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In this paper the author proves that the identification of the Thomas rotation angle of the
Cartesian axis with the angle between the relativistic composite non-collinear velocities leads
to a conflict with the concept of inertial motion. As a consequence, the Thomas rotation is
unable to extend the 1+1 Lorentz transformation to 1+3 dimensions and does not confirm the

Thomas half.
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Introduction

In a previous paper (Mocanu 1991) it was shown that
the attempt to extend the 141 Lorentz transformation to
1+3 dimensions, (inevitably implying the Thomas rotation
(TR)) , leads to contradictions within the framework of
relativistic electrodynamics; in Beckmann’s words: “Thomas
may save Einstein’s kinematics. but then his electrodynam-
ics go to pot” (Beckmann 1991). It is the aim of this paper to
prove that, even within the frame of relativistic kinematics,
TR comes into conflict with the property of inertial motion,
according to which the velocity of a moving inertial refer-
ence frame is radially oriented with respect to the origin of
the inertial reference frame at relative rest; in Phipps’s words:
“Thomas rotation contaminates the inertial motion” {Phipps
1990). Nevertheless, TR may be reformulated in such a way
that it complies with the concept of inertial motion, but in
turn two contradictions are involved. The first is related to
the ambiguity regarding the rotation of the Cartesian axes
as they are viewed from the reference frame at rest. It is
well known that, when applied to the gyration of the rota-
tion axis of a spinning mass, TRs give rise to the so-called
Thomas precession (also known as Thomas half) (Thomas
1926, 1982). Thomas precession was proposed by Thomas
as a means of reconciling a conflict in the spinning electron
of the Goudsmit-Uhlenbeck model that gave twice the ob-
served precession effect. Concerning this proposal Uhlenbeck
writes (Uhlenbeck 1976):

I remember that when 1 first heard about it, it
seemed unbelievable that a relativistic effect would
give a factor of 2 instead of something of the order
v/c... Even the cognoscenti of the relativity theory
(Einstein included!) were quite surprised.

However, it is shown in this paper that the second con-
sequence of the above-mentioned reformulation of the Thomas
rotation problem disproves the Thomas precession;
Uhlenbeck’s suspicion was fully justified. The property of
two successive inertial translations is discussed in the first
section and a brief review of the present resolution of Thomas
rotation is presented in the second section. The third sec-
tion is devoted to identifying the angle between the relativ-
istic composite velocities v, ®v, and v, @ v, of the non-
collinear velocities v; and v, with the Thomas rotation
angle of the Cartesian axis. To the best of the author’s
knowledge, this problem has not drawn the attention of
previous investigators. A modified formulation of the Thomas
rotation problem from the viewpoint of the property of the
two successive inertial translations is discussed in the com-
ments.

1. The property of two successive
inertial translations

If an event located at a point P is referred to a reference
frame Z_, with respect to which P is at rest at this time, Z,
is a proper reference frame. Therefore, to refer an event
located at P which moves with respect to a reference frame
X, is equivalent to assuming the existence, at least in the
close neighborhood of P, of a proper reference frame with
respect to which P is at rest. As a consequence, it is advan-
tageous to organize the set of reference frames
%,,%5,...%;,...Z,... into pairs, one of them being the proper
reference frame. By convention, two inertial reference frames
%; and %;, with parallel homologous axes, form a directly
ordered pair of reference frames (2‘. jo Ek) if the first frame
of the pair Z; moves with the velocity v,; = v; with respect
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to the second frame of the pair X,.If {; =, =0 corresponds
to the event when the origins O; of £, and O, of E;
coincide, the inertial motion of X, assumes a radial orienta-
tion of the velocity v, with respect to O,, that is, v, is
collinear with the position vector 1, (Figure 1). This is the
standard configuration of a pair of inertial reference frames.
Consequently, the fundamental property of a pair of iner-
tial reference frames in standard configuration is the radial
orientation of the velocity (ROV) of the moving inertial
frame with respect to the origin of the inertial motion at
relative rest.

Let £ _,Z, and Z, be three inertial frames. The velocity
of I, (}:13 relative to Z,(Z,) is v,(v,), collinear with the
position vector radius r,(r,) of the origin O,(0,) of £ (ZX,)
with respect to Z,(X,). Now, with £ ,Z, and X, let us
form the set Sfi‘” of the three directly ordered pairs of refer-
ence frames,

" = (B0, 21 (B Z2 )2 Zo)} @

Since the pairs (Z,,Z,) and (Z,,Z,) satisfy the ROV
condition (following the collinearity of v, with r; and v,
with 1,), then the pair (Z,,Z,) fulfills the ROV condition,
and as a consequence, it is a pair of inertial frames in
standard configuration, if and only if the composite veloc-
ity uy,y = v,*v, of X, with respect to X, has a radial orien-
tation with respect to O,, i.e. it is collinear with the position
vector radius r (Figure 2a). The velocity u,,, is called the
direct composite velocity of v, and v, . Let us next consider
the set S of three inversely ordered pairs of inertial frames,

S ={(22, Z1)(21, Z,). (22, 2,)} @
%
Y,
Vi = Ve
Zj X,
0)
rk ’
I,
0y "
Figure1

Page 2 APEIRON Vol. 16 June 1993

Similarly, the pairs of frames (Z,,Z,) and (Z,,Z,) satisfy
the ROV condition and (£,,£,) is a pair of inertial frames
in standard configuration if and only if the composite ve-
locity (—v, )¥(-v,)=—=(v,#*v,)=wu,,, has a radial orienta-
tion with respect to O, and, in this way, is collinear with
-1, (Figure 2b). The velocity uy,, is called the inverse com-
posite velocity of —v; and —v,. Since (v,*v,) is collinear
with r and —(v,*v,) is collinear with —, then (v,*v,) is
collinear with (v,*v,),

virv, Tv,*v, Tr (3)

In the derivation of the collinearity of (v,*v,) and
(v2*v,), no reference has been made to a specific composi-
tion law of velocities (*} which may be Galilean (+) or
Lorentzian @ (it may also be something else: ¢f. Mocanu
1986, 1987).

In the case of the Galilean velocity composition law,
equation (3) becomes (Figure 3a),

v, +v,=v,+v, Tr, v, v, eR®, 4
respectively,

el’ = evl+v2=ev2+v1 / (5)

where R? is the set of 3-vectors in the Fuclidean 3-space
and e, denotes the unit vector of r, identical with the unit
vectors e and e of the Galilean composite veloci-

vi+vy Vatvy
ties v, +v, and v, +v,,

v, +V, Vy + ¥y

s €y ey, = (6)

|v2 + v1|

|v1 +v;

ev, +Vy

Equation (5) confirms the adequacy of the Galilean compo-
sition law of velocities with the inertial motion.

According to the relativistic composition law @, the
composite velocities g = v, @ v; and ~u e, = vy @ v, are
given by (Mocanu 1986, 1991a; Ungar 1988a)

2
_ Yava + K, (vy vy )yt + vy

Uy =V, BV, = 3 . (7a)
Ya(l+vy vy /%)
Vv,V € Rg,
}’lvl + K’lvl(vl M Vz )U;Z + V2
“Uygy =V, v, = ’ (7b)

Ya(1+ vy vy /c?)

where R? ={v eR%;lv|< C‘L is the set of 3-vectors in the
Euclidean 3-space R* with magnitude smaller than the
speed of light ¢ in free space, called the relativistically
admissible velocity space, and y,,y, are the Lorentz fac-
tors,

ot i o *
Y= 1+C—; /Y2 = 1+—c—;—} (K1=Y1-1,K;=7,-1.(8)
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Although the resulting velocities u,g; and have u;, and v, ®@vy,
equal magnitudes (Mocanu 1986, 1991)
_vi®v, v, @v, (12)

2 2
2 2 v,+V 1 VXV
ov,) =(v,0v,) = 12 - 1= 2 9
(v 8%) =(v,@v,) |:1+v1-v2/c2:| 2 [1+v1-v2/c2] )

they have different orientations,

v, v, %V, Dv,. (10)

From the relations (5) and (10) , where * is replaced by &,
the following inequalities are derived,

(11)

where e, o, and e, ¢, denote the unit vectors of v, ®v,

e * ev]$v2 # ev;ﬁv, ’

€y oy, ST, €y ay = .
O @v,|T T v, @

Comparison of equations (5) and (11) shows that the
relativistic composition law of velocities leads to a conflict
with the concept of inertial motion. To illustrate this point
beyond any doubt it is sufficient to represent graphically
the velocity vectors vy, v,, v, +V,,V,+ vy, v, ®v,, v, B v,.
Since the equations

(v1 63V2)><(V2 @vl)

—]lev2|:l(vleavz)x(vz@vl)l’ (13)

_ V1 XV,

L

(b)

Figure 3
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hold, the above-mentioned velocities are coplanar, as de-
picted in Figure 3b.

Since v, @ v, and v, @ v, are notradially oriented with
respect to Z,, then neither the direct pair of inertial frames
(2,,%,) nor the inverse pair (£,,%,) fulfill the condition
of the standard configuration of an inertial reference frame
(Figure 1). Consequently, the inequality (10) prevents us
from extending the 1+1 Lorentz transformation to one with
1+3 dimensions. The incompatibility of the two successive
Lorentz transformations implying non-collinear velocities
may be reformulated as follows: two successive relativistic
inertial translations in two non-collinear directions are not
equivalent to a single inertial translation. The paradox is
evident; it relies upon the contradictory relations (5) and
(11). The resolution of the paradox within the Special Theory
of Relativity implies the Thomas rotation, as will be shown
in the next section.

2. Brief review of the Thomas rotation
problem

According to Ungar (1988a), in Figure 2a, the axes of
both frames £, and X, have been constructed parallel to
those of X, as seen by observers accompanying the moving
system X,. Nevertheless, an observer in £, sees the axis of
T, rotated relative to his own axis by a Thomas rotation
angle €, as shown in Figure 4.

There have been various attempts in the literature to
express the TR in terms of its generating velocity param-
eters, resulting in expressions having different forms. Since
the Lorentz transformation in one time dimension and one
space dimension can be represented by complex numbers,
there are expressions of TR in terms of hypercomplex num-
bers (Ben-Menahem 1985). Expressions of TR were pre-
sented by Ben-Menahem (1985, 1986) and others (Belloni
and Reina 1986, Dancoff and Inglis 1936, Fischer 1972, Furry
1955, Hirschfeld and Metzger 1986, MacKenzie 1972, Rowe
1984, Schelupski 1957). Various approximations were ob-
tained by Salingaros in a series of papers in which he used
the Baker-Campbel-Hausdorff formula, which corrects the
product of non-commuting exponentials (Salingros 1986,
1988). Salingaros’s results are discussed by Baylis and Jones
using the Pauli algebra (Baylis and Jones 1988). The deter-
mination of the TR by matrix algebra is well described by
Goldstein: “In general, the algebra involved is quite forbid-
ding, more than enough, usually, to discourage any actual
demonstration of the rotation matrix” (Goldstein 1980).

Thomas rotation is referred to as a Wigner rotation by
several authors (e.¢. Ben-Menahem 1985). Noz and Kim
(1988) reserve the term Wigner rotation for the space rota-
tion defined in the Lorentz frame in which the boosted
particle under consideration is at rest. About Wigner rota-
tion Jones writes: “It is well to realize, however, that the
Wigner rotation is a quite complicated object. It depends ...
on three Lorentz transformations rather in an intricate way”
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(Baylis and Jones 1988). Recently, Ungar, in a series of
papers (1988a,b, 1989a,b, 1990, 1991) not only resolved the
TR by means of matrix algebra, but elaborated an interest-
ing formalism underlying a non-associative group struc-
ture for relativistically admissible velocities. The superior-
ity of Ungar’s resolution over other existing ones rests on
the fact that it appears in a rotation matrix form to which
standard results may be applied. In general, two successive
Lorentz transformations (also called boosts) are not equiva-
lent to a boost; the combination of two successive boosts
B(v,)B(v,) is equivalent to a net boost preceded or fol-
lowed by a Thomas rotation,

B(v, ®v,)Tom[v;;v,]

Tom[vy; v, |B(v, @ v,) a9

B(v,)B(v,) = {

where Tom[vl ;vz] is a 4x4 matrix representing space
rotation of time space coordinates. If the rotation angle
from v, to v, is denoted by 8 (Figure 2a), the TR angle € is
given by (Ungar 1988a, Ben-Menahem 1985)

_(k+ cosB):Z -sin’@
(k+cosB) +sin° 6’

cose
(15)
2(k+cos8)sing

sine = I
(k+cos@)” +sin‘ 89

where k denotes,

k2 = (YI +1)('}’2 + 1) (16)

(ri—1)r.-1)

Replacing k from equation (16) into (15) leads to the expres-
sions of cos€ and sine in terms of ¥,,¥, and 8,

¥z
o Y%
|
|
]
I
N
: Q®®~!\
| \ b3
——_ __t"___xa
(o8 £
r Z; Xé
0 : X2

Figure 4



¢, +¢, 056 +c, cos> 6
n, +mn; cos@

cose¢ =
Oheind 17)
. 5, + 5, cosf)sin
e (8051 c056)
1, + 1, cosf

where ¢;(i=0,1,2), n; and s;(j =0,1) are given by (A.7).

Thus, in the literature, the study of the TR by means of
vector and matrix algebra (several authors circumvent the
difficulties by implying the Clifford formalism) is restricted
by a severe complexity. In the next section of this paper the
author copes with the complexity of the TR by abstraction,
thus obtaining an astonishing simplicity with which TR can
be derived. The reward is that we discover that the TR
angle € of the Cartesian space coordinate (Figure 1a) is
identical with the angle €,, between the composite veloci-
ties v, ®v, and v, @ v, (Figure 3b). This result allows us
to render evident the ambiguities related to the TR angle,
and disproves the Thomas precession.

3. Determining the angle between the
composite velocities

According to the actual interpretation of TR given by
Ungar ((1988a), Ben-Menahem (1985) and Salingaros (1986,
1988), the rotation of the Cartesian axis of X, with respect
to Z, implies the coincidence of v, ® v,and v, ® v, (Fig-
ure 4). This suggests an examination of the dependence of
the TR angle € upon the angle ¢,, between the composite
velocities v; @ v, and v, & v,

eM=‘£(leBv2,v2®vl). (18)
In order to express the angle ¢, as simply as possible, the
scalar and vector products between v, ®v, and v, D v,

may be used

_(vy®Bv,) (v, BV,

COSE€,, =
M (vlﬂavz)2
Dv,)x @ 19
Sin€M=’(vl Vz) (V22 V1)| (19)
(v;©v,)

After simple operations, equations (19) expressed in terms
of y,,7, and 8 are identical with (17), as it is derived in
(A.9), i.e. the Thomas rotation angle € of the Cartesian axis
(as it is viewed from Z,) is identical with the angle ¢,,
between the composite velocities v, € v, and v, @ v;

E=€y (20

According to the identity (20), the statement resulting from
equations (14), formulated as follows: two successive Lorentz
transformations are not equivalent to a pure Lorentz trans-
formation, but to a pure Lorentz transformation preceded
(followed) by a rotation angle e(~€) of the Cartesian coordi-
nate axis Ox, (Figure 4)—may be replaced by the state-
ment: two successive Lorentz transformations are not equiva-
lent to a pure Lorentz transformation but to a pure Lorentz
transformation followed by a rotation angle €,,(—¢,,) of
v, ®v,(v,®v,) to coincide with v, ®v,{v, ®v,), (Fig-
ure 5) such that equations (14) become the following equa-
tions:

B(vy)B(v,) = R(ep)B(v; ©v,)

. (21)
B(v,)B(v) = R(—€x)B(v, ®V,)

where R(ar) denotes the rotation operator of angle o .

In this last formulation, the TR quite clearly indicates

the conflict with the fundamental property of two succes-

0,

(b}

Figure 5
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sive inertial translations. Indeed, since neither v, @ v, nor
v, ® v, satisfy the ROV condition, i.e. they are not radially
oriented with respect to the origin O, of X, (Figure 5), then
the Thomas rotation angle €,,(—€y) of v; ®v,(v,®v;)
coinciding with v, ®v,(v; ®v,) does not ensure the ex-
tension of 1+1 Lorentz transformation to 1+3 dimensions.
In fact, the matrix Tom[v,;v,] involved in equations (14)
rotates the vector v; ® v,(v, ®v,) from a position where it
contradicts the ROV condition into the position of the vec-
tor v, ®v,(v,®v,), where it also contradicts the ROV
condition.

Thomas employed his rotation angle € to calculate the
so-called Thomas precession which give rise to the Thomas
half, that is, a factor ¥ that was necessary to resolve a
conflict between theory and observation (Thomas 1926, 1982).
As Mpller has pointed out, if v;=v and v, =v+dv the
rotation vector dQ given by (Meller 1987)

1 1

dQ=— = -1 (vxdv),

22
W (22)
represents the infinitesimal rotation which has to be ap-
plied to the axis of Z,, at the time f +d¢, in order to give the
same orientation as has the axis in Z,. If we put dv = vd¢
and when v <« ¢, equation (22) becomes,

sy XV V= dv

2c2 ’ dt !

where @ denotes the Thomas precession. Since Q assumes

inertial motion which in turn is contradicted by the identity

(20), then a disproof of the Thomas rotation implies a dis-
proof of the Thomas precession.

(23)

Comments

Summarizing, we can state that, identifying the Thomas
rotation angle € of the Cartesian axis of the moving refer-
ence frame X, as it is viewed from the origin of the refer-
ence frame X,, at relative rest, with the angle €,, between
the composite velocities v, v, and v, @®v, (Figure 4)
leads to a conflict between the Thomas rotation and the
fundamental property of inertial motion. As a consequence
TR is unable to extend the 1+1 Lorentz transformation to
1+3 dimensions.

However, from the fact that the rotation, either of the
Cartesian axis or of the composite velocities, does not change
the position vector radius, 1, r, and 1, it suggests a modi-
fied formulation of Thomas rotation problem. Instead of
the rotation of v; ® v, coinciding with v, ®v,, (Figure 5)
we shall consider the rotation of v, ® v, to coincide with
the position vector radius r, that is, with the unit vector
€, +v, of the Galilean composite velocity v, +v,, as it is
shown in Figure 6a, where the rotation angle

€ 0v, = A(vl e vz,ev‘wz) is given by
(v ®v,)- v +v,
COs€, o, = _[_;;gv_zl_ 20)
. |("1Q3V2)>‘ev,+vz
Hnen = ] 25)

Similarly, instead of the rotation of v, & v, coinciding with
v, ® v, we limit the rotation of v, ® v, to coincidence with
r, that is, with unit vector e, ,, of the Galilean composite
velocity v, + vy, as it is depicted in Figure 6b, where the
rotation angle €, 4, = A(evm‘ v, v, ) is given by

0,

(b)

Figure 6
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€y vy '(V2 ®v1)
sine _lev, ><(v2 @vl)l )
v, 8v, |V2 33V1| ( 7)
Since the rotation angles €, 4,, and €, g, imply the

ROV condition, at first sight, this new formulation of the
Thomas rotation problem appears correctly solved. Never-
theless, corresponding to the different rotations €, g, and
€y v, - there are two different rotations of the Cartesian
axis and, consequently we are in the situation of a paradox:
which one is the “correct” Thomas rotation angle? is it
€,,0v, OF €, ¢, ? Theanswer is that both of them satisfy the
ROV condition, i.e. they comply with the fundamental prop-
erty of inertial motion and, as a consequence, even in this
new formulation the Thomas rotation is not able to derive
“a unique and coherent rotation angle” in order to ensure
the extension of the Lorentz transformation from 1+1 to 1+3
dimensions. It is also evident that the non-associativity and
non-commutativity of the composition law of non-collinear
velocities is an internal contradiction of the Special Theory
of Relativity.

Conclusions

The Thomas rotation paradox revealed earlier by Mocanu
(1991) following two successive Lorentz transformations of
the electromagnetic field is confirmed within the frame-
work of relativistic kinematics following two successive
boosts.

Appendix

Denoting by N, the numerator of cose, (19), and tak-
ing into account equations (7) we have

N, = [71V1 +vy v (v vy Joy ][72"2 +V, +KVy (v, )02.2]
=y,v12 +72”§+()’1 +7, +7f,72)v,v2 cos8 + a1

+Hyx,0, +7,x,0, Jeos” 8+ x,x,0,0, cos’ 0

Similarly, the numerator N, of sine€,; (19) becomes

-2
(V1 + v, +5v,(v; vy o)

s
2
><(yzv2 +v, + chvz(v1 -V, )vz )

(7172 ‘1)1’1'02 +[71 (72 _1)7’12 Y2 (71 _1)022] , (A2)
s

in8

xcos8+(y, =1)(r, ~1)o,v, cos’ 8

Denoting by 7 the denominator of cose,, and sine,,
and taking into account equation (9) we get

n=Y172[(v1 +'02)2 —c'z(vl +‘02)2]= (A 3)

ylyz[vlz +0} — v} + 200, cos 8 + ¢ *vivs cos? 9]

From equations (8), the magnitudes of »; and v, as
functions of 7; and ¥, are given by,

v =cyiy¥i -1, vy =cyiyri-1

such that N, (A.1), N, (A.2) and n (A.3) expressed in terms
of ¥, and ¥, take the forms

N, =c11'y3' (¢, +c 080+ % cos? 8)w(y,,7,.6), (Ad)

N, =:'75'[(5, +5, cos8)sin Oy (71,7,,8),  (A5)

n= cz'rl_l}';l(no +n,cosO)y(¥1,72.9), (A.6)

where ¢,(i=0,1,2), n;,5;(j =0,1) and (7,,7,,0) are given
by
o =11+72 o =(ri-1)(r:-1)

6= (71 _1)(72 - 1) =5

=y ¥,+1, n=c =5 (A7)
W(7172,8)=7y¥, —1+c, cosb

Inserting the expressions for N, N, and n(A.4-A.6) into
equations (19} yields

2
¢, +¢ cos8+c,cos” 0@

COsS€y, =

", +1,¢0s0
_ (s, +s5,cos8)sin6 (A.8)
s €M =
n,+n, cos6
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