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Abstract. In this paper we discuss the application of a new machine learning approach – Argument

Based Machine Learning – to the legal domain. An experiment using a dataset which has also been

used in previous experiments with other learning techniques is described, and comparison with

previous experiments made. We also tested this method for its robustness to noise in learning data.

Argumentation based machine learning is particularly suited to the legal domain as it makes use of

the justifications of decisions which are available. Importantly, where a large number of decided

cases are available, it provides a way of identifying which need to be considered. Using this

technique, only decisions which will have an influence on the rules being learned are examined.
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1. Introduction

In many areas of law – especially administrative law – many thousands of
cases are routinely decided. Often these cases involve the exercise of some
discretion, or involve some degree of operationalisation of the concepts used
in the legislation, so that the decision can be based on ascertainable facts
rather than the vaguer terms in which the legislation may be couched: for
example aged over 65 rather than elderly (Bench-Capon 1991). We would
generally wish to assume that such discretion or operationalisation is con-
sistent so that like cases are decided in a like manner, that some kind of rule is
being followed. Is there a way of deciding what the rule being followed is
from an automated consideration of the data?

Such a question has relevance to a number of interesting and important
issues:

– If there is well defined legislation which defines what the rule should be we
may wish to ensure that the rule is being followed;

– If the domain is a discretionary one, we may wish to discover the rule itself;
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– Similarly we may wish to discover the way in which the stated conditions
have been operationalised;

– Some people have argued that the rule followed in practice is different from
the rule which exists in theory (or which might be elicited from experts). For
example Edwards (1995) suggested that some areas of law exhibited a
systematic bias. Such conjectures could be informed and justified were we
able to discover the ‘‘real’’ rule fromadatabase recording the actual practice.
If therefore we had a reliable technique to extract rules explaining the data

in a field of law, it would have many interesting uses.
One problem with many experiments to explore the efficacy of techniques

designed to extract knowledge from data is that they use data for which the
relationships present are not known at the outset. As a result, what has been
discovered, and what has been missed, cannot be established definitively.
Often accuracy of classification is taken to validate the knowledge extracted,
but this test is, as will be discussed below, rather one-sided. In the work
reported here we will use a specially constructed data set, the properties of
which are known, and which is thus able to serve as a measurable test of the
technique.

The data we use has been used in several previous AI and Law experi-
ments, reported in (Bench-Capon 1993; Bench-Capon and Coenen 2000;
Johnston and Govenatori 2003). The use of this same data set allows for
comparison between what can be derived using the various techniques.

The particular technique we will consider in this paper is Argument Based
Machine Learning (ABML) (Bratko and Možina 2004). The central idea is to
augment a standard machine learning technique to accept, along with data,
arguments explaining the classification of a small number of instances. It is
hoped that this will improve both the efficiency of the learning process, and
the quality of the rules learned. By ‘‘quality’’ we do not only mean statistical
accuracy (probability of correct classification), but also comprehensibility:
can rules learned be clearly understood and interpreted by a domain expert.
The comprehensability of rules is essential in legal applications as such rules
enable, besides decisions, also justifications for decisions made. Moreover
ABML is particularly suitable to the kind of legal application described
above. In law, decisions are typically accompanied by some justification –
often very brief in routine cases – which can serve as the requisite argument.
Given the volume of decided cases, however, we cannot be sure how many, or
which, of these justifications to consider. ABML will point us towards those
that need to be looked at.

2. Argument Based Machine Learning

ABML (Bratko and Možina 2004) is a novel approach to machine learning
that draws on some concepts of argumentation. While the standard problem
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of machine learning from examples is to find a theory that explains given
examples, in ABML some of these examples are accompanied by arguments,
and the problem of ABML is to find a theory that explains examples using
these arguments.

Arguments that support an example are typically reasons for believing
why the class of an example is as given, or, especially in law, they can be also
seen as the justification for a specific decision. The main motivation for using
such arguments lies in two expected advantages:

1. Reasons (arguments) impose constraints over the space of possible
hypotheses, thus reducing search complexity;

2. An induced hypothesis should make more sense to an expert as it has
to be consistent with given arguments.

Regarding advantage (1) above, the fundamental difficulty of machine
learning arises from the explosive combinatorial space of possible hypothe-
ses. Using arguments, the computational complexity associated with search
in the hypothesis space can be reduced considerably, and enable faster and
more efficient induction of hypotheses. Regarding the other advantage, (2),
there are many possible hypotheses that, from the perspective of a machine
learning method, explain the given examples sufficiently well. But some of
those hypotheses can be unnatural with respect to the current domain
knowledge and therefore incomprehensible to domain experts and give lit-
tle insight into rules being followed. On the other hand, using arguments
should lead to hypotheses that explain given examples in similar terms to
those used by the expert, and correspond to the actual justifications.

Superficially it may appear that the idea of ABML is similar to expla-
nation based learning (EBL of DeJong and Mooney (1986)) or explanation
based generalisation (EBG of Mitchell et al. (1986)). Both in ABML and
EBG, just one or a few specific examples play a central role. But in fact
ABML and EBG are completely different due to the following significant
difference: EBG assumes that the complete domain theory is already given,
and then it uses the given example to compile this given theory into a more
efficient form. So in EBG there is no inductive generalisation, and strictly
speaking – no learning (the result is not an induced definition of the target
concept, but just the optimisation of an already known definition). In con-
trast to this, in ABML the target concept is not given, but it is induced from
data.

Another difference between ABML and EBG is in the choice of learning
examples. In EBG, examples are chosen by the trainer in the light of his
knowledge of the domain of learning. In contrast to this, ABML accepts a
data set of examples that come from observations in the domain. Some
of these examples that are supposed to be particularly important are
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commented by the expert. These important examples may be chosen by the
expert, as in EBG, or alternatively, they may be automatically chosen by the
system in the light of difficulties encountered in learning the target concept.

2.1. ABCN2 ALGORITHM

Argument Based CN2 (ABCN2) is a realization of concepts described in the
previous section. ABCN2 is an extension of the well-known rule-learning
algorithm CN2 of Clark and Niblett (1989). The original CN2 algorithm is
augmented so that it takes into account arguments that accompany some of
the learning examples. We will start this section with a description of argu-
mented examples in ABCN2, and continue with a detailed description of
differences between the CN2 algorithm and its argument based counterpart
ABCN2.

2.1.1. Argumented examples in ABCN2

In ABCN2, arguments that the domain expert may attach to selected
examples have the form of the conjunction of attribute-value pairs. In this
way the expert may state those features that he or she believes are important
in the context of this particular example. The fact that such arguments apply
to individual examples is of practical importance. It makes the expert’s task
easier: the expert can just state features believed to be important in the
particular case, but not necessarily important and valid for the whole do-
main.

A learning example E in the usual form accepted by CN2 is a pair (A, C),
where A is an attribute-value vector, and C is a class value. In addition to
such examples, ABCN2 accepts also argumented examples. An argumented
example AE is a triple of the form:

AE ¼ ðA;C;C because ReasonsÞ
As usual, A is an attribute-value vector and C is a class value. ‘‘C because
Reasons’’ specifies reasons for the given class value. We refer to such reasons
also as argument.

To illustrate the idea of argumented examples, consider a simple learning
problem: learning about credit approval. Each example is a customer’s credit
application together with the manager’s decision about credit approval. Each
customer has a name and three attributes: PaysRegularly (with possible values
‘‘yes’’ and ‘‘no’’), Rich (possible values ‘‘yes’’ and ‘‘no’’) and HairColor
(‘‘black’’, ‘‘blond’’, ...). The class is CreditApproved (with possible values
‘‘yes’’ and ‘‘no’’). Let there be three learning examples shown in Table I.
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The expert’s argument for approving credit to Mrs. Brown can be: Mrs.
Brown received credit because she is rich. Similarly, Miss White received
credit because she pays regularly. The Brown example would in our syntax be
written as:

ððPaysRegularly ¼ no;Rich ¼ yes;HairColor ¼ blondÞ;
CreditApproved ¼ yes;CreditApproved ¼ yes because Rich ¼ yesÞ

In CN2, rules have the form:

IF Complex THEN Class

where Complex is the conjunction of simple conditions, called selectors. For
the purpose of this paper, a selector simply specifies the value of an attribute,
for example HairColor = blond or a threshold on an attribute value, for
example Salary>5000. A rule for our credit approval domain can be:

IF PaysRegularly ¼ no AND HairColor ¼ blond THEN

CreditApproved ¼ yes

The condition part of the rule is satisfied by the attribute values of Mrs.
Brown example, so we say that this rule covers this example.

Argumented examples in ABCN2 are like examples in the classical sense,
but they can possibly be accompanied by arguments. To take into account
arguments in examples, the definition of a rule covering an example needs to
be refined. In the standard definition, a rule covers an example if the con-
dition part of the rule is true for this example. In argument based rule
learning, this definition is modified to

A rule R AB-covers an argumented example E if:

1. All conditions in R are true for E (same as in CN2), and
2. All the reasons of the argument of E are included among conditions

of R.

As an illustration of the differences between AB-covering and the usual
definition of covering, consider again the Brown example with the argument
that she received credit because she is rich. Now consider two rules:

Table I. Learning examples for credit approval

Name PaysRegularly Rich HairColor CreditApproved

Mrs. Brown No Yes Blond Yes

Mr. Grey No No Grey No

Miss White Yes No Blond Yes
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Rule 1 : IF HairColor ¼ blond THEN CreditApproved ¼ yes:

Rule 2 : IF Rich ¼ yes THEN CreditApproved ¼ yes:

Both Rules 1 and 2 cover the Brown example. However, Rule 1 does not AB-
cover the example whereas Rule 2 does. The following rule, Rule 3, also AB-
covers the example:

Rule 3 : IF HairColor ¼ blond AND Rich ¼ yes THEN

CreditApproved ¼ yes:

Thus ABML gives us a reason, based on the expert’s decision processes, to
choose between candidate rules.

2.1.2. CN2

The CN2 algorithm (Clark and Niblett 1989; Clark and Boswell 1991) con-
sists of a covering algorithm and a search procedure that finds individual
rules by performing beam search. The covering algorithm induces a list of
rules that cover all the examples in the learning set. Roughly, the covering
algorithm starts by finding a rule, then it removes from the set of learning
examples those examples that are covered by this rule, and adds the rule to
the set of rules. This process is repeated until all the examples are removed.

There are two versions of CN2: one induces ordered list of rules, and the
other unordered list of rules. Our algorithm in this paper is based on the
second version of CN2. In this case, the covering algorithm consists of two
procedures, CN2unordered and CN2ForOneClass. The first procedure iter-
atively calls CN2ForOneClass for all the classes in the domain, while the
second induces rules only for the class given. When removing covered
examples, only examples of this class are removed (Clark and Boswell 1991).
Essentially, CN2ForOneClass is a covering algorithm that covers the
examples of the given class.

2.1.3. ABCN2: covering algorithm

We augmented CN2 for learning unordered rules with the ability to learn
from argumented examples. We call the resulting algorithm ABCN2.

The first requirement for ABML is that an induced hypothesis explains
argumented examples using given arguments. In rule learning, this means
that for each argumented example, there needs to be at least one rule in the
set of induced rules that AB-covers this example. This is achieved simply by
replacing covering in original CN2 with AB-covering.

Replacing the ‘‘covers’’ relation in CN2 with ‘‘AB-covers’’ in ABCN2
ensures that both argumented and non-argumented examples are AB-cov-
ered. However, in addition to simpy AB-covering all the examples, we would
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prefer also explaining as many as possible non-argumented examples by
arguments given for the argumented examples. Therefore, we propose a
change in the covering algorithm, where CN2ForOneClass is changed into
ABCN2ForOneClass (see Algorithm 1). The procedure starts by creating an
empty list of rules, makes a separate set AES of argumented examples only,
and sorts them according to the ‘‘quality’’ (defined later) of the given argu-
ment. Then it induces a rule, using procedure ABFind_Best_rule, to cover the
first argumented example. ABFind_Best_rule is a modified beam search
procedure that can accept examples, an argumented example and a target
class, where the resulting rule is guaranteed to AB-cover the given argu-
mented example. This rule is added to the rule set, and the procedure removes
from AES argumented examples AB-covered by this rule. The removal of all
positive examples is not necessary, as each of the argumented examples dif-
ferently constrains the search and thus prevents ABCN2 from inducing the
same rule again. When all argumented examples are covered, all positive
examples AB-covered by rules are removed, and the remaining rules are
learned using classical CN2ForOneClass.

Quality of rule or argument is a user-defined measure to estimate the
goodness of a rule. Generally, this measure should reflect the accuracy of
the rule when classifying new examples, and the generality of the rule (the
more cases the rule covers the better). In our implementation, the
‘‘quality’’ of a rule is defined as an estimate of the probability of correct
classification of new (not learning) cases by the rule. To estimate the

Algorithm 1. Covering algorithm of ABCN2 algorithm that learns rules from examples ES for

given class T

Procedure ABCN2ForOneClass (Examples ES, Class T)

Let RULE_LIST be an empty list.

Let AES be the set of examples that have arguments;AES � ES

Evaluate arguments of examples in AES (user-defined ‘‘quality’’ evaluation function) and sort

examples in AES according to quality of their arguments.

while AES is not empty do

Let AE1 be the first example in sorted AES.

Let BEST_RULE be ABFind_best_rule(ES,AE1,T)

Add BEST_RULE to RULELIST.

Remove from AES examples AB-covered by BEST_RULE.

end while

for all RULE in RULE_LIST do

Remove from ES examples AB-covered by RULE.

end for

Add rules obtained with CN2ForOneClass(ES,T) to RULE_LIST
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probability of correct classification we use the m-estimate (Cestnik 1990)
of probability. This measure can be viewed as if assuming a prior, virtual
example set of m examples which are distributed proportionally to the
number of positive and negative examples in the training set. The quality
of an argument is computed as the quality of a rule whose condition part
is the argument.

2.1.4. ABCN2: search procedure

Algorithm 2 shows AB search procedure. The procedure takes a set of
examples to learn from, an argumented example that needs to be AB-covered
by the induced rule and a target class. In Algorithm 2 the underlined parts
emphasize the differences between the original search procedure in CN2 and
AB-search procedure:

Initial value of set STAR is argument of argumented example. A rule in-
duced from an argumented example must AB-cover this example, therefore it
will have to contain the reasons of the argument. The easiest way to ensure
this is to start learning from it.

Specialise with selectors that cover argumented example. This ensures the
coverage of the seed example by the induced rule.

Statistical significance. During search for a rule, many hypotheses are
taken into account, therefore it makes sense to set pre-pruning a of the

Algorithm 2. Algorithm that finds best rule from a set of argumented examples. The ‘‘quality’’ of a

complex is evaluated by the same user-defined evaluation function as in ABCN2ForOneClass

Procedure ABFind_Best_Rule(Examples ES, Example E, Class T)

Let the set STAR containargument of E.

Let BEST_CPX beargument of E.

Let SELECTORS be the set of all possible selectorsthat are TRUE for E

while STAR is not empty do

{Specialise all complexes in STAR as follows}

Let NEWSTAR be the set {x� yi x2STAR, y2SELECTORS }

for every complex in Ci in NEWSTAR do

if Ci isstatistically significant(ES,T) and quality(Ci) > quality(BEST_CPX) then

replace the current value of BEST_CPX by Ci

end if

end for

Let STAR be best N complexes from NEWSTAR.

endwhile

return rule: IF BEST_CPX THEN T
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likelihood ratio statistic (Clark and Niblett 1989) higher than this is usually
done. We chose to multiply it with the number of all possible specializations
in the first step divided by the number of possible specializations in the first
step that cover the argumented example. Moreover, to ensure that special-
ization is significant, the statistical difference of the class distribution of a new
rule needs to be compared to the class distribution corresponding to the
underlying argument rather than to the distribution in the whole data set.

It should be noted that argument based ML is not limited to CN2. Var-
ious standard ML techniques can be extended in a similar way to their
argument-based variants. The main point of the experiment in this paper is
not to compare ABCN2 with other ML techniques (other than CN2), but to
compare a ML method with its argument-based enhancement. To this end,
the comparison of main interest in this paper is between CN2 and its AB
enhancement ABCN2.

3. Application to legal domain

3.1. THE DATA SET

As previously mentioned the data set used in these experiments is that first
used in Bench-Capon (1993). The data concerns a fictional welfare benefit.
The benefit is payable if six conditions are satisfied. These conditions were
chosen to represent different kinds of condition that are found in the legal
domain, so that we can see whether the different form of conditions affects
their discoverability.

The notional benefit was a fictional welfare benefit paid to pensioners to
defray expenses for visiting a spouse in hospital. The conditions were:

1. The person should be of pensionable age (60 for a woman, 65 for a
man);

2. The person should have paid contributions in four out of the last five
relevant contribution years;

3. The person should be a spouse of the patient;
4. The person should not be absent from the UK;
5. The person should have capital resources not amounting to more than

3000;
6. If the relative is an in-patient the hospital should be within a certain dis-

tance: if an out-patient, beyond that distance.

These conditions represent a range of typical condition types: 3 and 4 are
Boolean necessary conditions, one which should be true and one false; 5 is a
threshold on a continuous variable representing a necessary condition, and 2
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relates five Boolean variables, only four of which need be true. 1 and 6 relate
the relevance of one variable to the value of another: in 1 sex is relevant only
for ages between 60 and 65, and in 6 the effect of the distance variable
depends on the Boolean saying whether the patient is an in-patient or an out-
patient. We can see these six conditions either as explicit conditions or as
ways of making operational concepts such as elderly, sufficient contribution
record, close relative, presence in the UK, insufficient capital resources, and
attributable expenses respectively.

The underlying rules used to generate the synthetic data were not told
beforehand to those co-authors of this paper that carried out the learning
experiments with ABCN2. So although the rules were known to one of the
co-authors (TBC), the experiment was done as if they were not known.

A possible criticism of this experiment could be based on the fact that our
experimental data was artificial rather than real world. However, in ML
experimentation with artificial data is quite common and acceptable in
testing ML methods. It has the advantage over the use of real-world data in
that the experiment is better controlled and the success of learning is easier to
assess. Therefore, quite normally in ML research, the first assessment of a
new ML method is done with artificial data, and these results are used as an
indication of how the method would perform in practice on real-world data.
The obvious limitation of using artificial data, on the other hand, is that such
data might not be sufficiently representative of real-world applications.

The data was generated using a program written in Common LISP. For
this experiment a data set of 2400 records was used: 1200 satisfying all of the
conditions, and equal numbers of the remainder being designed to fail. For
records designed to fail one of the conditions, satisfaction or otherwise of the
remaining conditions was decided randomly for each condition separately.
There are thus 12 attributes relevant to the decision: age, sex, the five con-
tribution conditions (called cont5, cont4, cont3, cont2 and cont1), spouse,
absent, capital, distance and inpatient. In addition to these attributes each
record contains 52 irrelevant attributes, half of which are continuous and half
Boolean. An ideal set of rules would be:

1. IF age <60 THEN qualified = no;
2. IF age <65 and sex = m THEN qualified = no;
3. IF any two of cont5, cont4, cont3, cont2 and cont1 = n THEN

qualified = no;
4. IF spouse = no THEN qualified = no;
5. IF absent = yes THEN qualified = no;
6. IF capital >3000 THEN qualified = no;
7. IF inpatient = yes AND distance >750 THEN qualified = no;
8. IF inpatient = no AND distance £750 THEN qualified = no.
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Probably we should expect (3) to be expressed as 10 separate rules containing
each pair of the contribution factors, which would be a total of 16 rules to
describe the problem fully.

3.2. EXPERIMENT IN ABML

As already mentioned the algorithm used in the experiments was ABCN2,
argument based CN2. The original data (2400 records) was randomly split
into a learning set containing 70% of the cases, and a test set (the remaining
30%) used to assess the accuracy of the generated rules on new cases.

The first set of rules was generated from examples without any arguments.
So the resulting rules were as if generated with CN2. These rules were:

1. IF capital >2900 THEN qualified = no;
2. IF age £59 THEN qualified = no;
3. IF absent = yes THEN qualified = no;
4. IF spouse = no THEN qualified = no;
5. IF cont4 = no AND cont2 = no THEN qualified = no;
6. IF age >89 THEN qualified = no;

Of these (1)–(5) are correct (or very close). Nine contributions rules and the
two distance rules are missing and rule (6) is wrong. There is thus consid-
erable scope for improvement. None the less a high degree of accuracy is
achieved by these six rules: 99% for both the learning and the test sets.
Accuracy of classification is not, however, of prime interest: the motivations
given in Section 1 make it clear that it is the interpretability of the rules
discovered that is of primary interest.

After inducing these rules with CN2, our plan was to give arguments to
some of the examples in the learning set and using ABCN2 to induce better
rules. The main problem was to select examples that, when argumented,
would best help the learning program to induce better rules. To this end we
designed an iterative procedure, each iteration consisting of the following
steps:

1. Find an example that needs to be argumented. This step involves a search
for the most ‘‘problematic’’ example (e.g. outlier) in the learning set that
renders the learning difficult. For this task we ran a repeated (10 times)
internal (that is inside the training set) random sampling 70/30, where
the first part (70%) was used for learning and the second (30%) for
testing. The example that was most often misclassified was chosen as
the example that needed to be argumented.

2. If problematic example was not found (in step 1), then stop the iteration.
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3. Give arguments to the chosen example. An expert gives reasons why the
example is in one class and not in the other.

4. Induce rules on the learning set using ABCN2.

In the case of our legal data, the most frequently misclassified example failed
on the contributions condition. The argument given for this example was that
cont5, cont4 and cont1 are all false. When this argumented example, together
with all the other (non-argumented) examples was given to ABCN2, two
additional contribution rules were induced:

IF cont5 ¼ no AND cont4 ¼ no AND cont1 ¼ no

THEN qualified ¼ no;

IF cont2 ¼ no AND cont3 ¼ no THEN qualified ¼ no;

and the accuracy increased slightly.
In a third learning iteration, an argument was added to an additional

misclassified case in which distance was too great for an inpatient. This time
the erroneous rule (6) disappeared and was replaced by a rule relating to
inpatiency and distance (although with an approximate threshold) and an-
other contributions rule:

IF inpatient ¼ yes AND distance735 THEN qualified ¼ no;

IF cont1 ¼ no AND cont5 ¼ no THEN qualified ¼ no;

Iterations four, five and six added three more arguments based on failure
of the contribution conditions, which resulted in a different contributions
rule. In iteration seven, the argument was given that distance was too small
for outpatient. This produced the rule

IF inpatient ¼ no AND distance �735 THEN qualified ¼ no;

and rearranged the contribution rules somewhat.
At this point there were no misclassified examples in the internal valida-

tion tests any more, and so no further argumentation with our iterative
procedure was possible. The final accuracy on the test set was 99.8%. This
means that one out of 720 test cases was misclassified, and all the rest were
classified correctly. The final set of rules were:

1. IF capital >2900 THEN qualified = no;
2. IF age £59 THEN qualified = no;
3. IF absent = yes THEN qualified=no;
4. IF spouse = no THEN qualified = no;
5. IF cont4 = no AND cont2 = no THEN qualified = no;
6. IF inpatient = yes AND distance >735.0 THEN qualified = no;
7. IF inpatient = no AND distance £735 THEN qualified = no;
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8. IF cont3 = no AND cont2 = no THEN qualified = no;
9. IF cont5 = no AND cont3 = no AND cont1 = no THEN quali-

fied = no;
10. IF cont4 = no AND cont3 = no AND cont1 = no THEN quali-

fied = no;
11. IF cont5 = no AND cont4 = no AND cont1 = no THEN quali-

fied = no;

(1)–(5) are all good rules and remain from the first pass. (6) and (7) have the
right format, but the threshold is slightly inaccurate. The remaining four
rules approximate the 10 ideal contribution rules. The total number of arg-
umented examples after the seven iterations was seven. The one misclassified
example was (omitting the irrelevant attribute values): ((age = 84, sex = -
male, cont1 = no, cont2 = yes, cont3 = no, cont4 = yes, cont5 = yes,
spouse = yes, absent = no, capital = 130, distance = 1320, inpa-
tient = no), qualified = no). This example is misclassified because the par-
ticular combination of contribution conditions is not covered by the
approximate contribution rules induced.

4. Experiments with noisy data

Learning from artificial data sets is usually considered easier than learning
from real-world data sets. One reason for this is that artificial data are
typically noise-free whereas real-world data typically contain noise. So to
cope with real-world data, a learning method has to be able to deal with
noise. In this section we investigate the question how robust our learning
algorithm ABCN2 is with respect to noise in data. To this end we artificially
introduced random noise of varying severity in our learning data as described
below. Intuitively we expected that background knowledge in the form of
arguments should improve the method’s resistance to noise in comparison
with CN2. This expectation was confirmed by the experiments described in
this section.

The experimental procedure for this experiment was as follows. First, we
split the data set to learning set (70%) and test set (30%). Then we added
random noise into the learning set, induced rules with both CN2 and
ABCN2, and measured the accuracy of both sets of rules on the (noise-free)
test set. To study how the severity of noise affects the success of learning, we
repeated the experiment for various rates of noise. The chosen rates were:
0%, 2%, 5%, 10%, 20%, and 40%. A noise rate p means that with proba-
bility p the class value of each learning example is replaced by a random value
drawn from {yes, no} with distribution (0.5, 0.5). Each time CN2 and
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ABCN2 were run with correspondingly ‘‘noised’’ examples plus the same
noise-free argumented examples as in Section 3.2. This whole procedure was
repeated 10 times in order to obtain confidence intervals of the estimated
average classification accuracy for both CN2 and ABCN2 for each noise rate.

Figure 1 shows the results of both methods CN2 and ABCN2. Both
methods were run with the default settings of their parameters. These stan-
dard values are: m=2 in m-estimate, a=0.001 (likelihood ratio statistics
threshold), and minimal coverage of a rule is set to 2 (that is, a rule to be
acceptable has to cover at least two examples).

This figure shows that, as expected, ABCN2 clearly outperforms CN2
when rate of noise in data increases. The difference in average accuracies
between ABCN2 and CN2 jumped from 0.3% at 0% noise to 3.3% at 20%
and to 1.7% at 40% noise. ABCN2 outperformed CN2 on 0%, 20%, and
40% noise with high statistical significance (t-test, p<0.001; see Table II).
ABCN2 was also the better method for other noise rates but with lower
significances.

The ability to handle large amount of noise is very important in the kind
of routine legal decision making we are addressing. Errors rates are very
high: Groothuis and Svensson (2000) report experiments which suggest that
20% may be a low estimate of incorrectly decided cases. The problem is
internationally widespread. The US National Bureau of Economic Research
reports of a particular benefit:

1

0% 2% 5% 10% 20% 40%

noise rate

0.8

1.0

CA 0.9

CN2
ABCN2

Figure 1. CN2 and ABCN2 compared on learning data sets with different proportions of

noise in class variable.
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‘‘The multistage process for determining eligibility for Social Security
Disability Insurance (DI) benefits has come under scrutiny for the
length of time the process can take – 1153 days to move through the
entire appeals process, according to a recent Social Security Adminis-
tration (SSA) analysis – and for inconsistencies that suggest a poten-
tially high rate of errors. One inconsistency is the high reversal rate
during the appeals process – for example, administrative law judges,
who represent the second level of appeal, award benefits in 59% of
cases. Another inconsistency is the variation in the award rates across
states – from a high of 65% in New Hampshire to a low of 31% in
Texas in 2000 – and over time – from a high of 52% in 1998 to a low of
29% in 1982.’’

Again an official UK Publication produced by the Committee of Public
Accounts:

2

‘‘Finds that the complexity of the benefits system remains a major
problem and is a key factor affecting performance. Skills of decision-
makers need to be enhanced through better training and wider experi-
ence. Too few decisions are right first time, with a error rate of 50% for
Disability Living Allowance. There are also regional differences in
decision making practices that may lead to payments to people who are
not eligible for benefits.’’

This makes it clear that robustness in the face of large amounts of noise
is essential if a learning techniques is to be applied to data from this domain.

Table II. Results of CN2 and ABCN2 on noisy data

Noise CN2 ABCN2 Significance

0% 0.9947±0.0010 0.9976±0.0005 <0.001

2% 0.9778±0.0030 0.9842±0.0020 0.002

5% 0.9636±0.0034 0.9696±0.0017 0.005

10% 0.9351±0.0053 0.9469±0.0051 0.037

20% 0.8869±0.0079 0.9200±0.0056 <0.001

40% 0.8326±0.0068 0.8503±0.0088 0.001

The first column shows noise rates, second and third contain average accuracy and standard error of

accuracy estimate for CN2 and ABCN2 respectively, and the last column gives significances of differences

between averages computed with pairwise t-test.
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5. Comparison with other learning methods

In this section we will compare this experiment with previous learning
experiments with the same data set. We will compare three learning tech-
niques here:
– ABML, this paper
– Neural Nets (NN), in (Bench-Capon 1993)
– Defeasible Logic (DL), in (Johnston and Govenatori 2003).

DL uses an algorithm called HeRo to derive a minimal theory in Defea-
sible Logic. Bench-Capon (1993) describes experiments with NN using a
number of net topologies, the most successful of which used a single hidden
layer of 12 nodes in a fully connected network. There has also been an
experiment in learning Association Rules (AR) (Bench-Capon and Coenen
2000). We will not include AR in our comparison because of significant
differences in their experimental setup. Irrelevant attributes were omitted
from the learning data in that experiment making the learning easier, and the
format of the rules produced was somewhat different. DL does not handle
continuous variables and so such variables are mapped into Booleans using
user-supplied thresholds.

The rules discovered in DL were:
IF distance >700 AND inpatient = no THEN qualified = no;
IF spouse = no THEN qualified = no;
IF absent = yes THEN qualified = no;
IF age <60 THEN qualified = no;
IF capital >300 THEN qualified = no;

These rules are a subset of the rules discovered by ABML: they fail to recognise
the contributions conditions, and also omit the rule governing inpatients.

Table III. Important inputs in Bench-Capon (1993)

Factor Influence Degree

Spouse Positive 0.995

Absent Negative 0.984

Cont5 Positive 0.920

Capital Negative 0.882

Cont1 Positive 0.875

Cont4 Positive 0.819

Cont2 Positive 0.809

Cont3 Positive 0.797

Age Positive 0.779

Registered Positive 0.776

Score Positive 0.720

Sex Negative 0.646
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The neural network did not produce rules, but the contribution of the
various inputs was estimated using the technique described in Bench-Capon
(1993). The most important contributing attributes, in descending order of
importance, are shown in Table III.

This experiment did recognise the importance of the contribution condi-
tions, but the inpatient condition and distance to hospital were not seen as of
any significance. Also two irrelevant attributes, registered and score, were
seen as more important than sex. Note also that the degree of influence drops
quite steeply before sex is found.

Both DL (Johnston and Govenatori 2003) and NN (Bench-Capon, 1993)
report a very high level of accuracy (although details of accuracy evaluation
are not given). This was also obtained by the traditional machine learning
method of CN2. That it is possible to train a system to classify with an
excellent degree of success is also the experience of other NN work such as
Split-Up (Zeleznikow and Stranieri 1997) and the experiments of Borges
et al. (2002). Such success, however, should not blind us to the problems:
none of the techniques produced rules which faithfully reflected the condi-
tions for the benefit. This should, perhaps, be unsurprising given that all
machine learning methods respect some sort of minimum description length
principle. However, this suggests that their use to classify actual cases would
be of dubious acceptability, since they would make some systematic errors,
and so discriminate against particular classes of individuals.

5.1. IDENTIFICATION OF ATTRIBUTES

None of the three systems were able to adequately discover the significance of
the sex of the claimant. NN did recognise it as of some small importance, but
ranked two of the irrelevant attributes as more important. It should be noted,
however, that in the case of our particular data set, the learning systems
should not really be blamed for this omission. The learning data only con-
tains male applicants between 60 and 65 that fail to qualify also for other
reasons, in addition to sex = male. So for correct classification of this data
set, attribute sex happens not to be necessary. This shows that even with a
large data set some nuances may not be covered.

Whereas NN recognised that the contributions attributes were of signifi-
cance, DL does not consider any of the contribution attributes. CN2 iden-
tified one contribution rule, and some guidance through argumentation
enabled ABCN2 to extend its consideration of these factors.

The other rule which gave problems to all three approaches was the rule
relating distance to inpatiency. NN gave no significance to these attributes,
and ABML required explicit guidance from arguments to pick up on the two
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rules. DL correctly identified the rule for outpatients, but did not recognise
the significance of distance for inpatients.

Continuous attributes can also present problems, often because the
techniques cannot handle such attributes. DL – in common with other sys-
tems such as Split-Up – preprocessed the data by mapping ranges into
Booleans. This does, of course, require some domain knowledge to ensure
that useful ranges are chosen. ABCN2 does comparatively well, correctly
identifying automatically the thresholds for age and capital, although being a
little inaccurate on the more difficult distance attribute.

We may observe that certain kinds of rules pose few problems: Booleans,
whether required to be true or false, and thresholds which must or must not
be exceeded, are easily identified by all techniques. The inpatiency-distance
rule, however, is hard to detect: as this is essentially of the form of an XOR
rule, this may be unsurprising since such concepts have always posed diffi-
culties for NN and for machine learning generally. Perhaps, however, such
concepts might be thought somewhat contrived.

More serious is the contributions rule, which does reflect a type of concept
frequently encountered in law. Concepts in which a number of factors – none
of them individually necessary or sufficient – must be considered are not
uncommon in law. For example in several European countries including the
UK and Sweden, determining whether a cohabiting couple should be treated
as married for welfare benefits purposes is assessed in this way. It is to such
concepts that much work on case based reasoning in AI and Law has been
directed. Such concepts are, however, extremely ‘‘unfriendly’’ for rule based
learning. It should be noted that ’additive’ hypothesis languages (e.g. naive
Bayes, or linear inequalities, also implicitly included in NN) are much more
appropriate for the formulation of this condition. For example, the single
linear inequality:

cont1þ cont2þ cont3þ cont4þ cont5 >¼ 4

would express the contributions rule, whereas 10 propositional rules are re-
quired. The superior performance of NN on this condition supports this
view. The difficulties, however, should serve as a caution to their application
in domains were concepts with this style of characterisation are suspected.
Rule learning would be greatly helped in learning ‘‘additive hypotheses’’ by
construction of new attributes of the ‘‘additive’’ form as indicated above.

On the positive side, all the techniques discussed here have proved robust
in the face of the large number of irrelevant attributes. A useful implication
of this is that when setting up such learning exercises one can, if using suit-
able techniques, be as inclusive of information as possible. This is a desirable
feature of systems designed to learn in legal settings where the omission of a
crucial attribute would be very damaging.
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5.2. USE OF DOMAIN KNOWLEDGE

NN does not use domain knowledge. DL uses it to discretise continuous
attributes. ABML makes its use, in the form of arguments, an essential part
of the strategy. The work suggests that such domain knowledge is likely to be
required if all relevant attributes are to be identified. Since, typically this
knowledge is readily available in the form of justifications for decisions, its
use should not present a problem.

Advantages of ABML can be seen when making comparison with
knowledge intensive techniques used in Case Based reasoning systems such
as CATO (Aleven 1997). The analysis effort required to represent the cases
used in the CATO system is very large indeed. Moreover, attempts to
automate this process have met with very limited success (e.g. Bruninghaus
and Ashley 1999). The key problem is the volume of decisions available, and
the lack of any principle to guide selection of those which will add to our
knowledge and those which will merely duplicate what has gone before.
Moreover it may be that particular decisions may give a misleading emphasis
to particular attributes. Because ABML goes as far as it can without guid-
ance, it is able to direct attention to the decisions that will have an effect in
closing some gap in the knowledge, or rectifying some misunderstanding. We
may thus be sure that we are only looking at decisions which will have an
impact, and which are really necessary to complete the analysis. Perhaps the
main strength of ABML is that it does focus our attention on particular
decisions in this way.

6. Concluding remarks

In this paper we have described the application of a new machine learning
technique to a legal problem, making use of a data set which has been the
subject of previous experiments in AI and Law. The proposed technique is
ABCN2, which is argument based enhanced version of well known algorithm
CN2. We found that our technique performed at least as well as the others in
terms of accuracy – which is very well indeed. Additionally, we showed
superior robustness to noise when compared to classical CN2. However, it is
not the accuracy of classification that is most important to meet the
requirements stated in the introduction to this paper: it is the quality, in terms
of interpretability, of the rules generated that is crucial. In the initial learning
stage, without arguments, the performance of our technique was similar to
that of the others. We, however, can inform further iterations with domain
knowledge taken from the justification of particular decisions, and this is able
to give a great improvement to the quality of the rules. What is important
here is that the specific elements of domain knowledge to be used are
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identified by the technique (rather than the trainer), so that they are called
into play on as and when they are found to be needed, and attention can be
focused on a small number of critical decisions identified by the technique.
Additionally, we explored the robustness of ABCN2 in the face of erroneous
decisions. It was found in the experiment that ABCN2 is more robust against
noise than its non-argument original CN2. This is important because many
of the administrative law applications to which we would wish to apply the
technique exhibit quite large error rates (Groothius and Svensson 2000).

Acknowledgements

This work was carried out under the auspices of the European Commission’s
Information Society Technologies (IST) programme, through Project ASPIC (IST-
FP6-002307).

Notes

1 From Web Page: http://www.nber.org/aginghealth/winter04/w10219.html.
2 Getting it right: Improving Decision-Making and Appeals in Social Security Benefits.
Committee of Public Accounts. London: TSO, 2004 (House of Commons papers, session
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