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Explicit Examples of Free-Space
Non-Planar Electromagnetic
Waves Containing Magnetic

Scalar Potentials
Héctor A. Múnera*

Octavio Guzmán†

Electromagnetic waves (EMW) are formed by electric and magnetic fields,
both together solution of Maxwell's equations. The magnetic field is solenoidal
always, while the electric field is solenoidal in charge-neutral regions only.
Hence, conventionally, free-space electromagnetic fields are transverse to the
direction of propagation; also, there exists a electric scalar potential but not a
magnetic companion. Contrarywise, for the same homogeneous case, we ex-
hibit explicit examples to show that: (a) Longitudinal magnetic fields are com-
patible with linearly polarized non-planar EMW, and (b) Magnetic scalar po-
tentials are compatible with EMW. The direction of propagation of non-planar
EMW oscillates around the direction of propagation of the plane EMW.

Keywords: linearly polarized plane electromagnetic waves, non-planar elec-
tromagnetic waves, longitudinal magnetic fields, magnetic scalar potentials.

1. Introduction
It is well-known that electromagnetic waves (EMW) are a solution to the set of four

Maxwell's eqs (1)-(4).[1,2] In charge-neutral regions (defined by � = 0), eq. (3) becomes a
solenoidal condition, thus joining eq. (4) which always is. This is conventionally interpreted
as implying that electric and magnetic fields E and B are transverse to the direction of propa-
gation. Recently, we have obtained novel nonperiodic solutions of the homogeneous wave
equation [3] that may be used to obtain new solutions of the field equation associated with
Maxwell’s equations (ME). While revisiting this well-known subject, we have surprisingly
found that the class of solutions of ME may be larger than usually believed.[4] Some critics
of our work have suggested that the set of new solutions of ME may be empty. To counter
such argument, we exhibit here simple explicit examples of linearly polarized electromag-
netic waves—solutions of ME—containing (a) a longitudinal component of the magnetic
field along the average direction of propagation, and (b) a magnetic scalar potential.

This note is organized as follows. The standard material is collated in section 2 for easy
reference. Section 3 exhibits the explicit examples and section 4 closes it.
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2. Summary Description of Electromagnetic Waves
In CGS units, Maxwell's equations (ME) are[1]

��E = � �B��w (1)

��B = + �E��w + 4�J/c (2)

��E = 4�� (3)

��B = 0 (4)
where time is the geometric variable w 	 ct. Other symbols and dimensions are: c, speed of
light in vacuo [=
 cm sec–1; E / B, electric/magnetic field [=
 dyne esu–1; J, current density [=

esu sec–1cm–2; ��� net charge density [=
 esu cm–3.

Charge conservation is assured by the standard continuity condition:
c����w + ��J = 0 (5)

Two remarks are in order: (a) Eq. (5) is not an independent condition. It is automatically
fulfilled by any fields E and B satisfying both eqs. (2) and (3). This claim may be immedi-
ately verified by substituting J from eq. (2) and � from eq. (3) into eq. (5). And, (b) In re-
gions of time-independent charge density ����w = 0, charge conservation reduces to

��J = 0 (6)
Eq. (6) applies, as a particular case, to charge-neutral problems � = 0. Note that in complete
absence of charge there is no source to produce an electric field, so that there is a difference
between a charge-free and a charge-neutral region. [5] The simplest solution of eq. (6) is
J = 0 (Examples 1 and 2), but there may exist solutions with J 
 0 too (Example 3).

As usual, direction of propagation of the EMW is parallel to vector D defined as
D = E � B. (7)

An equation of continuity over energy and momentum density may be obtained by substitut-
ing eqs. (1) and (2) into ��D to get

c��E��w + ��S + E�J = 0 (8)
where the Poynting vector S=cD/4� represents the flow of momentum per unit area and �E=
(E2 + B2)/8� is the energy density of the EMW. The presence of the term E�J in eq. (8)
means that not all energy of the EMW is contained in the Poynting vector when J 
 0. It is
noted that eq. (8) is not new, and appears in older textbooks [6] (see Vol. 1, page 428). For
the case of EMW propagating in dielectrics, Nelson [7] has recently obtained an expression
similar to eq. (8). The last remark together with our findings on the difference between
charge-neutral and charge-free regions [5] suggest that vacuum may be treated as a dielectric.

3. Explicit Examples
We will use variations of a simple linearly plane-polarized EMW in a charge-neutral re-

gion �=0.

Example 1. Linearly plane-polarized EMW. A particular solution of ME is
E = Exi + Eyj + Ezk and B = Bxi + Byj + Bzk with Ey=Ez=Bx=Bz=0, Ex = A sin[K(z – w)],
By = A sin[K(z – w)], where A and K are real constants. In this particular case, J = 0 (the
simplest solution of eq. 6).

In example 1, the components of direction are Dx=Dy=0 and Dz=A2sin2[K(z – w)] which
means that propagation is along the Z-axis. The instantaneous Poynting vector is proportional



APEIRON Vol. 7 Nr. 1-2, January-April, 2000 Page 61

to D. The average components of the Poynting vector along each coordinate axis are propor-
tional to the time average of the individual directions Di (i = x,y,z) taken over a suitably

defined time, say one cycle (0 � Kw � 2�����<Dx> = <Dy> = 0, <Dz> = A2/2.
Consider now a longitudinal magnetic perturbation of Example 1, obtained by adding a

longitudinal magnetic field component Bz, dependent on the y coordinate (transversal to the
direction of propagation):

Example 2. Linearly polarized, nonplanar EM wave. Another solution of ME for � = 0 is
By = A sin[K(z – w)], Bz = B sin[KL(y – w)], Bx = 0, and Ey = Ez = 0, Ex = A sin[K(z – w)]
��B sin[KL(y – w)], where B and KL are real constants. Again, in this particular case, J = 0.

Since the electric and magnetic fields depend of more than one coordinate, the wave de-
scribed by Example 2 is nonplanar. [8] However, since the electric field lies completely on
the X-axis the EMW is still linearly polarized along the X-direction. Indeed, from eq. (7),
Dx = 0, Dy = ABsin[K(z – w)]sin[KL(y – w)]�B2sin2[KL(y – w)] and Dz = A2sin2[K(z –
 w)] � AB sin[K(z – w)]sin[KL(y – w)] which means that the direction of propagation of the
EMW oscillates now on the whole Y-Z plane (not only along the Z-axis as in the plane case),
perpendicularly to the polarization X-axis.

The instantaneous direction of field B also lies on the Y-Z plane along the time-
dependent direction � given by

tan � = By/ Bz (9)
where � is measured relative to the Z-axis (direction of propagation of the unperturbed wave
of Example 1). Clearly, there are no longitudinal magnetic components of magnetic field
relative to the time-dependent plane defined by the X-axis and the direction �. However, the
presence of Bz leads to observable effects relative to a fixed frame of coordinates (the original
system attached to the unperturbed wave of Example 1).

Let us introduce the following notation: amplitude ratio of the perturbation Ra 	 B/A, and
frequency ratio of perturbation Rf 	 KL/K. Fig. 1 illustrates the variation of � for Rf = 1 and
four values of Ra from 1 down to 0.001. Note that the instantaneous direction of propagation
oscillates back and forth relative to the Z-axis, from �/4 in the counterclockwise direction to
3�/4 in the clockwise direction. It is remarkable that there is a small fraction of rays propa-
gating perpendicular to the main direction of propagation (Z-axis), i.e. � = �/2. Since it does
not appear in Example 1, such effect is entirely due to the presence of the longitudinal com-
ponent of the magnetic field Bz in Example 2. As seen from Fig. 1, the frequency of the effect
depends of the relative amplitude of the perturbation Ra.

Since Dy and Dz are nonzero there is propagation of energy on the whole Y-Z plane, in
contrast to the plane case where energy only propagates along the Z-axis. The average com-
ponents of the Poynting vector are

<D x>= 0

<D y> = (AB F(w; K,KL) � � B2 sin2[KL(y – w)] dw)/w

<D z> = (� A2 sin2[K(z – w)]dw – AB F(w ; K,KL))/w

where F(w; K,KL) = �sin[K(z – w)] sin[KL(y – w)]dw. The value of this integral depends on

the relative values of Rf  = KL/K. Two families arise:
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a) Wave numbers K and KL are commensurable, then Rf is rational. It is possible to
find two integer numbers n and m such that Rf = KL/K = m/n. Then time integra-
tion may be taken over a time w such that w = 2�n/K = 2�m/KL. In such cases,
F(w ;K,KL) = 0, so that <Dy> = �B2/2, and <Dz> = A2/2. It is remarkable that
the energy transported along the perturbed Z-direction is the same as in the un-
perturbed case (example 1). However, there is now a negative transfer of energy
into the EMW from the perpendicular direction Y (i.e., absorption from the sur-
rounding medium). Note that pure (conventional) planar waves arise when
Ra � 0 (B=0). Hence, the signature of a conventional planar polarized wave is
the absence of absorption of energy from the surrounding medium, or con-
versely, if an originally plane polarized EMW interacts with the medium via ab-
sorption perpendicularly to the direction of propagation, it becomes non-planar.

b) Wave numbers are incommensurable, then Rf is irrational. Hence, it is impossible
to find two integer numbers n and m such that Rf  = n/m. This implies that it is not
possible to find an integration time making F(K,KL) = 0. This finding has the ad-
ditional implication that the EMW will never repeat itself along the Z-axis, so

Fig. 1. Oscillation in the direction of propagation of a linearly polarized electro-
magnetic wave containing longitudinal components of magnetic field. The
vertical axis is angle � in radians; it is positive for counter-clockwise oscillations,
and negative for clockwise oscillations (this convention produces the disconti-
nuities in the graph). The horizontal axis is time in dimensionless units of Kw
(see Example 2). Angle � was calculated with eq. (9) for the fields in Example 2
with Rf = 1 and four values of the amplitude of the perturbation: Ra = 1, 0.1,
0.01, and 0.001.
When the amplitude of the perturbing magnetic field equals the amplitude of
the basic field (Ra = 1) the direction of propagation wiggles back and forth. As
Ra decreases, the wave tends to propagate mostly along the direction of the
plane wave (i.e. � = 0).
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this EMW is nonperiodic. It is expected that such waves may be connected to our
novel nonperiodic solutions. [3] Here, <Dy> = ABKLF(w ;K,KL)/2�m � B2/2,
<Dz> = A2/2 � ABK F(w ;K,KL)/2�n. Note that the energy carried along the Z-
direction is lower than in the previous case, but it re-appears as energy along the
perpendicular Y-direction.

From Malus law, [9,10] the intensity (i.e. total energy) of the main wave depends of
1 + Ra

2. Hence, the presence of the longitudinal component is difficult to observe by meas-
uring variations in the intensity of the EM beam, but it may be observed by studying phe-
nomena associated with the temporal variations in the direction of propagation. For instance,
the oscillatory effect in Fig. 1 may provide a classical straightforward explanation to the
recently observed unexpected presence of a transversal light current in the absence of scatter-
ers [11] (see Fig. 2 in Ref. 6, and the discussion in the paragraph previous to last).

Consider now a variation of Example 2, generated by the addition of a magnetic scalar
potential.

Example 3. Nonplanar EM wave in free-space with magnetic scalar potential. Consider the
scalar magnetic potential �(r,w) = �t(w)�(x,y,z) = �0 �(x,y,z) exp(�H0w), where �0 and H0

are constants with units of potential (erg/esu) and cm–1 respectively, and �(r) is a solution to
the dimensionless wave equation �2 �(r) = 0 with suitable boundary conditions (located, for
instance, at the edge of the observable universe).

Let the magnetic field in Example 2 be modified with the magnetic scalar potential above
as B � B + ���r,w). This leads to the following solution of ME:

Ex = A sin(K(z – w)) ��B sin(KL(y – w)) ��H0�0exp(�H0w) � (����y)dz � axF(w)

Ey = ��H0�0exp(�H0w) � (����x)dz + ayF(w)

Ez = F2(w)

Bx = �0exp(�H0w) (����x)

By = A sin(K(z – w)) + �0exp(�H0w) (����y)

Bz = B sin(KL(y – w)) + �0exp(�H0w) (����z)
where a is a real constant and F(w) and F2(w) are arbitrary functions of time.

It may be immediately verified that fields above are a solution of ME. Further, let
F2(w) = constant, and �0 be small, this still is an EMW propagating along the Z-axis, con-
taining a longitudinal magnetic field Bz. It is noted that Ampere's law (eq. 2) leads to J 
 0
given by

Jx = (c/4�)[�H0
2
 �0exp(�H0w) � (�����y)dz + ax dF(w)/dw]

Jy = (–c/4�)[H0 
2 �0exp(�H0w) � (�����x)dz + ay dF(w)/dw]

Jz = (–c/4�)[dF2(w)/dw]
The presence of this current is, of course, consistent with continuity (eq. 6), and leads to a
total energy density �E that is not completely contained in the conventional Poynting vector
(recall eq. 8).
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It is noteworthy that the presence of the magnetic scalar potential ��r,w) leads to a current
density J 
 0, even when � = 0. Such current is both space and time dependent. Furthermore,
if dF2(w)/dw = 0, the current is completely transversal to the direction of propagation of the
underlying plane wave (z-axis).

In this case, the direction of propagation has components along the three-dimensions. As
expected, the X-component is completely due to the magnetic scalar potential (see Appen-
dix). No new phenomena are apparent.

It is stressed that the EM fields exhibited in Examples 2 and 3 are completely independent
of any interpretation in terms of potentials. The connection with potentials and gauges is
deferred for future work.

4. Concluding Remarks
We exhibited a linearly polarized nonplanar wave containing a longitudinal component of

magnetic field. Obviously, the longitudinal magnetic component disappears relative to a
time-dependent plane defined by the instantaneous directions of E and B. However, there is a
measurable effect consisting in an oscillation of the direction of the wave, relative to a system
of coordinates attached to the observer (this is a system defined by the propagation of a line-
arly plane-polarized wave).

The presence of a longitudinal magnetic field component in a polarized wave may be dif-
ficult to observe by measuring the intensity of the beam, but it may manifest in several ways:
(a) Studying phenomena associated with temporal-oscillations in the direction of propagation
(recall Fig. 1). This may be a classical mechanism explaining some recent observations. [11]
(b) Studying phenomena associated with the transversal dependence of the polarized electric
field, the X-axis in Example 2. (c) Measuring the transfer of energy into a linearly (appar-
ently-plane) polarized beam from the surrounding environment.

By analogy, the presence of a longitudinal component of magnetic field in a circularly
polarized wave would produce an oscillation in the direction of propagation inside a cone of
half-angle �, rather than in a plane as in the linearly polarized wave discussed here.

We also exhibited a solution of Maxwell equations in free-space containing a magnetic
scalar potential �(r,w). This leads to the appearance of a space and time-dependent current
density J = Jx i + Jy j transversal to the direction of propagation (z-axis).

The nonperiodic nonplanar waves associated with non-commensurable wave lengths (ex-
ample 2) suggest that nonperiodic solutions of ME [3] are physically meaningful. Also, the
presence of a magnetic scalar potential in Example 3 is compatible with the existence of a
larger class of solutions of ME, discussed by us elsewhere. [4,12] All other interpretational
matters are deferred for future work.
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Appendix. Direction of propagation and energy transport in a non-
planar linearly polarized emw propagating in a vacuum with mag-
netic properties (Example 3)

Dx = ��B�H0�0 � (����x)dz exp(�H0w) sin(KL(y – w))

��H0�0
2 
����z � (����x)dz exp(��H0w)

+ ayF(w) B sin(KL(y – w))
+ ayF(w) �0 (����y)�exp(�H0w)
� A F2(w) sin(K(z – w))
� �0 F2(w) (����x) exp(�H0w)

Dy = AB sin(K(z – w)) sin(KL(y – w))
� B2 sin2 (KL(y – w))

+ B H0�0
2 � (����y)dz exp(�H0w) sin(KL(y – w))

� ax BF(w) sin(KL(y – w))
+ A �0 (����z)exp(�H0w) sin(K(z – w))
� B �0(����x)exp(�H0w) sin(KL(y – w))

+ H0�0
2(����z) � (����y)dz exp(��H0w)

� �0ax (����z)F(w)exp(�H0w)

Dz = A2 sin2 (K(z – w))
� AB sin(K(z – w)) sin(KL(y – w))

+ A H0�0 � (����y)dz sin(K(z – w)) exp(�H0w)

� ax A F(w) sin(K(z – w))
� A��0 (����y) sin(K(z – w)) exp(�H0w)
� B �0 (����y)sin(KL(y – w))exp(�H0w)

+ H0�0
2 (����y) � (����y)dz exp(��	0w)
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� ax��0 (����y)F(w) exp(�H0w)

+ H0�0
2 (����x) � (����x)dz exp(��H0w)

� �0 ay(����x) F(w)�exp(�H0w)

w<Dx> = ��B�H0�0 � (����x)dz � exp(�H0w) sin(KL(y – w)) dw

� H0�0
2 
����z � (����x)dz � exp(��H0w) dw

+ Bay � F(w) sin(KL(y – w)) dw

+ ay�0 (����y)� � F(w) exp(�H0w) dw

� A � F2(w) sin(K(z – w)) dw

� �0 (����x) � F2(w) exp(�H0w) dw

w<Dy> = AB �sin(K(z – w)) sin(KL(y – w)) dw

� B2 � sin2 (KL(y – w)) dw

+ B H0�0
2 � (����y)dz � exp(�H0w) sin(KL(y – w)) dw

� ax B � F(w) sin(KL(y – w)) dw

+ A �0 (����z) �exp(�H0w) sin(K(z – w)) dw

� B �0(����x) � exp(�H0w) sin(KL(y – w)) dw

+ H0�0
2(����z) � (����y)dz �exp(��H0w) dw

� �0ax (����z) � F(w)exp(�H0w) dw

w<Dz> = A2 � sin2 (K(z – w)) dw

� AB � sin(K(z – w)) sin(KL(y – w)) dw

+ A H0�0 � (����y)dz � sin(K(z – w)) exp(�H0w) dw

� ax A � F(w) sin(K(z – w)) dw

� A��0 (����y) � sin(K(z – w)) exp(�H0w) dw

� B �0 (����y) � sin(KL(y – w))exp(�H0w) dw

+ H0�0
2 (����y) � (����y)dz � exp(��	0w) dw

� ax��0 (����y) � F(w) exp(�H0w) dw

 + H0�0
2 (����x) � (����x)dz � exp(��H0w) dw

� �0 ay(����x) � F(w)�exp(�H0w) dw


