show that our discrete representation, a discrete proto-BST+SN-
structure according to Definition 10, is in fact an adequate data format for
BST+SN, we will now show two things. First, we will show that such a rep-
resentation D allows one to construct a (continuous) BST+SN model C(D).
Secondly, we will show that if D = D(OW) was derived from a BST+SN
model OW, the resulting continuous model C(D(OW)) will be isomorphic to
the initial model OW in the sense of (a) being based on the same space-time
background and (b) showing the same structure of basic transitions.

Before we state and prove the adequacy of our discrete data format (Theo-
rem 1 below), there is some preliminary work to be done, as we wish to identify
histories with consistent scenarios. Extending the considerations leading to
Definition 9, we can define when a set of transitions is consistent in the sense
of not containing a reason for why it shouldn’t occur in one history.?!

Definition 11 (Consistency) A set U € T of transitions is called consistent iff
for any 7;, T; € U, one of the following holds:

1. nlEtrjandi= j(i.e, 7 =71;)or
2. 1 <rTtjor
3. tj<rtor
4, T; SLR Tj.

20 Again there is a fine point, connected with the notion of modal funny business (cf. footnote 15
above): Requiring (5) rules out modal funny business, while there seem to be quantum-mechanical
cases that do exhibit such funny business. One way out here is to say that empirically, all that
can be established is vanishing probabilities of outcomes, not modal impossibility, so that any
story involving modal funny business can also be told as a story involving just probabilistic funny
business. While this may be a feeble reply (I think it is), the technical challenges of working out the
fully general case demand that the simpler case involving no funny business treated here should
be worked out first. Yapf. (Yet another promissory footnote.)

21 For this definition to make good sense we also require the absence of modal funny business; cf.
the facts about what is there called “combinatorial funny business”” in Miiller et al. [18].
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Alternatively, we can write this definition explicitly in terms of the four
possible cases for the spatio-temporal relation of initials, which we state as
a fact (the proof is obvious):

Fact7 A set U C T of transitions is consistent iff for any v, = (i,s;), 7; =
(j,sj) € U, the following holds:

if s; = sjthen v; = tj, and

ifs; <s sjthen v; < vjand

if sj <g s; then v; < 1; and

if s;SLRgs; then for all v with s <gs; and sy <s sj, we have 1 < t; iff
Tk < Tj.

el s

Based on this definition and the requirements on 7 spelled out in
Definition 10, we can prove that downward extensions in 7 retain consistency:

Lemma2 LetU C T be consistent, let t; € U, and let t; € T be such that t; < 1.
Then the set U U {t;} is also consistent.

Proof Let tp € U. We prove that the requirements of Fact 7 hold for the pair
(7}, ©), depending on the spatio-temporal relation of their initials s; and sy:

(1) s;=sk. We have t; < 7; and (by consistency of U) also 7 < 1, so that
7; = 7 follows by clause 4(a) of Definition 10.
(2) sj <s skx. Here we differentiate by the relation between s and s;:

(a) sk =s;: By consistency, tx = 7;,50 Tj < T.

(b) sk <s s;: Similarly to (1), we have 7; < 7; and (by consistency of U)
also ;< 7;, so that 7; < 7, follows by clause 4(b).

(c) s; <s sk:Byconsistency, 7; < 7, and thus by transitivity of <, 7; < 7.

(d) s;SLRg s: By consistency, 7; SLR1y, and s; is in the common past of
s; and s, so that by clause 4(d), together with 7; < 7; we also have
Tj < Tk.

(3) sk <s ;. Similarly to (1), we have 7; < 7; and (by consistency of U) also
Tx < T;, so that 7 < 7; follows by clause 4(b).
(4) s5;SLRs. Again we have to consider the relation between s and s;:

(a) sk =s;: This cannot be since s; <g 5; by assumption.
(b) sx <g st Asin 2(b) above.
(c) s; <s sx: By transitivity of <g, this cannot be since s; <y s;.
(d) s;SLRg sx: By consistency of U, t; SLR1.
Assume that it is not the case that 7; SLR 7;. Then there has to be
some 7; for which s; <g sj, 5 <s sk, 7 < T but 7; £ 74 (the other case
is symmetrical). By transitivity of <, 7; < 7;, contradicting 7; SLR .
]

The following obvious corollary will be useful later on:
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Corollary 1 Let U C T be maximally consistent, 7; € U, and t; < 1;. Then
‘L’j e U.

A certain mirror image of this corollary expressing one aspect of no modal
funny business will also be helpful:

Lemma 3 Let U C T be maximally consistent and let t; € T — U (i.e., U U {7;}
is inconsistent). Then there is (already) some t; € U for which the pair (t;, T;) is
inconsistent and for which s <s s;.

Proof As U U {1;} is inconsistent, there has to be some t; € U such that (z;, 1)
is an inconsistent pair. We will find the required t; € U by considering the four
cases for the spatio-temporal relation between s; and s;:

(1) s;=s,. We can take 7, = 7.

(2) s <s si. Again, t; = 7 will do.

(3) si <s 8. By requirement 5(b) of Definition 10 there is some t; € T for
which 7; < 7; but t; £ 7;; by the above Corollary, 7; € U.

(4) s5iSLRgs;. Requirement 5(c) of Definition 10 gives some 7; € T for which
T; < 7 but 7; £ 7;; again by the Corollary, ;€ U. O

The following lemma shows that the requirements on 7 spelled out in
Definition 10 are, as intended, strong enough to guarantee that there can be
no modal funny business.

Lemma 4 (Absence of explanatory funny business) Let U C T be inconsistent.
Then there is a downward extension U’ 2 U (i.e., for tw € U — U there is
already some t; € U with 7y < 1;) s.t. U’ is blatantly inconsistent (i.e., U’ contains
7 # Tjs.t. ;1E 7)).

Proof Let 7; = (i,s;), ;= (j,s;) € U be such that the pair (t;, 7;) is incon-
sistent. We have to find a downward extension U’ of U that is blatantly
inconsistent. In fact we will show that there are 1y, ; € T for which t; # 1,
7w IE 7, and tp < 7;, 7 < 7j; we can then set U’ = U U {ty, 7;}. As in Lemma 3
we distinguish four cases depending on the spatio-temporal relation between
s; and sy

(1) s;i=s;. Wecantake iy = 75, 7 = 1.

(2) si <ssj. Clause 5(b) of Definition 10 guarantees the existence of the
required 7, 7.

(3) sj <s ;. This case works exactly like (2).

(4) s;SLRgs;. Clause 5(c) of Definition 10 guarantees the existence of the
required 7, 7. O

We now state and prove our main theorem.
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Theorem 1 Let D = (S, <gs, T, <) be a discrete proto-BST+SN-structure. Then
the triple C(D) = (W, <, X), defined below, is a model of BST+SN whose set
of basic transitions, T R(C(D)), is isomorphic to (T, <).

Proof The idea behind the construction of a continuous BST+SN model
from D is to read off the modal information from 7, using the maximal
consistent subsets of 7" to determine which histories there are. By choosing
the representatives of possible point events in the model appropriately, the
pasting together of these histories is effected automatically. We define:

Definition 12 Given a discrete proto-BST+SN-structure D = (S, <g, T, <),
the corresponding continuous model is the triple C(D) = (W, <, Z), where the
set ¥ and the partial ordering (W, <) are constructed as follows:

e Let ¢ be the set of maximal consistent subsets of 7. For each U € €, let the
corresponding history representative be

hy :={{s,V)|se S V={u=(kskeU]|sr<ss}.
e Define W to be the union of all these histories, i.e.,
W .= UUEQ hU.

e Define the ordering < via the spatio-temporal ordering together with the
notion of the uniqueness of the past, i.e.,

(s, V) < (s, V') iff s<gs and V ={1, € V' |si <gs}.

The corresponding strict ordering (excluding equality) will be denoted
‘4<5"
e The set X is lifted from S in the obvious way:

Y={{(s,V) e W}|selS§}

Obviously W is a non-empty set (as S # ), and <, being based on <g, is a
partial ordering on W. It now remains to prove that C(D) is indeed a BST+SN
model, and that its set of basic transitions, T R(C(D)), is isomorphic to D’s
transition ordering (7, <).

In order to prove anything about the basic transitions in C(D), or indeed
the prior choice principle, we need to determine the histories in C(D), i.e.,
the maximal directed sets. We establish that the iy are indeed the histories in
(W, <), treating the two directions as the separate Lemmas 5 and 6. We will
then establish the BST properties via Lemma 8 and finally prove the claimed
isomorphism via Lemma 9.

Before we start with these lemmas, we note the following useful fact:

Fact 8 Let g € W be directed, and let (s, V), (s, V') € g. Then V =V'. (Le, ina
directed set in W, no space-time point s € S can occur with two dif ferent labels.)
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Proof Assume that g is directed and that there are e = (s, V), ¢’ = (s, V') € g.
By directedness, there has to be some e* = (s*, V*) s.t. e < ¢* and ¢’ < e*. By
definition of the ordering, this means that V = {ty € V* | sy <s s} = V. O

Lemma 5 The sets hy, U € €, are maximal directed sets in (W, <).

Proof Let U € € be a maximal consistent set of transitions from 7', and let Ay
be the set of pairs (s, V) defined above. We need to show that A is (a) directed
and (b) maximally so.

(a) Lete; = (s;, Vi) € hy,i=1,2. We have to find some e* € h, s.t. e; < ¢*
and e, < e*. Now by directedness of S there is some s* € S for which
s; <g s, i=1,2. Choosing e* = (s*, {tx € U | sy <s s*}), the required or-
dering relations hold by definition.

(b) In order to prove maximality, let e = (s, V) € W — hy be a point extend-
ing hy. By definition, Ay already contains a point (s, V), and by Fact §,
if hy U {e} were directed, we would have to have V = Vy, contradicting
the assumption that e ¢ hy. So no proper extension of Ay is directed. O

Lemma 6 Let h be a maximal directed set in (W, <). Then there is some U € €
(i.e., a maximal consistent set of transitions from T) such that

h=hyg.

Proof Let h be a maximal directed subset of W; we know that its members are
of the form (s, Vi) with s € S and V; € T, where by Fact 8, the V; are unique
for each s. By the definition of W, for 1, = (k, sx) € V; we have s <g s.

Let

Ty := Ui vyen Vs

be the union of all transition labels occurring in 4, so that 7, € 7.
We prove the lemma in four steps (a)—(d).

(a) Ty, is a consistent set of transitions.

Proof Assume otherwise, i.e., assume that there are 1y, 7, € T}, violating
Definition 11. By construction of 7}, this means that there have to be
e; = {(s;, Vi) € hsuch that 7; € V;, i = 1, 2. By directedness of / there also
has to be some e* = (s*, V*) € h with e; < ¢* and e, < ¢*. By definition of
the ordering this means that V| € V* and V, C V*, so that {7}, 1o} € V*,
meaning that V* is inconsistent. But as e* € h € W, we also have e* € hy
for some maximal consistent set of transitions U € €, so that V* C U has
to be consistent. O

(b) Fore= (s, V) € h, we have

Vs =A{tw € Ty | sk <s s}
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(©)

Proof “C” follows by definition of 7}, together with the definition
of W. For “2”, let ty € T), with s; <g 5. By the definition of 7}, there
has to be some ¢ = (s', V') € h with 7 € V', and by directedness of
h, there is some e* = (s*, V*) € h for which e < e¢* and ¢ < e*. By the
definition of the ordering, V' C V* so that 73 € V*, and also by that
definition, 7, € V. m]

For each s € § there is some (s, V) € h.

Proof Let
Sy = {s € S| there is some (s, V) € h}

be the space-time points present in 4. Our aim is to establish S;, = S.

(ci) S, is downward closed, i.e., if s € S, and s’ <g s then also s’ € §,.
To show this, let s € Sy, i.e., there is e = (s, V) € h; by definition
of W, e € hy for some U € €. Let s’ € S be such that s’ <g s. Set-
ting V' = {r; € Vs | 5; <5 §'}, the point ¢’ = (s', V') € hy € W and
¢’ < e.Clearly h U {¢'} is directed: given ¢” € h, by directedness of
h there exists a common upper bound e* € & for e and ¢”, and since
¢ < e, that ¢* is also a common upper bound for ¢’ and ¢”. So if
we had s’ € Sy, then ¢’ would properly extend /4 as a directed set,
contradicting the assumption that £ is maximally directed.

(c.ii) If thereissome 1, € T — T}, such that T, U {4} is consistent, then
there can be no s € §;, for which s; <g 5. To show this, assume
otherwise, so that there is some such 7, and some e = (s, V) € h
with sy <gs. Asty € Ty, wehave ip € V. Ase € h € W, we must
have e € hy for some maximally consistent U € €, and V; = {1; €
U|s; <ss}. As 1 ¢ Vi, by maximality of U, U U {t;} must be
inconsistent. Now by Lemma 3 this means that there is already
some t; € U with s; <g s; and such that (z;, 7x) are inconsistent.
But as s; <gsx <ss, we must have ;€ V; and thus ;€ T},
meaning that 7, U {t;} cannot be consistent.

(ciii) Let 8 =S — 8, be the complement of S;,. If ' =@ then (c) is
established. Otherwise, select some maximally consistent set of
transitions U € € for which 7), € U. We will show that the proper
extension of /4,

W o=hU{(s,V)|seS, V={gecU|sr<s}}CW

is also directed, contradicting the maximality of ~# and thus
proving (c).

In order to show that A* is directed, let ¢; = (s;, V;) € h*, i =
1, 2. We distinguish three cases.

1. ey, e; € h. A common upper bound is already in 4 (and thus in
h*), by directedness of k.
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e1, e; € h* — h. By directedness of S, there is some s* € S for
which s; <g s* and s, <g s*. We have s* € §' by (c.i). Let e* =
(s*, {tx € U | sk < s*}) € h*. By the definition of the ordering,
e* is a common upper bound for e; and e,.

e) € h,e, € h* — h (the case with 1 and 2 reversed is symmetri-
cal). Again by directedness of S, there is some s* € S for which
51 <s s* and s, <g s*, and again by (c.i), s* € §'. Let V* =
{tk € U | sy < s*} and e* = (s*, V*) € h*. By the definition of
the ordering, e; < e*. In order to show that also e; < e*,
we need to show that Vi = {ry € V* | s <gs1}. By (b) we
know that V| = {1, € T}, | sk <s $1},80 “C” holdsvia T}, C U.
Assume that there is some 7, € V* for which 7, € T), but
Sk <s 81. Tx € V* C U means that T} U {1;} is consistent; but
then by (c.ii) we couldn’t have s; € S;,. So “2” holds as well,
and we have established that e* is a common upper bound for
4] and és.

(d) We can now proceed to show that 7} is maximally consistent and thus a
member of €—once that is proved, by (b) and (c) we have & = hr,, and
the lemma is proved.

Thus, assume that 7}, is not maximally consistent, so that for some 7 €

T — Ty, Ty U {7y} is consistent. By (c.ii) this implies that there can be no
s € Sy, for which s <g s. But there is some s € S for which s <g s, and by
(c) we have established that S;, = S, so s € Sy, a contradiction. Therefore,
T, must be maximally consistent.

This concludes the proof of Lemma 6. O

Having identified the histories in C(D), we now need to establish the BST
axioms. The ones connected with the ordering properties can easily be lifted
from corresponding facts about §; the more difficult bit is to establish the prior
choice principle. It is useful to establish the following lemma first, which proves
that our construction in fact gives back the desired choice points:

Lemma 7 Let hy = hy, and h, = hy, be histories in C(D), Uy, U, € €, and let
e=(s;,V)yeh Nhy Then hy L, h, iff there are v, € Uy, 1; € U, such that
w# 1, wlEBT, andsy =5, =5,

Proof

13 ”,
<~

Letthere be ty = (k,sx) € Uy, = (I, s;) € Uy suchthat ty # 17, ¢ IE 1,
and s, = s5; = 5. We have to show that e is maximal in /&; N Ay. So let
e = (s, V') € hy s.t. e < €. By definition, V' = {r; € U, | 5; < §'}. Thus,
7 € V. But 1y ¢ V' because (1, 1) is an inconsistent pair and V' C U,
is consistent. So ¢’ ¢ h,, and e is indeed maximal in in &, N A,.

Let Ay L, hy, 1e., let e=(s;, V) be maximal in A Nh,. Let C
be a chain in § s.t. s; =infC but s, ¢ C. We can show that the
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antecedent of Definition 10(5d) is fulfilled: Let s € C (so thats; <g s).
Let Vi={t,,e Ui |s, <ss} and Vo = {1, € U, | 5, <5 5}. We have
e; = (s, Vy) € h,butase < e; and e is maximal in 4, N h,, we have e, =
(s, V) € hy — hy, so V| # V,. This means that there is some 7; € U; —
U;with s; <g s orsome 7; € Uj — U; with s; <g 5. So Definition 10(5d)
applies and gives us 1 = (k,sx) € U; and 7, = (I, s5;) € U, for which
T # 1, i IE 7, and s, = 5; <g 5. Since e € h; N hy, the case s; <; 5|
is excluded, leaving s, =5, = 5, . m]

By Lemma 7 we have identified the choice points and thus, the indeter-
ministic structure of C(D): the lemma says that a point e is a choice point,
maximal in the intersection of two histories /; and h,, iff the two histories are
differentiated by transitions t; and 7; with that point e as initial.

We can now formulate the BST4SN requirements as a lemma:

Lemma 8 For C(D) = (W, <,X) derived from a discrete proto-BST+SN-
structure D, the following holds:

(W, <) is a non-empty, dense partial order that has no maxima.

Every lower bounded chain C € W has an infimum in W.

Every upper bounded chain C C h, h a history, has a supremum in h.

(Prior Choice Principle). Given two histories hy, h, and a lower bounded

chain C C hy — hy, there is some e € hy N hy such that e < C (i.e., e < ec for

all e. € C) and e is maximal in hy N hy.

5. (Existence of space-time location). T fulfills the requirements on spatio-
temporal location laid out in Definition 4.

6. (No modal funny business). There is no modal funny business according to

Definition 7.

b s

Proof

(1)-(3) are obvious, working in a selected history and noting the respective

properties of S.

(4) The proof is exactly parallel to the proof of Lemma 7(“=").

(5) Existence and uniqueness of the intersection of ¥ with a history fol-
low directly from Lemma 6(c) and Fact 8, respectively. Preservation
of the ordering holds by the construction of X.

(6) This follows directly from Lemma 4, given the identification of basic
transitions in C(D) laid out in Lemma 7.

This concludes the proof of Lemma 8. O

As the final step in proving our main Theorem 1, it remains to be shown
that the given transition structure of D is in fact isomorphic to the derived
transition structure of C(D).
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Lemma9 Let TR = T R(C(D)) be the set of basic transitions of the continuous
BST+SN structure C(D) = (W, <, X) derived from the given discrete proto-
BST+SN-structure D = (S, <5, T, <), and let < be the transition ordering
on TR. Then (TR, <7) and (T, <) are isomorphic, i.e., there is a bijection f
between T and TR s.t. for v; = (i, s;), Tj = (j,s;) € T we have:

1. (Preservation of initial location) Let v; = (i, s;) and f(t;) = e, — H;. Then
we have X (e;) = s;.
2. (Preservation of ordering) v; < t; iff f(t;) <71 f(z)).

Proof Let tp = (k, sx) € T; by Definition 10(5a), there is some 7, = ([, s;) € T
s.t. 7, # 1, and 1 IE 7;. There are U,, U, € € for which 7, € Uy, 7, € U,. Let
V ={t, € Uy | s;m <s sk}; we have e = (s, V) € hy, N hy,. By Lemma 7, e is
maximal in this intersection, so that t; := e — Il (hy,) is a basic transition: #; €
TR. We set f(tx) = ty. Note that this definition is independent of the choice
of 7; and of the sets U,, U,, by the fact that I1, partitions the set of histories
containing e. Claim (1) follows by construction, as X (e) = si.>?

In order to prove that f is bijective, we show that it injective and surjective.
For injectiveness, let 7;,7; € T be such that f(r;)) =¢;— H;=¢;— H;=
f(zj). From e; = e; we immediately get 7; IE 7;, and remembering that I, is a
partition, we then also have t; = t;. For surjectiveness, let ; = ¢; — H; € TR,
so that e¢; is maximal in some A1 N h, with hy € H;; this hy = hy for some U € €.
By Lemma 7 there are 7 # 7, € T s.t. 74 IE 7y and 74 € U; plugging this into the
definition of f shows that in fact f(zx) = t;.

Finally, as to the ordering (2), let 7;, 7; € T s.t. 7; < t;. This is a consistent
pair, so that there is some U € € containing them both; fort; = ¢, — H; = f(1;)
and t; =e; — H;= f(zr;) we have hy € H; N H}, so that ¢; < e;. By the fact
that I1,, is a partition we also get H, € H; and thus, ; <7 t;. In the other
direction, lett; = ¢; — H;, t;=e;— H; e TRbes.t.t; <7 tjandlet f(r;) =,
f(tj) =t;. Select some h € H; N Hj; this has to be hy for some U € €. Thus
7;, Tj € U, and their spatio-temporal relation together with the consistency of
U givesus 7; < 1;. O

This concludes the proof of the main Theorem 1: the continuous structure
of BST+SN and the discrete proto-BST+SN-structures of Definition 10 have
been shown to characterize the same class of indeterministic scenarios. O

3 A Brief Note on Substances in BST

BST is based on a single ontological category: that of a possible point event,
where “event” is used in the sense that has become prominent in space-time

22In writing this equation we have in fact carried the abuse of notation one step further than
announced in Definition 4. Lemma 8(5) ensures that no harm can result.
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theories: a point-like, spatio-temporally located entity that may have, e.g., field
strengths as its properties. In normal usage, “event” is used differently: it is
reserved for a happening involving some ordinary thing, or substance; a change
or, more broadly, a transition involving the thing. And this is just one way in
which substances are important; they enter into many of our basic Lebenswelt
concepts, most notably, agency.

If one wishes to stay close to the formalism of BST—which is a sensible
thing to do, given that BST is the best formal framework for indeterminism
out there—, then the challenge is to find a way of representing ordinary
things and the changes they can undergo within the given, sparse ontological
framework, in which there are no things—there isn’t even stuff. Can one build
up, so to speak, an ordinary thing out of BST’s possible point events? A
first approximation is to idealize an ordinary thing as something that has no
extension: a point-like thing that only has location, no width or breadth or
height, nor orientation.

Belnap has shown how to represent such idealized things within the frame-
work of BST. His own approach to agency within BST [6] works with a,
literally, thin notion of an agent: a set of point events such that the intersection
with each history is a (point-thin) world line. While this means falling prey
to anorexia philosophica, it has the great value of being relativistically sound.
And idealizing things to be point-thin is a common strategy in physics; it is
present, e.g., in the treatment of heavenly bodies through most of the history
of astronomy, and it is useful for many other applications as well. As long as
one is far enough away, real size doesn’t matter, only position does.

Improving on such thin representations is difficult: our Lebenswelt concept
of a rigid body has a hard time given relativity theory. As is well known, the
notion of a rigid body, i.e., of an extended something that is unanimously
wholly present at any single time of its existence, appears to break down in
a relativistic setting for rather elementary reasons. An extended thing wholly
present at a time would seem to have to be at rest with respect to itself, but
that would seem to mean that it has to determine a preferred rest frame, which
is anathema to what people take to be the spirit of relativity theory. Spelled
out in another way, a rigid body, when pushed from the left, would have to
move its right boundary instantaneously. 1 guess that is how we really think
about the things we deal with in ordinary life. But such behavior is impossible
given relativity theory’s limitation on the speed of signal transmission. The
problem is really complicated, and there is no solution to it that could claim to
be universally accepted.

I wish to propose two ways of thinking about extended things in BST that
might turn out to be helpful, maybe in combination. One is to embed one of
these relativity-friendly, point-thin things within an ordinary thing: Given that
we have to represent a thing in a BST model with the help of a set of possible
point events, we can single out a point, one may think of it as the “center”
of the thing (this may or may not be the center of gravity, such as is common
for the representation of heavenly bodies), whose motion is represented via a
point-thin branching tree as in Belnap’s construction. This point-thin idealized
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thing provides for a unique and uncontroversial rest frame for the extended
thing at each moment of its existence: the hyperplane orthogonal to the tangent
to the worldline of the “center” defines a natural rest frame for the whole
object.?® This approach has a certain artificiality to it, and one worry (raised
in discussion by Mark Brown, who traces it back to Chisholm) is that we may
seem to be postulating necessary parts, which would indeed be a bad thing.
I guess a reply to this may be that for practical purposes one can prove that
it doesn’t matter which point one selects, but this would certainly have to be
worked out in some detail. A second way of thinking about extended things
is to go for another extreme and say that all that really matters when one
thinks about causation and the capacities of things is which indeterministic
transitions a thing initiates. In the end this may lead one to represent a thing
via a set of basic transitions, rather than via a set of possible point events.
When thinking about agency, this move may have the benefit of capturing
the notion of attribution of an action that is at the center of the free will
debate: a thing, and thus an agent, will be defined via the transitions that can
be attributed to it. The spatio-temporal extension of a thing would, on this
view, be seen as secondary, filling the space between the points at which the
action is.

This may sound like a tall story. I think it is, but I also think that bringing
together science and Lebenswelt in a respectable theory of indeterminism is
supremely difficult. I am looking forward to Nuel Belnap’s next move.

4 Conclusions

Branching space-times is the best formal theory of indeterminism out there.
Besides aiming at the formal elucidation of the concept of indeterminism,
BST is also an attempt at bridging the gap between science and Lebenswelt.
Ultimately this will have to mean that central Lebenswelt concepts such as
agency can be captured in BST, or in some suitable extension of BST that
retains the initial scientific respectability.

I have argued that capturing agency involves at least three steps: from
BST (or BST+SN) to a discrete data format for limited indeterminism; from
that format to the implementations of substances and their capacities, and
from BST enriched with substances and capacities to agency as a capacity of
substantive agents. In this paper the first step has been taken, as witnessed by
Theorem 1; I have also supplied some sketchy remarks about the second step.
My hope would be that the present development can also help to bring BST
closer to applications in mainstream metaphysics.

231f the thing’s state of motion changes, these hyperplanes may intersect.
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