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Motivated by rapid growth of cyberphysical systems (CPSs) and the necessity to provide secure state estimates against potential
data injection attacks in their application domains, the paper proposes a secure and innovative attack detection and isolation
fusion framework. The proposed multisensor fusion framework provides secure state estimates by using ideas from interactive
multiple models (IMM) combined with a novel fuzzy-based attack detection/isolation mechanism.The IMM filter is used to adjust
the system’s uncertainty adaptively via model probabilities by using a hybrid state model consisting of two behaviour modes,
one corresponding to the ideal scenario and one associated with the attack behaviour mode. The state chi-square test is then
incorporated through the proposed fuzzy-based fusion framework to detect and isolate potential data injection attacks. In other
words, the validation probability of each sensor is calculated based on the value of the chi-square test. Finally, by incorporation
of the validation probability of each sensor, the weights of its associated subsystem are computed. To be concrete, an integrated
navigation system is simulated with three types of attacks ranging from a constant bias attack to a non-Gaussian stochastic attack
to evaluate the proposed attack detection and isolation fusion framework.

1. Introduction

Cyberphysical Systems (CPSs) [1] are designed by integrating
control, communication, and processing technologies with
the main goal of monitoring/managing critical physical
infrastructures. CPSs have attracted significant attentions
recently both in academia and in industry due to their
exceptional properties and as such emerged in different
applications of paramount engineering importance such
as medical systems [2], power/energy grids [3], aerospace
[4], industrial/manufacturing process control [5], and trans-
portation [6], where performing secure and optimal state
estimation is the key concern. In recent years, sensor tech-
nologies and communication systems have gone through
extensive advancements and improvements making it pos-
sible to deploy several sensors simultaneously in CPSs.
Such developments have resulted in a significant increase in
different CPS application domains. This increasing interest
in deployment of CPSs and factoring in that safety and

security is of paramount importance in such application
domains, investigating security issues of CPSs from different
angles has attracted great research interest recently [7–
10]. A potential cyber/physical attack in CPSs could have
serious ramifications from leakage of consumer information,
damaging economy, loss of critical infrastructures, and even
threatening humans. Consequently, it is of significant prac-
tical importance to detect, identify, and prevent zero-day
attacks in real-time with high accuracy which is the focus of
this paper.

In this paper, our main focus is to design an attack
detection/isolation solution for multisensor state estimation
problems in CPSs. The 𝜒2-test or as commonly called,
residue-based test [11], is considered to be the conventional
detection solution [12–14] typically used in CPSs. The 𝜒2-
test utilizes a normalized version of the power of the
residuals based on the steady-state innovation covariance.
In such a conventional detection criterion, the system is
statistically evaluated based on a predefined and assumed
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model; that is, it is common to base the calculation on
some functional form of the innovation sequence (e.g., using
trace or determinant operators, in the case of 𝜒2-test, the
former is used). Utilization of such functional form of the
innovation sequence results in integration of diagonal and
off-diagonal components of the innovation which in turn
results in overlooking important statistical information.

The paper addresses this drawback. In particular, we
propose a multisensor fusion framework which provides
secure state estimates by assigning an interactive multiple
model (IMM) filter to each sensor modality. The IMM
filter adjusts the system’s uncertainty adaptively via model
probabilities by constructing a hybrid state model consisting
of two modes: one corresponding to the ideal scenario repre-
senting clean measurements and one modeling the presence
of potential attacks (referred to as the attack behaviour
mode). The state 𝜒2-test is then incorporated through a
proposed fuzzy-based fusion framework to detect and isolate
potential data injection attacks.The values obtained from the𝜒2-test assigned to each sensor are then used to compute
the validation probability of each sensor. To overcome the
difficulty in selecting an appropriate threshold, we construct
the detection threshold based on the 𝜒2-test’s values with two
boundaries and an up boundary. Finally, by incorporation of
the validation probability of each sensor, the weights of its
associated subsystem are computed.

The rest of the paper is organized as follows: first,
Section 2 formulates the attack detection/isolation problem
in CPSs and presents different attack models. Section 3
develops the proposed fusion framework and attack isolation
mechanism. Section 4 presents simulation results based on an
integrated navigation system consisting of three observation
nodes, that is, Global Navigation System (GPS), the Bei-Dou2
(BD2), and Strap-down Inertial Navigation System (SINS).
The paper is finally concluded in Section 5.

2. Problem Formulation

We consider the following general linear state model to
represent the underlying physical system:

x𝑘 = F𝑘x𝑘−1 + 𝜔𝑘, (1)

where x𝑘 ∈ R𝑛𝑥 denotes the state vector at iteration 𝑘,
𝜔𝑘 ∈ R𝑛𝑥 is the state noise component which is consid-
ered to be distributed according to a Gaussian distribution,
independent of the state vector, with zero-mean and known
covariance matrix, that is, 𝜔𝑘 ∼ N(0,Q𝑘). The CPS of
interest is monitored using a set of 𝑁 observation nodes
(sensors) communicating their data to the remote processing
unit referred to as the fusion centre (FC) to perform the
required estimation task. The measurement model of sensor𝑙, for (1 ≤ 𝑙 ≤ 𝑁), is given by

z(𝑙)𝑘 = H(𝑙)𝑘 x𝑘 + 𝜉(𝑙)𝑘 , (2)

where z(𝑙)
𝑘

∈ R𝑛𝑧 represents the observation vector collected
by sensor 𝑙, for (1 ≤ 𝑙 ≤ 𝑁) at iteration 𝑘. The uncertainty in
the observation vector is modeled by 𝜉(𝑙)𝑘 which is considered

to be distributed according to a Gaussian distribution with
zero-mean and known covariance matrix, that is, 𝜉(𝑙)𝑘 ∼
N(0,R(𝑙)

𝑘
).

In this paper, we consider attack surfaces [15–17] where an
adversary compromises the underlying system by injecting
a bias b(𝑙)

𝑘
(possibly time-varying and/or stochastic) into a

subset of measurements at iteration 𝑘. Based on the original
measurementmodel (see (2)), themeasurementmodel under
the attack, therefore, is represented as follows:

Z
(𝑙)
𝑘 = z(𝑙)𝑘 + b(𝑙)𝑘 = H(𝑙)𝑘 x𝑘 + 𝜉(𝑙)𝑘 + b(𝑙)𝑘 , (3)

whereZ(𝑙)
𝑘
denotes possible attacked measurement collected

by the 𝑙th sensor. In particular, we consider the following
three type of attack scenarios:

(i) Constant attack where the injected bias (b(𝑙)
𝑘
) into a

measurement is constant over time, that is, b(𝑙)
𝑘

= b(𝑙)

(ii) Time-varying attack where the injected bias changes
over time, for instance, trigonometric functions,

b(𝑙)𝑘 = 𝐴 ∗ sin (Ω ∗ 𝑡) (4)

(iii) Stochastic attack where the injection randomly
changes over time with some statistical properties
being selected by the adversary and unknown to the
detection mechanism.

Our goal in this paper is to devise a novel monitoring
solution to detect such attacks in real-time with minimum
latency and isolate the compromised sensors. Without loss of
generality and for simplicity of the presentation, we consider
the following assumption.

Assumption 1. In a sensor network with𝑁 observation nodes
which is under data injection attacks, number of attacked
sensors at iteration 𝑘, denoted byM, is not equal to the overall
number of available sensor nodes (M < 𝑁).

This assumption is considered to guarantee that at each
iteration at least one unattacked sensor is available for
performing the state estimation task. Please note that this
assumption is not restrictive as, in absence of an unattacked
sensor node, the overall fusion framework continues to
provide predictive state estimates while the problem is being
investigated and attacked sensors are restored.

In the next section, we present our proposed attack detec-
tion/isolation framework which at each iteration isolates the
attacked signal and performs the estimation task only based
on the remaining clean measurements.

3. Fusion Framework with Attack Isolation

In order to design a monitoring framework capable of
detecting all the three aforementioned injection attacks, first
we model the two possible scenarios, that is, the attack and
the ideal behaviour modes, by designing two different error
covariance matrices for the state forcing terms. This design
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Figure 1: Algorithm architecture.

methodology introduces structural uncertainty into the state
model for which an IMM filter is associated with each active
sensor. The IMM filers are used cooperatively to provide the
estimate of the underlying states.

Considered as the first protection layer, this setup will
increase the accuracy of the fusion model under potential
attacks. On the other hand, in order to isolate attacked mea-
surements which are incorporated to update associated prob-
ability corresponding to each model within the pool of IMM
filters, the information provided by the 𝜒2-test is utilized. In
other words, we use the measurement which has minimum𝜒2-test value for updating the associated probability of each
filter in the IMM filterbank. Consequently, this proposed
approach results in updating themodel probabilities based on
the sensormeasurementwhich is less likely to be under attack
and therefore further increases the accuracy of the fusion
task.

Figure 1 illustrates the architecture of the proposed
attack detection/isolation framework. In summary and at
each update iteration, the proposed attack detection/isolation
works as follows:

(i) Each node (subsystem) transfers its local measure-
ments to its associated IMM filter which in turn
computes an updated estimate of the state vector x̂(𝑙)

𝑘|𝑘

and its associated error covariance matrix P(𝑙)
𝑘|𝑘

which
are updated with that subsystem’s measurements.

(ii) This information (x̂(𝑙)
𝑘|𝑘

and P(𝑙)
𝑘|𝑘
), for (1 ≤ 𝑙 ≤ 𝑁),

is then transferred to the 𝜒2-square test block, asso-
ciated with subsystem 𝑙 to perform attack detection
tasks.

(iii) The detection block computes a failure detection
value 𝑞(𝑙)

𝑘
and transfers it to the central node to be

fused with the information from other subsystems
and to perform the final attack detection/isolation.

(iv) For the purpose of selecting the best available obser-
vation to be utilized for evaluation of the IMM fil-
ters’ model probabilities, the available fault detection
information is used and the subsystem which has the
minimum fault value is considered as the selected
subsystem for updating the IMMfilters’ model proba-
bilities. At the same time and to update (calibrate) the
reference data (i.e., P(𝑆)

𝑘
and x̂(𝑆)

𝑘
), we incorporate the

global fused information.
In brief, the proposed attack detection/isolation framework
has total of 𝑁 (number of sensor subsystems) IMM filters
as illustrated in Figure 1. Filter 𝑙 sequentially computes
predicted values for the state vector (referred to as IMM-
Predict step) andupdated state estimates (referred to as IMM-
Update step) in parallel to the other filters and only based
on the observation it receives from the subsystem associated
with that IMM filter 𝑙. Next, we first present details of the
prediction step for one subsystem.

(i) Mixing Step. In this step, interaction probability 𝜇𝑖|𝑗
𝑘

for
(𝑖, 𝑗 ∈ {𝐼, 𝐴}) where 𝑀(𝐼) is the model corresponding to the
ideal scenario, while 𝑀(𝐴) corresponds to the system under
attack, is calculated as follows:

𝑐𝑗
𝑘
= 2∑
𝑖=1

𝑝𝑖𝑗𝜇𝑖𝑘−1,

𝜇𝑖|𝑗
𝑘

= 1
𝑐𝑗
𝑘

𝑝𝑖𝑗𝜇𝑖𝑘−1,
(5)

where 𝑝𝑖𝑗 denotes transition probability of moving from state𝑖 to 𝑗 which is defined based on the following transition
matrix:

𝑝𝑖𝑗 = [𝜋11 𝜋12
𝜋21 𝜋22] . (6)
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Term 𝜇1𝑘−1 represents the probability that model 𝑀(𝐼) has
dominated the previous time instant (the system was in the
ideal mode at iteration (𝑘 − 1) and not under attack), while𝜇2𝑘−1 represents the probability that model 𝑀(𝐴) was in effect
at the previous iteration which represents the case where the
system was under attack at time (𝑘 − 1). The mixed inputs for
each filter are computed as follows

x̂0𝑗
𝑘−1|𝑘−1

= 2∑
𝑖=1

𝜇𝑖|𝑗
𝑘
x̂𝑖𝑘−1|𝑘−1

P0𝑗
𝑘−1|𝑘−1

= 2∑
𝑖=1

𝜇𝑖|𝑗
𝑘

{P𝑖𝑘−1|𝑘−1 [x̂𝑖𝑘−1|𝑘−1 − x̂0𝑗
𝑘−1|𝑘−1

]

× [x̂𝑖𝑘−1|𝑘−1 − x̂0𝑗
𝑘−1|𝑘−1

]𝑇} .

(7)

(ii) Local Prediction Step. In this scenario, each of the two
mode-matched KFs (one matched to the ideal mode and
one matched to the attacked behaviour mode) performs
its corresponding prediction step based on the following
equations:

x̂0𝑗
𝑘|𝑘−1

= F𝑗x̂0𝑗
𝑘−1|𝑘−1

P0𝑗
𝑘|𝑘−1

= F𝑗P0𝑗
𝑘−1|𝑘−1

[F𝑗]𝑇 +Q𝑗
𝑘
,

(8)

which in part results in computation of the mode-matched
predicted estimate of the states and its associated error
covariance.

(iii) Combined Prediction Step. In this final step of the IMM-
Predict module, we combine the means and covariance
matrices of the attack and ideal modes to form the combined
values for the predicted estimate of the states as follows:

x𝑘|𝑘−1 =
2∑
𝑗=1

𝜇𝑗
𝑘−1

x̂0𝑗
𝑘|𝑘−1

P𝑘|𝑘−1 =
2∑
𝑗=1

𝜇𝑗
𝑘−1

{P0𝑗
𝑘|𝑘−1

+ [x0𝑗
𝑘|𝑘−1

− x̂𝑘|𝑘−1]

× [x0𝑗
𝑘|𝑘−1

− x̂𝑘|𝑘−1]𝑇} .

(9)

This completes the prediction step of the proposed attack
detection/isolation framework.Next, we present details of the
update step of the proposed framework.

(iv) Mode-Matched KF Update. Local state vector associated
with the KF matched to one of the two ideal or attack modes
is updated as follows:

K𝑗 = P0𝑗
𝑘|𝑘−1

[H𝑗]𝑇 [R𝑗
𝑘
]−1 (10)

𝜁
𝑗

𝑘
= z𝑘 −H𝑗x̂0𝑗

𝑘|𝑘−1
(11)

S𝑗
𝑘
= H𝑗P0𝑗

𝑘|𝑘−1
[H𝑗]𝑇 + R𝑗

𝑘
(12)

[P𝑗
𝑘|𝑘

]−1 = [P0𝑗
𝑘|𝑘−1

]−1 + [H𝑗]𝑇 [R𝑗
𝑘
]−1H𝑗 (13)

Λ
𝑗

𝑘
= N (𝜁𝑗

𝑘
; 0, S𝑗
𝑘
) , (14)

where termΛ𝑗
𝑘
is the likelihood function. Note that IMM-KF

𝑙 uses its specific observation (z(𝑙)
𝑘
) instead of z𝑘 in (11).

(v) Attack and IdleModel Probabilities. In this step, we need to
update the probability that each of the twomodes is in effect at
a given iteration (𝑘).The required probabilities are calculated
as follows:

𝑐𝑘 =
2∑
𝑗=1

Λ
𝑗

𝑘
𝑐𝑗
𝑘
, (15)

𝜇𝑗
𝑘
= 1

𝑐Λ𝑗𝑘𝑐𝑗𝑘, (16)

where term 𝑐𝑘 in (16) is included as a normalization factor to
ensure that it represents a true probability distribution.

(vi) Fusion Step. In this step, the local state estimates and
covariance matrices associated with the ideal and attack
modes are combined to form the fused components as
follows:

x̂(𝑙)𝑘|𝑘 =
2∑
𝑗=1

𝜇𝑗
𝑘
x̂𝑗
𝑘|𝑘

P(𝑙)𝑘|𝑘 =
2∑
𝑗=1

𝜇𝑗
𝑘
{P𝑗
𝑘|𝑘

+ [x̂𝑗
𝑘|𝑘

− x̂𝑘|𝑘] × [x̂𝑗
𝑘|𝑘

− x̂𝑘|𝑘]𝑇} .
(17)

Once this step is completed, the update stage of the proposed
framework is complete. Next, we present the attack detection
and compromised measurement isolation methodologies of
the proposed fusion framework.

3.1. Attack Isolation Framework. We use the state 𝜒2-test
within the proposed framework to detect an attack. And the
test value is defined as follows:

𝑞(𝑙)𝑘 = 󵄩󵄩󵄩󵄩󵄩x̂(𝑙)𝑘|𝑘 − x̂(𝑆)𝑘
󵄩󵄩󵄩󵄩󵄩(P(𝑆)
𝑘
−P(𝑙)
𝑘|𝑘
)−1

, (18)

where ‖ ⋅ ‖ denotes inner product in the Euclidean space.
Attacks on a measurements obtained from one sensor node
is evaluated via the following detection mechanism:

if 𝑞(𝑙)𝑘 ≥ 𝑇𝐷, Data injection attack mode

if 𝑞(𝑙)𝑘 < 𝑇𝐷, Idle mode (no attack) , (19)

where the required threshold (𝑇𝐷) is computed based on the
available tables for 𝜒2-test [18].

In order to define whether sensor 𝑙, for (1 ≤ 𝑙 ≤𝑁), is attacked or not, a validation probability is defined
corresponding to each sensor.The aforementioned validation
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probability is designed to be a function of the associated 𝜒2-
test value and is given by

𝛽 (𝑞(𝑙)𝑘 ) =
{{{{{{{{{{{

1 𝑞(𝑙)
𝑘

≤ 𝑇1
−𝑞(𝑙)
𝑘𝐶 + 𝑇2𝐶 𝑇1 < 𝑞(𝑙)

𝑘
≤ 𝑇2

0 𝑞(𝑙)
𝑘

> 𝑇2.
(20)

The above validation probability rule states that when 𝑞(𝑙)
𝑘

≤𝑇1, the sensor is in ideal mode with high probability. On the
other hand, in cases where 𝑞(𝑙)

𝑘
> 𝑇2, the sensor is under

attack with high probability. In the third possible scenario
(𝑇1 < 𝑞(𝑙)

𝑘
≤ 𝑇2), the sensor belongs to an intermediate

state which is between the state of attack and being ideal (the
sensor is softly attacked; i.e., it could be a candidate for an
attacked sensor). Theoretically speaking, the quadratic term
𝑞(𝑙)
𝑘

∈ R+ appearing in (18) has three degrees of freedom
as it is distributed according to the 𝜒2 distribution [18]. The
limit values (𝑇1 and 𝑇2) defined in (20) are obtained based
on this fact and using standard 𝜒2 tables. These values are
defined to provide the required confidence level. However,
utilization of a predefined threshold in practical scenarios is
not feasible; therefore, an alternative solution is required. In
this paper, our contribution is utilization of fuzzy logic to
solve this practical issue and identified the required threshold
values (𝑇1 and 𝑇2). Based on 90% confidence level obtained
from 𝜒2-test standard tables, we compute the first threshold
as 𝑇1 = 6.25 and, similarly based on 99% confidence level
obtained from 𝜒2-test standard tables, we obtain 𝑇2 = 11.35.
Finally based on 𝜒2-test standard tables, the value of the only
constant 𝐶 defined in (20) is computed and set to 𝐶 = 5.1.

Without loss of generality and for simplicity of the
presentation, in the following discussion, we consider a two-
sensor scenario where at each iteration at least one of the
sensors is not under attack.The sensor’s validation probability
is given by

𝜆(1)𝑘 = 𝛽 (𝑞(1)𝑘 )
𝜆(2)𝑘 = 𝛽 (𝑞(2)𝑘 )

𝜆(1∩2)𝑘 = 𝛽 (𝑞(1)𝑘 ) 𝛽 (𝑞(2)𝑘 ) .
(21)

Term 𝜆(1)
𝑘

denotes the probability that Sensor 1 is in an ideal
behaviour mode (not attacked). Similarly, 𝜆(2)

𝑘
denotes the

validation probability that Sensor 2 is in an ideal mode. On
the other hand, 𝜆(1∩2)

𝑘
relates to the case where both sensors

are in ideal mode at time 𝑘. We compute an adaptive weight
for each sensor based on the above-mentioned probabilities
as follows:

𝛼(1)𝑘 = 𝜆(1)𝑘 − 𝜆(1∩2)𝑘
𝛼(2)𝑘 = 𝜆(2)𝑘 − 𝜆(1∩2)𝑘

𝛼(1∩2)𝑘 = 𝜆(1∩2)𝑘
𝛼(0)𝑘 = 1 − 𝜆(1)𝑘 − 𝜆(2)𝑘 + 𝜆(1∩2)𝑘 ,

(22)

where 𝛼(1)
𝑘

refers to the scenario where only Sensor 1 is not
attacked (Sensor 2 is potentially under attack). Similarly, 𝛼(2)

𝑘
denotes the scenario where only Sensor 2 is not attacked
(Sensor 1 is potentially under attack). On the other hand,
𝛼(1∩2)
𝑘

corresponds to the case where not one but both of the
sensors are in ideal mode simultaneously. Finally, term 𝛼(0)

𝑘
corresponds to the scenario where both sensors are under
potential attacks.

The computed validation probabilities are then used to
adaptively compute the estimated values of the state variables
and their associated error covariance matrix. In this adaptive
framework, the weights are assigned based on the validation
probabilities. The fusion algorithm also incorporates the
estimates for the ideal mode without presence of any attacks
at iteration 𝑘 and computes the updated statistics as follows:

x̂(1∩2)𝑘|𝑘 = x̂𝑘|𝑘−1 + K(1|1∩2)𝑘 (z(1)𝑘 −H(1)x̂𝑘|𝑘−1)
+ K(2|1∩2)𝑘 (z(2)𝑘 −H(2)x̂𝑘|𝑘−1)

(23)

[P(1∩2)𝑘|𝑘 ]−1 = P−1𝑘|𝑘−1 + [H(1)]𝑇 [R(1)𝑘 ]−1H(1) (24)

+ [H(2)]𝑇 [R(2)𝑘 ]−1H(2), (25)

where the Kalman gains are given by

K(1|1∩2)𝑘 = P(1∩2)𝑘|𝑘 [H(1)]𝑇 [R(1)𝑘 ]−1 (26)

K(2|1∩2)𝑘 = P(1∩2)𝑘|𝑘 [H(2)]𝑇 [R(2)𝑘 ]−1 . (27)

Once the above set of statistics are computed, the updated
values for the overall system are computed as follows:

x̂𝑘|𝑘 = 𝛼0x̂𝑘|𝑘−1 + 𝛼1x̂(1)𝑘|𝑘 + 𝛼2x̂(2)𝑘|𝑘 + 𝛼(1∩2)x̂(1∩2)𝑘|𝑘 (28)

P𝑘|𝑘

= 𝛼0P𝑘|𝑘−1 + 𝛼1 [P(1)𝑘|𝑘 + (x̂𝑘|𝑘 − x̂(1)𝑘|𝑘) (x̂𝑘|𝑘 − x̂(1)𝑘|𝑘)𝑇]
+ 𝛼2 [P(2)𝑘|𝑘 + (x̂𝑘|𝑘 − x̂(2)𝑘|𝑘) (x̂𝑘|𝑘 − x̂(2)𝑘|𝑘)𝑇]
+ 𝛼(1∩2) [P(1∩2)𝑘|𝑘 + (x̂𝑘|𝑘 − x̂(1∩2)𝑘|𝑘 ) (x̂𝑘|𝑘 − x̂(1∩2)𝑘|𝑘 )𝑇] .

(29)

The final component in the proposed framework is to
compute the reference statistics, that is, x̂(𝑆)

𝑘
and 𝑃(𝑆)

𝑘
. Based

on [18], state propagator is used to provide the required
reference. More specifically, fused state estimate and its
covariance matrix are propagated one time forward to form
predicted estimates which are to be used as the reference
signal. As a reference for the detection algorithm, we use x̂(𝑆)

𝑘

and 𝑃(𝑆)
𝑘

which are transferred to local 𝜒2-test blocks.
To summarize, the proposed secure state estimation

framework can be outlined as follows:

(S.1) In the first step, the “IMM-Predict” is implemented.
(S.2) In the second step, the “IMM-Update” will be imple-

mented.
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(S.3) Calculate the failure detection value 𝑞(𝑙)
𝑘
using (18).

(S.4) In the fourth step, the probability that each sensor
belongs to the attack mode is computed based on
(20)-(21).

(S.5) In the fifth step, the adaptive weights associated with
each sensor are computed via (22).

(S.6) In the sixth step, the second-order statistics based on
each sensor is updated using (23)–(27).

(S.7) In the final step, the combined second-order statistics
are computed via (28)-(29).

This completes development of the proposed framework.
Next we present our simulation results to validate the
effectiveness of the proposed multisensor attack detec-
tion/isolation fusion framework.

4. Experimental Results

This section presents our experimental simulations per-
formed to evaluate the performance of the proposed frame-
work against the aforementioned three type of data injec-
tion attacks, that is, constant attacks; time-varying attacks;
stochastic attacks (possibly non-Gaussian) [19]. In this sim-
ulation experiment, we utilize sensory information from an
integrated navigation system with including Global Naviga-
tion System (GPS), Strap-down Inertial Navigation System
(SINS), and the Bei-Dou2 (BD2). In this integrated naviga-
tion system, the 𝜓-error model [20] is considered to present
the evolution of the SINS state over time (state model).
First-order Gauss-Markov process is utilized to model the
accelerometer and gyroscope biases where time constants
of 𝜏 are considered. The aforementioned model results in
having state vector consisting of fifteen states (inertial states
in position, velocity, attitude, accelerometer bias, and gyro
bias). The monitoring sensors are the GPS and BD2. We use
the position information received from the GPS and BD2 to
rectify the SINS error.

In this experiment and in order to generate the trajectory
of the aircraft and its associated inertial measurements, we
use the “Inertial Navigation System toolbox” [21]. On the
other hand and to generate GPS and BD2 positions, we
use the “Satellite Navigation toolbox” [22]. Bias and power
spectra of the SINS sensor are defined based on the following
values: accelerometer bias: 50𝜇g; accelerometer white noise:
5 𝜇g/√Hz; Gyro bias: 0.1 deg/hour, and; Gyro white noise:
0.001 deg/√hour. At the same time, the following measure-
ment errors are utilized in performing the simulation exper-
iment: GPS position error (longitude): 3.72m; GPS position
error (latitude): 3.98m; GPS position error (vertical): 3.84m;
BD2 position error (longitude): 2.43m; BD2 position error
(latitude): 2.56m; BD2 position error (vertical): 2.78m. It is
worth mentioning that these parameters are selected in order
to simulate a real-world scenario. The transition probability
matrix of the IMM filter (see (6)) is as follows: 𝜋11 = 𝜋22 =0.98 and 𝜋12 = 𝜋21 = 0.02.

We introduce three type attacks into the GPS measure-
ment as shown in Figure 2. The result of attack detec-
tion curve based on the proposed framework is illustrated

Constant

b = 6.5 m

Time-varying
b = 6.5 ＭＣＨ (0.04Δt)

Non-Gaussian [19]

 = 0.25,  = 3,
 = 1,  = 10;

Time
1200 s 1800 s 1980 s 2580 s 3000 s 3300 s

Figure 2: GPS attack timing sequence.
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Figure 3: Attack detection curve together based on the proposed
fuzzy attack detection/isolation fusion framework.

in Figure 3. Figure 3 illustrates that the proposed attack
detection/isolation framework can detect constant and time-
varying attacks abruptly and detect the stochastic non-
Gaussian attack introduced at last reasonably well.The reason
behind this behaviour, that is, the proposed framework is
secure even against non-Gaussian attacks, is in its ability to
adopt model probabilities to error measurement. Figure 4
illustrates the model probabilities associated with the attack
and ideal behaviour modes. It is observed that the mode
probabilities adopt to the attack scenario in an efficient
fashion. Finally, Figure 5 illustrates the position error which
shows that the proposed fusion framework keeps the error
bounded and does not allow the estimation algorithm to
diverge even under highly non-Gaussian attacks. This is a
critical important property of the proposed framework from
practical point of view.

5. Summary

In this paper, we proposed an improved and innovative
secure state estimation framework which combines the IMM
filter with a fuzzy-based attack isolation mechanism. In the
proposed framework, we consider two separate behaviour
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Figure 4: Model probabilities associated with the attack and ideal
behaviour modes.
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Figure 5: Position error obtained from the proposed framework.

modes, one associated with the ideal scenario and one with
the attack case, where we compute adaptive weights via a
modified observation update mechanism. In order to avoid
utilization of attacked measurements and instead use the
proper observation for updating the state estimates, local 𝜒2-
tests are used for each modality and combined adaptively
to form the global state estimates. Simulated experiments
validated the effectiveness of the proposed attack detec-
tion/isolation framework.
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