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Abstract I examine a major objection to the mechanistic view of concrete computa-
tion, stemming from an apparent tension between the abstract nature of computational
explanation and the tenets of the mechanistic framework: while computational expla-
nation is medium-independent, the mechanistic framework insists on the importance
of providing some degree of structural detail about the systems target of the explana-
tion. I show that a common reply to the objection, i.e. that mechanistic explanation of
computational systems involves only weak structural constraints, is not enough to save
the standard mechanistic view of computation—it trivialises the appeal to mechanism,
and thus makes the account collapse into a purely functional view. I claim, however,
that the objection can be put to rest once the account is appropriately amended: compu-
tational individuation is indeed functional, while mechanistic explanation plays a role
in accounting for computational implementation. Since individuation and implemen-
tation are crucial elements in a satisfying account of computation in physical systems,
mechanism keeps its central importance in the theory of concrete computation. Finally,
I argue that my version of the mechanistic view helps to provide a convincing reply
to a powerful objection against non-semantic theories of concrete computation: the
argument from the multiplicity of computations.
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1 Introduction

The neo-mechanist approach to explanation in science has become increasingly
popular in the past years, with successful applications in biology, psychology, and
neuroscience. In many cases, New Mechanism has proved to be a promising frame-
work for cashing out how explanations in the special sciences work, and what they
should look like. The so far impressive track record notwithstanding, one must be
careful when extending the approach to other fields of scientific endeavour, as over-
extension may put at risk the internal coherence of the overall neo-mechanist picture.

Here I examine one of these risky applications of the neo-mechanistic framework:
themechanistic view of concrete computation. The attempt to use the tools provided by
New Mechanism to account for computation in physical systems has been developed
most forcefully by Piccinini (2007, 2015), Milkowski (2013), and Fresco (2014). The
fruits to reap should this endeavour be successful are very significant: extending a
successful approach to scientific explanation to a domain, computation, that has so
far resisted satisfactory naturalisation and remains problematic when appealed to in
scientific explanations.

However, the abstract nature of computational explanation introduces a tension
in the neo-mechanistic framework, as Haimovici (2013) has pointed out. For one of
the defining characteristics of New Mechanism is its insistence on the importance
of providing some degree of structural detail about the mechanisms that contribute to
explaining phenomena. This requirement seems to be at odds with the abstractness and
medium-indepencence typical of computational explanation, in which very little, if
any, structural detail is provided. Hence computational mechanists find themselves in a
dilemma: either computational explanation is essentially incomplete, or, by enriching it
with structural detail, its peculiar medium-independence, and themultiple realisability
that falls from it, are lost.

In reply to Haimovici’s dilemma, Piccinini (2015) claims that, despite the highly
abstract nature of computational explanation, very weak structural constraints are
nonetheless in place, thus saving the mechanistic status of computational explanation.
I argue that Piccinini’s reply is unsuccessful, for it trivialises the appeal to mechanism,
making the account collapse into a purely functional view. The tension Haimovici
points out is thereby still present, spelling trouble for the computational mechanist.

My aim in this paper is to dispel this tension. This involves amending how the
mechanistic view of concrete computation is conceived of in the existing literature,
especially for what regards the role played by the appeal to mechanism. While com-
putational individuation is essentially functional, mechanisms play an important part
in shedding light on computational implementation. Satisfying accounts of both com-
putational individuation and computational implementation are crucial elements of a
theory of how computations exist in the physical world. In this way, New Mechanism
makes an essential contribution to our understanding of concrete computation, though
for reasons other than the ones normally adduced by computational mechanists.

My approach to themechanistic view of concrete computation has beneficial conse-
quences for other central debates in philosophy of computation. In particular, I explore
a promising account of computational individuation put forward by Dewhurst (2016),
and I show that my proposal improves on it, staving off its main shortcomings.
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Here is how Iwill proceed. In Sect. 2, I briefly introduce the neo-mechanist approach
to scientific explanation, opting for one of its most general formulations. I then present
the mechanistic view of concrete computation, in particular as developed by Gualtiero
Piccinini, in Sect. 3, so as to bring to the fore the apparent tension that I aim to dissolve.
Next, in Sect. 4, I examine Haimovici’s objection to the view, which invites a ready
reply by the computational mechanist. In Sect. 5 I show that the reply does not work,
as it causes the mechanistic view to collapse into a purely functional view. Though this
spells trouble to most computational mechanists, I argue that it is actually a welcome
result, since computational individuation is indeed functional. This notwithstanding,
an amended mechanistic view of concrete computation is still in the cards: I claim
in Sect. 6 that the appeal to mechanism has an important role to play in an account
of concrete computation. Finally, Sect. 7 tackles Dewhurst’s theory of computational
individuation and explores some consequences my approach has to issues regarding
computational equivalence.

2 New mechanism

Piccinini (2007, 2015), Milkowski (2013), and Fresco (2014) rely on the neo-
mechanist approach to explanation in order to provide an adequate account of
computation in physical systems, i.e. concrete computation.

Motivation for New Mechanism comes partly from the failure of traditional
approaches to explanation to do justice to the practice and explanatory aims of the
special sciences, such as biology, psychology, and neuroscience. The guiding idea is
that, rather than relying on laws of nature, the special sciences explain by means of
breaking up a phenomenon of interest into its components, what they do, and how they
are organised—i.e. by unveiling the mechanism underlying, producing, or maintain-
ing the phenomena to be explained. These three ways in which mechanisms can be
explanatory play an important role in ensuring that NewMechanism is able to accom-
modate the different kinds of phenomena that the special sciences tackle: not only
causal chains, but also homeostatic systems, as well as systems ripe with feedback
loops and complex interactions between components.

The notion of mechanism is normally left relatively vague. Narrowing it down too
much risks excluding from the purview of the framework kinds of phenomena and
explanations that are amenable to a broader understanding of mechanism. The notion
is also ambiguous, having different meanings and usages.1

My employment of the term concerns exclusively the notion relevant to theories of
scientific explanation. But even in thismore restricted domain the notion ofmechanism
is understood in slightly different ways by different theorists. Often this leads to differ-
ences in the inclusiveness of the ensuing version of the neo-mechanistic framework.
For the purposes of this paper, I will endorse one of the most inclusive understand-
ings of mechanism—inasmuch as it places relatively few and vague constraints—put
forward by Illari and Williamson (2012, p. 120):

1 See Andersen (2014a, b), Levy (2013), Moss (2012).
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A mechanism for a phenomenon consists of entities and activities organised in
such a way that they are responsible for the phenomenon.

The bottom line of New Mechanism is the appeal to the physical components of sys-
tems, causings (their activities), and their organisation, in explaining how a target
phenomenon comes about. Each of these notions—component, activity, organisation,
and phenomenon—can be understood in different ways, leading to different under-
standings of mechanism. This can be seen as a feature of the account. The flexibility
of its fundamental structure allows mechanistic explanations to be fitted to the fields
or sub-fields of interest, without losing its generality.

The explanandum phenomenon is crucial in individuating the mechanism. Mech-
anisms are of, or for, a certain phenomenon. Mechanistic explanation starts with
a phenomenon to be explained, and then generates the mechanism for that phe-
nomenon. The decomposition of the mechanism into its components, activities and
organisation proceeds with that in mind. What components must there be, so that the
target phenomenon takes place? Which activities must those components engage in?
How do their contributions come together in bringing about the phenomenon? These
are the questions that scientists attempting to give a mechanistic explanation try to
answer.

The components’ activities have functions inside a mechanism, insofar as they
make a contribution to the overall behaviour of the mechanism. Mechanisms may
themselves be functional—they might have functions to perform in the context of an
organism or artefact. I will refer to this notion of function, i.e. in terms of the causal
roles of a component inside a system, as systemic functions (Cummins 1975).

Functional considerations play an important role in mechanistic explanation. In
explaining the overall capacity of a mechanism, its decomposition proceeds by iden-
tifying the components of the mechanism as well as their systemic functions that help
to bring about the overall behaviour. Structural properties are also relevant in mecha-
nistic explanation. Roughly, while structural considerations deal with the components
of a mechanism and their physical properties (such as size, shape, etc.), functional
considerations deal with the activities components perform, their causal powers and
how they contribute to the capacity of the whole mechanism (Piccinini and Craver
2011).

In sum, mechanistic explanation proceeds by individuating the underlying com-
ponents and activities that form the mechanism, as well as their organisation,
unveiling how they bring about the phenomenon to be explained. This often involves
nested mechanisms—components of mechanisms are themselves mechanisms that
can be decomposed into components, which might in turn also be decomposable
mechanisms, until a level is reached in which mechanistic decomposition is no
longer possible. This leads to the multilevel nature of mechanisms and mechanistic
explanation.

For my limited purposes, a more detailed characterisation of New Mechanism as
a general framework for scientific explanation is not necessary. My focus will be on
one of its offshoots, the mechanistic view of concrete computation, and in particular
in its perhaps more detailed version, Piccinini’s (2007, 2008, 2015).
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3 Computational mechanisms

According to Piccinini, computationalmechanisms are a type of teleofunctionalmech-
anism. Teleofunctional mechanisms are mechanisms that have teleological functions,
that is to say, they have purposes or ends (Wimsatt 1972).2 The purpose of an engine
is to provide power, and purposes of organisms include survival and reproduction.
The notion of teleological function is not to be confused with the notion of systemic
function presented above. In teleofunctional mechanisms, both kinds of function are
relevant. The mechanism has one or more teleological functions, and its mechanistic
decomposition, in light of those teleological functions that help characterise the mech-
anism’s capacities, will partially depend on the causal roles, the systemic functions,
of its components.

The activities that components perform help determine their contribution, their
function, in bringing about the overall behaviour of the mechanism, on its turn char-
acterised by its teleological functions, its purposes—what it, as it were, is supposed to
do. Internal components and processes that contribute to the performance of the teleo-
logical functions of teleofunctional mechanisms may themselves acquire teleological
functions. Thereby a subset of the systemic functions of components will coincide
with their teleological functions.

The appeal to teleological function makes it the case that teleofunctional mech-
anisms can go wrong: they may fail to perform their teleological functions due to
breakage, inappropriate circumstances, and so on.

Many mechanisms are not teleofunctional. Though they have components that per-
form activities that explain a phenomenon, they have no end or purpose—think about
planetary systems, the formation of valleys, or the water cycle. These systems can be
broken down into their components and what they do in order nicely to explain how
they work and why they behave the way they do. Even though their components have
systemic functions, the overall mechanisms have no teleological function, and there-
fore cannot succeed or fail in any substantial way. Planetary systems can be altered
in their workings by the intrusion of a new wandering planet, or by the effects of
a supernova. Nonetheless, they do not therefore fail in performing any teleological
function. They are mechanisms, but not teleofunctional ones. In what follows, I will
use ‘function’ to refer to systemic functions, and otherwise I will use ‘teleological
function’.

Computational mechanisms, according to Piccinini (2015, p. 119ff.), are a subset
of teleofunctional mechanisms. They are those teleofunctional mechanisms which
have as one of their teleological functions that of performing concrete computations.
Concrete computation, in its turn, is defined as the manipulation of vehicles according

2 I remain neutral on what the appropriate account of teleological functions is. But note that the appeal
to teleological function has the downside of making the view vulnerable to attacks against the notion of
teleological function itself (Craver 2013); as well as requiring that a substantial theory of teleological
function be proposed, and defended. I will not tackle these issues here, and will assume in the foregoing
that teleological functions exist objectively and that there are one or more accounts of teleological function
that help ground the objective existence of teleofunctional mechanisms.
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to a rule sensitive only to (some of) their physical properties.3 A rule, finally, is a
mapping from inputs (and possibly internal states) to (internal states and) outputs.

Vehicles and their activities are arrived at by means of mechanistic decom-
position. Given the overall capacity of the mechanism to perform computations,
it is decomposed into the entities and activities so organised as to bring about
that behaviour. One important property of vehicles in concrete computation is
their being medium-independent—most of their physical properties are irrelevant
to the computation performed. The rules that govern the changes undergone by
the vehicles are sensitive only to some dimensions of variation of their physi-
cal properties, i.e. their degrees of freedom. Degrees of freedom abstract away
from the physical properties themselves—consisting only of their dimensions of
variation—and are thus characterised in medium-independent fashion. Physical sys-
tems made out of completely different materials, from silicon to neurons to vacuum
tubes to beer tins, can perform the same computation provided they have physical
properties with the appropriate degrees of freedom on which state-transition rules
depend.

This understanding of concrete computation is general enough to include both
digital and non-digital forms of computation—Piccinini (2015) dubs it ‘generic com-
putation’. Keeping to such a level of generality is appealing inasmuch as it allows
various notions of computation to be captured without privileging any one in particu-
lar. For simplicity, I will focus exclusively on digital computation.

Digital computation is a subset of generic computation. To perform a digital com-
putation is to manipulate digits and strings of digits according to rules sensitive only
to (some of) their physical properties. Digits are realised by medium-independent
vehicles characterised by the fact that they can be neatly distinguished by the com-
putational mechanism, insofar as they are discrete and that there is a finite number
of them—an alphabet. Two digits of the same type are processed equally, while two
digits of different types are processed differently. In physical terms, digits are realised
by equivalence classes of physical states that are treated uniformly by the system. A
digit in an electronic computer is typically an interval of voltage values (e.g. 0–5V)
to which the system responds in the same way, ceteris paribus.

With this brief introduction to New Mechanism and to the mechanistic view of
concrete computation in hand, we can start to see the tension between the two. The
characterisation of computation seems to be largely functional, with no reference
to structural properties of the mechanism except for its degrees of freedom, while
New Mechanism seems to insist on the importance of structural detail. Haimovici
(2013) explores this apparent inconsistency, and claims that the mechanistic view of
computation finds itself in an uncomfortable dilemma. I will not stick closely to her
argumentative line. Nevertheless, what follows in the next section is indebted to her
discussion.

3 Piccinini prefers the term ‘spatiotemporal properties’. However, it is not clear how voltages, on which
modern electronic computers rely, count as spatiotemporal properties. For this reason I prefer the term
‘physical’. I thank Nicholas Shea for this point.
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4 A dilemma

A relatively common (mis-)understanding of the neo-mechanistic approach has it that
mechanistic explanation, if it is to be fully adequate, must provide structural detail
about all levels of the mechanism.4 On this view, mechanistic decomposition must
proceed by individuating the systemic-functional as well as the structural properties
of themechanism that are relevant for explaining its capacity up to the point in which it
reaches entities that are not further decomposable; and with the most details possible.
Accordingly, full mechanistic explanation, the kind of regulative ideal we should strive
for, is fully accurate and complete—it includes all detail at all levels of themechanism.

If this is so themechanistic viewof computation is in dire straits. If goodmechanistic
explanations require—or at least strive for—a detailed structural description at all
levels of the mechanism, computational explanations are clearly not good mechanistic
explanations, and do not strive to so be. Indeed, by necessarily involving medium-
independent vehicles, computational explanationswill never provide enough structural
detail to respect the mechanistic norms. If computational explanations should go into
detail at all levels of the mechanism, they would have to include the physical details
of each computational system. Mechanistic computational explanation would thereby
have to include structural detail about the particular processors, memory devices,
and so on, present in a particular (type of) computational mechanism. The medium-
independent nature of computation, as well as its multiple realisability, would be lost.

In brief, either computational explanation is not mechanistic, or, if it is, then it
loses what is most distinctive of it, i.e. medium-independence. Two claims, one about
mechanistic explanation, one about computational explanation, clash, leading to the
dilemma:

1. Good mechanistic explanation tends toward full structural detail at all levels of the
mechanism.

2. Computational explanation is necessarily abstract, insofar as it ignores most struc-
tural detail, caring only about degrees of freedom (Piccinini 2015).

These two claims are clearly incompatible with the further claim that computational
explanation is adequate mechanistic explanation.

The natural move for the computational mechanist is to reject 1. This is indeed the
line followed by Piccinini (2015) in his reply to Haimovici (2013):

I reject the view that mechanistic explanation requires the specification of struc-
tural and functional properties at all levels of organization. Instead, mechanistic
explanation requires the specification of all relevant structural and functional
properties at the relevant level(s) of mechanistic organization. (Piccinini 2015,
pp. 124–125)

4 Such a position is often ascribed to Machamer et al. (2000) and Craver (2007), among others, and there
is space for seeing Piccinini himself as arguing for it, as some remarks in Piccinini and Craver (2011)
seem to suggest. Note though that Craver, as well as Piccinini, have later denied that they subscribe to
this view and, on the contrary, have argued that abstraction from detail and idealisation are vital parts of
scientific explanation (Craver 2014, pp. 39–40; Piccinini 2015, pp. 124–125). The confusionmay stem from
an ambiguity between ontic and non-ontic understandings of explanation (see Halina forthcoming).
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According to Piccinini, once claim 1. is rejected, it is clear that computational explana-
tion counts as mechanistic. For, as all mechanistic explanations, it specifies structural
properties of the system target of explanation. In the case of computational explana-
tion, the structural properties specified are the degrees of freedom of the system. These
structural properties, though quite abstract, are the ones relevant for the level of mech-
anism pertinent to computational explanation. Indeed, providingmore structural detail
does away with the medium-independence characteristic of computational explana-
tion. Mechanistic computational explanation, therefore, stops there and refrains from
providing more structural detail, on pain of missing its explanatory target.

The rejection of claim 1. is motivated by more than just saving the mechanistic
view of computation. The mechanistic framework need not—and should not—pose
such strict requirements on what counts as adequate scientific explanation. Requiring
that full structural detail be provided is not only at odds with actual scientific practice,
in which abstraction from details and idealisation play a major role; but would also
be detrimental as a strategy for scientific investigation. Not every detail is relevant for
explanation, quite on the contrary. An important part of scientific explanation consists
in selecting what is explanatorily relevant from what is not. Often times, including
irrelevant detail muddles explanation and undermines its adequacy.

This is the case across levels of mechanism as well. Most often adequate expla-
nations need not go down all the levels of the mechanism responsible for a certain
phenomenon. Explanations in biology, for instance, need not, and should not, include
details at the level of physics in order to be adequate. Doing otherwise would add
nothing of relevance to biological explanation. Analogously, the computational mech-
anist argues, computational explanation is mechanistic even though it is so remarkably
abstract that it leaves out almost all structural detail (Piccinini 2015, p. 125).

Therefore, computational explanation as proposed by the neo-mechanists would be
fully adequatemechanistic explanation: it delivers all relevant functional and structural
detail at the explanatorily relevant levels of mechanism for computational explanation.
Haimovici’s dilemma would thus be avoided.

As I argue in the next section, this is too quick. The solution proposed by Piccinini
exacts too high a price: it avoids the dilemma, but in so doing it gives up themechanistic
view.

5 Computational explanation is functional

Piccinini’s reply to Haimovici saves the consistency of the mechanistic account, but in
so doing causes it to lose its distinctiveness, making it collapse into functional explana-
tion, as I show below. This is an unfortunate outcome for the computational mechanist,
for it represents a remarkable concession to functional explanation, and it is doubtful
that many proponents of NewMechanismwould be willing to be this generous. Part of
themotivation for the neo-mechanistic framework is indeed to supplement the putative
shortcomings of functional explanation with more demanding requirements on what
counts as good explanation—requirements that involve a certain amount of structural
detail.
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However, as computational mechanists admit, the structural constraints posed by
computational explanation are extremely weak. Almost all structural detail is left
out, and only constraints on the degrees of freedom of the structural components of
the mechanism are left in place. This weak sort of structural constraint is on a par
with the structural constraints posed by functional explanation—there as well most
of the structural detail is left out, and only very weak structural constraints are in
place.

To see this, consider how functional and structural decomposition would proceed
when themechanismunder examination ismy laptop computer. The functional decom-
position, by referring exclusively to functional components such as ‘processor’ and
‘memory register’, abstracts from structural detail. Nonetheless, it does place some
structural constraints: whatever plays the role of a processor must be so physically
arranged as to do what a processor does, and the same goes for the other sub-capacities
individuated by the functional analysis. Such structural constraints are quite abstract:
the functionally-individuated processor need not even be a separate physical compo-
nent of the device, butmay span pieces and processes of different physical components.
Analogously, the structural decomposition of my laptop, by mentioning components
such as the 2Ghz Intel Core chips, or the 500GB solid-state Flash hard-disk, places
constraints on the functional properties of the computer: it limits which functions it
can perform, and how. In other words, functional and structural properties constrain
each other to some extent (Piccinini and Craver 2011).

In computational explanation, the only structural constraint in place, having ade-
quate degrees of freedom, is the one that ensures that the structural components of
the computational mechanism can participate in computations, be digits, strings of
digits, manipulators of digits, etc.—that is, that ensure that they can play the required
functional role. This does justice to the medium-independence of concrete compu-
tation. Importantly, this is the kind of weak structural constraint that characterises
functional explanation: it amounts to the trivial requirement that the physical system
have structural properties able to realise the functional characterisation.

The abstraction from details that is an essential characteristic of computational
explanation is comparable to the abstraction from details found in functional expla-
nations.5 Moreover, providing any further structural detail beyond the vague ones
given by a functional analysis is fatal to the nature of computational explanation. If
the computational explanation should mention structurally-individuated components,
such as my 2Ghz Intel Core chips, it would immediately foil any attempt at multiple
realisability or medium-independence.

Computational explanation and functional explanation look therefore much alike.
Some fundamental features of computational explanation are identical to features
of functional analysis. Those same features are moreover essential to computational
explanation, thereby leading to the conclusion that computational explanation is essen-
tially a form of functional explanation.

5 See Cummins (1975, p. 764), according to whom in functional explanation, as the functional analysis
“absorbs more and more of the explanatory burden, the physical facts underlying the analyzing capacities
become less and less special to the analyzed system [...] this is why it is plausible to suppose that the capacity
of a person and of a machine to solve a certain problem might have substantially the same explanation …”.
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The computationalmechanistmay reply thatwhat distinguishes computational from
functional explanation is that computational explanation stops at the appropriate level
of abstraction—it gives all the structural detail at the appropriate level of explanation
for computational systems; while functional explanation does not—it could go on,
but it just refrains from doing so. Provide more structural detail, and computational
explanation is lost; provide more structural detail, and functional explanation gets
better—says the computational mechanist.

Alas, this move cannot help the mechanistic view of concrete computation. For the
reasons why functional analysis stops where it does are to a large extent analogous to
the ones that motivate appeal to computational explanation: capturing generalisations
that would otherwise be ignored, and making space for multiple realisability. It is not
true that functional explanation improves with more structural detail—one of its hall-
marks, multiple realisability, is lost in the process.6 While the functional explanation
of how my laptop computer works is generalisable to most other commercial laptops
available today, courtesy of its abstractness, adding more structural detail makes the
explanation less and less general, up to the point that it explains exclusively how my
laptop works (and perhaps only at this point in time). The same goes for functional
explanations of combustion engines, corkscrews, etc.

In brief, functional explanation has as much motivation for stopping where it does
as does computational explanation. Functional explanation also gives all the structural
detail (very little) that is relevant for its explanatory purposes—it also keeps to the
appropriate level of abstraction.

Functional explanation is suitable for those explananda, that, by their nature, involve
considerable abstraction from structural details, such as concrete computations, and
perhaps psychological capacities. Even though more structural detail can be pro-
vided, thereby unveiling the workings of more levels of specific mechanisms, doing
so amounts to losing multiple realisability and medium-independence. It amounts to
giving up on computational and psychological explanation, inasmuch as we fail to
stop at the relevant explanatory level for those kinds of phenomena.

Piccinini’s claim that computational explanation is mechanistic because it involves
structural properties of systems—degrees of freedom—turns out to be rather unin-
teresting and uninformative. Nearly all kinds of explanation, including functional
explanation, place structural constraints on systems in the weak and trivial sense pre-
sented above.7 Even the most abstract of explanations poses some extremely weak
structural constraints on the systems it seeks to explain. If that is all that is needed
to count as mechanistic, New Mechanism ends up being a rather trivial position.
The mechanist’s contribution to computational explanation would thus amount to the
disappointingly unsurprising reminder that functional and structural considerations
constrain each other, even in those cases, such as computational explanation, in which
such constraints are very weak.

At this point, there is very little reason to stick to the label ‘mechanistic’ in the
foregoing account of concrete computation. Indeed, calling it the ‘functional view’,

6 There has been in recent years a rich debate on whether multiple realisability, at least for what regards
cognitive states, is true. See Shapiro (2000).
7 See also Shapiro (2016), Sect. 4.
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as Piccinini did in the past, is perhaps fairer to its nature.8 Concrete computation
is individuated by functional properties, as described in Sect. 3, and computational
explanation is a type of functional explanation in which the only structural constraint
on the realising system is that it have the appropriate degrees of freedom.

Even if we accept the conclusion that computational explanation and individuation
are functional, contra Piccinini and other computational mechanists, I believe that
there is a different, and much more significant role to be played by the appeal to
mechanism in a theory of concrete computation.

6 Computational systems as mechanisms

I suggest that the properway of seeing themechanistic view is as a hypothesis about the
nature of those physical systems that are able to implement computations in a robust,
non-trivial way. The role of mechanism in the mechanistic view of computation is to
provide part of the connexion between abstract computation and world that a theory
of concrete computation must deliver. The fact that providing some structural detail
is part and parcel of mechanistic explanation—the main motivation for the worries
examined above—poses no challenge to the view once it is seen in the correct light.

Computation is individuated by functional considerations—it is the capacity to go
from inputs to outputs according to rules, which, as we have seen, do place structural
constraints, albeit rather weak ones, on the realising physical system. Computational
systems are physical systems that feature this capacity—or more precisely, that have
this teleological function. What the appeal to mechanism gives us is part of the story
of how computation can take place in the physical world.

The mechanistic view of concrete computation is best seen as a hypothesis about
those systems in the world that actually perform computations—the hypothesis being
that such systems are teleofunctional mechanisms. According to the mechanistic view,
those physical systems in the world that perform computations, and that therefore
can be explained computationally, are tokens of a specific type of teleofunctional
mechanism.

Therefore, the amended version of the mechanistic view of concrete computation
that I propose has it that computation in physical systems consists in:

1. Manipulation of medium-independent vehicles according to a rule sensitive only
to their degrees of freedom.

2. The medium-independent vehicles are functional components of a teleofunctional
mechanism.9

3. The manipulations that vehicles undergo are activities internal to a teleofunctional
mechanism.

4. It is one of the teleological functions of the teleofunctional mechanism to carry
out 1.

8 See Piccinini (2007, 2008). See also Fresco (2014).
9 There need be no one-to-one mapping between functionally-individuated vehicles and structural compo-
nents.
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Note that this is a functional characterisation of concrete computation, despite the
appeal to mechanism. It provides very little structural detail, as functional characteri-
sations typically do—it is silent on the physical nature of vehicles and the ways they
are manipulated, preserving thereby their medium-independence. However, it makes
clear the role that mechanism should play in the account. What makes computational
explanation mechanistic is the suggestion that physical computational systems are
mechanisms, towhich, in consequence,mechanistic explanation appliesmost suitably.
These systems can be mechanistically decomposed in light of their functionally-
individuated capacity to perform computations.

There seems to be a tension in the foregoing, however. Computational explanation
is both functional, as I have argued above, and mechanistic in a non-trivial way, as
I have just claimed. How can this be so? To make sense of this, a further distinc-
tion must be introduced: that between computational individuation and computational
implementation.

Computational systems and their states are individuated functionally, in a medium-
independent way, as above. But there is the further question of how a particular
computational system implements that functional architecture. The answer to this
question cannot be in medium-independent terms.

Computational explanation may be seen as answering questions such as: how
does system S compute function f ? The answer to this question need only involve
functionally-individuated states of the system—inputs, processors that follow rules
of manipulation stored in memory registers, outputs, and so on. This type of expla-
nation fully preserves multiple realisability and medium-independence. A variety of
mechanisms, constituted by wildly different kinds of structural components, can be
functionally decomposed in the sameway—provided theyhave the appropriate degrees
of freedom.

Computational explanation may also be seen as answering questions such as: how
does system S implement the functional profile for the computation of function f ? In
this case, the answerwill involve detail about the physical constitution and organisation
of the system. How are inputs and outputs physically implemented? How does the
processor manipulate inputs physically characterised? In order to explain how an
electronic computer implements themathematical function of addition, an explanation
in terms of voltages, electronic gates, chips, and hard disks will be called for. Such an
explanation will not be medium-independent, for the question cannot be answered in
a medium-independent way.

In this latter case we are interested in computational implementation, for which
an explanation in terms of physical constituents is required. The explanation of how
a valve computer implements addition will be importantly different from the answer
given to the same question asked about a transistor computer. This kind of explana-
tion may not be generalisable even beyond the specific system under investigation (or
perhaps rather the type of system—a Compaq Presario computer has structural com-
ponents that are different from the ones present in a Lenovo ThinkPad, or an Apple
MacBook computer10).

10 I will not be concerned with the appropriate level of type-individuation here. The scope of implementa-
tional explanations of this kind will hinge on how we type-individuate implementations.
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Computational explanation is functional because computational states and pro-
cesses are functionally individuated; and it is mechanistic because those functionally-
individuated states and processes happen to be realised by mechanisms, to which an
implementationalmechanistic explanation applies. These shouldnot be seen as alterna-
tives. Both kinds of explanationmay deserve to be called ‘computational explanation’,
as long as we are clear on what type of questions those explanations are answering,
i.e. about individuation or implementation. Moreover, though both kinds of explana-
tion can stand by themselves, each answering a different question, they must come
together in offering the two complementary pieces of a theory of concrete computa-
tion. In order to explain how concrete computation is possible, how physical systems
are able to compute, both types of explanation are needed. We need to individuate
computation functionally, and we must then show how those individuated states and
processes are realised in the physical world in each case. For a theory of concrete com-
putation to be satisfying, both individuation and implementational questions must be
addressed.11 The appeal to mechanism, as we have seen, plays a role in answering
both, though in different ways: as part of the individuation conditions in the former;
as allowing mechanistic implementational explanations in the latter.12

Haimovici’s (2013) dilemma does not grab a hold because the computational expla-
nations that are purely functional are different in kind to the computational explanations
that require structural detail. The latter are implementational explanations, for which
the medium-independent nature of computation must be put aside. Implementational
explanations are not in competition with more abstract medium-independent expla-
nations. The dilemma she puts forward is a false one. Similarly, Piccinini’s reply is
misguided, as it accepts the terms set by Haimovici, and leads to the collapse of the
mechanistic view into a purely functional one.

A properly understoodmechanistic view insists that computational implementation
involves components and activities of mechanisms that lead to and enable the capacity
to perform concrete computations. Structural detail can be provided here with no risk,
since this is not the dimension inwhich considerations aboutmedium-independence or
multiple realisability are of relevance. Implementations are not medium-independent,
they must involve things such as silicon, neurons, valves, beer tins, or what have you.

Contra Piccinini, computational explanation is not mechanistic because it also
places structural constraints, albeit rather weak ones, on the physical systems target of
the explanatory project—this is true of many (maybe most) kinds of explanation, even
at high levels of abstraction. Rather, the proper way of seeing the mechanistic view
is as claiming that, since concrete computation pertains to physical systems that are
types of mechanism, mechanistic explanation provides the implementational story.

In comparison with competing views of computational explanation, the mechanis-
tic proposal places much more stringent constraints on which systems in the world
count as computational. The appeal to mechanism in the mechanistic view plays an

11 The need for an implementational story may be a special feature of endeavours that rely heavily on
functional considerations. There is a worry about how to make computations, or psychological states,
features of physical systems. There are no such worries in other fields, such as biology—no puzzles about
making ‘abstract’ biology concrete.
12 I thank an anonymous referee for prompting me to clarify this point.
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analogous role to mapping relations in the simple mapping account put forward by
Putnam (1988), and to causal topology in Chalmers’ (2011) causal account: it pro-
vides the bridge between functional computational individuation, and implementation
in physical systems. But it provides further constraints than its competitors: it includes
mapping as well as causal considerations, into a richer, more constrained, picture. The
mechanistic view requires that physical computational systems not only have physical
states mappable onto abstract computational states, as per the simple mapping view, or
that they be causal systems, as per the causal view. They must be more than that, they
must be mechanisms—organised systems with relatively clear boundaries, decompos-
able into physical parts that play a role in bringing about the overall behaviour of the
system; and they must be teleofunctional mechanisms with the teleological function
of performing computations.

In sum, concrete computational systems are physical systems that fulfil the four-way
functional characterisation above. Computational explanations in these medium-
independent terms are perfectly adequate. However, given their abstractness—with
its attached explanatory virtues—they do not go all the way in explaining how com-
putational systems are realised in mechanisms. The medium-independent functional
explanation allows for great generality and does justice to the multiple realisabil-
ity of concrete computation. But the implementational explanation explains how a
specific (type of) mechanism, given its particular structural components, their activ-
ities and organisation, realises the functional characterisation—thus bridging that
abstract characterisation with the nitty-gritty details of its specific realisations in the
world.

The foregoing picture would be lacking in motivation were there no reasons for
claiming that physical computational systems happen to be teleofunctional mecha-
nisms. Fortunately, such justification comes independently from the neo-mechanist
framework. Delimiting the domain of physical computational systems to those of
a specific kind of teleofunctional mechanism helps to avoid the pitfalls that have
plagued competing theories of concrete computation. Pancomputationalism—the view
that all or most physical systems are computational—is avoided, and the recourse to
teleological functions introduces a normative dimension useful in accounting for mis-
computation.13

In conclusion, computational explanation ismechanistic because, if themechanistic
view of concrete computation is correct, physical systems that compute are mecha-
nisms, to which a mechanistic implementational explanation is most suitable. This
does not in any way impinge on the medium-independence of computational individ-
uation, nor on its functional nature. The arguments in Haimovici (2013), as well as
the reply offered by Piccinini (2015), are beside the point. Mechanistic explanation
provides structural detail about computational mechanisms because this is needed
to explain how those physical systems implement computations, thereby helping to
explain how computation in physical systems is possible.

13 There are other advantages that I do not mention here. See Piccinini (2007, 2015), Milkowski (2013),
and Fresco (2014).
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Table 1 Device D’s
input–output table

Input 1 (V) Input 2 (V) Output (V)

0–5 0–5 0–5

0–5 5–10 0–5

5–10 0–5 0–5

5–10 5–10 5–10

7 Computational individuation and the multiplicity of computations

The version of the mechanistic view of concrete computation I propose leads to other
welcome results. In this final section, I argue that my view helps solve a central issue
that has been at the centre of debate in philosophy of computing: the problem of the
multiplicity of computations.14

As Shagrir (2001, 2012) and Sprevak (2010) purport to show, most of the theories
of computational individuation on offer, including the mechanistic view, do not have
the tools to draw distinctions central to the practices of computer science. These
authors argue that semantic constraints on computational individuation are needed.
The argument from the multiplicity of computations is perhaps the most powerful
argument in favour of semantic views of computational individuation against non-
semantic views, such as the mechanistic one.

I will focus on Sprevak’s version of the argument for expository reasons, as it is
considerably simpler than Shagrir’s version. Consider an electronic computational
device D that takes two voltage values as inputs and produces one voltage value as
output according to the following input–output table (in terms of ranges of voltage
values) (Table 1).

The device seems to be working as a paradigmatic logic gate. Logic gates are basic
computational building blocks that compute logical functions such asAND,OR,NOR,
NAND, etc. At first glance, D seems to be an unequivocal AND-gate. Take voltage
range 0–5V to stand for ’False’, and voltage range 5–10V for ’True’, and we get the
truth table of conjunction.

However, as Sprevak points out, if we switch semantic contents, that is, if we take
the range 0–5V to stand for ’True’ and range 5–10V for ’False’, we get an OR-
gate—the truth table we end up with is the one for disjunction. Without a decision on
what the voltage levels stand for, or represent, so Sprevak argues, there is no way of
telling whether D is an AND-gate or an OR-gate, or both—it seems to be simultane-
ously computing both logical functions. 15 Since logic gates are at the basis not only
of theorising in computer science, but also in the engineering of actual computers,
semantic properties seem to be required for adequate computational individuation,
contra theories, such as the mechanistic view, that rely completely on non-semantic
properties.

14 The multiplicity of computations problem can be seen as one of the possible arguments leading to a
deeper issue, which Fresco et al. (forthcoming) label the ‘indeterminacy of computation’ problem.
15 This is also true of other logic gates, which, due to this property, are dubbed dual gates.
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Piccinini (2008) defends the mechanistic view against the argument from the multi-
plicity of computations. He argues that even thoughD implements more than one com-
putation, a wide understanding of systemic functions, reaching to the immediate con-
text of the computational device (and of the overall mechanism), suffices to determine
what the explanatorily relevant computation being performed is. Though this answer
has some appeal to it, it concedes too much. It concedes that D implements more than
one computation, that is, that there is multiplicity of computations—a concession that,
I believe, should not be granted.Moreover, it is not clear that the immediate contextwill
be able to dissolve themultiplicity that Shagrir and Sprevak point out, evenwhen taken
in terms of explanatory relevance. For instance, fully dual computational systems, i.e.
in which all logic gates, as well as the whole system, can be consistently interpreted
in two different ways, are possible.16 Though improbable, these systems spell trouble
for Piccinini’s appeal to wide functional individuation, as in their case, this seems
insufficient to get rid of multiple computations—multiplicity survives even taking the
immediate context of the device and of the overall mechanism into consideration.

Dewhurst (2016) has recently put forward what I see as a more promising line of
reply. In a nutshell, he accepts that whether devices like D compute a logical func-
tion or its dual remains indeterminate by the mechanistic view’s lights. However, he
claims that this should not worry the computational mechanist, for computational
individuation is done at the level of the physical description of the device. Table 1 is
all that is needed to individuate the computational device, no labelling nor ascription
of semantic or syntactic properties is required. AND- and OR-gates are equivalent
insofar as computational individuation is concerned. They compute the same func-
tion from physical inputs to physical outputs—the patterns of voltage transformation
are the same. Contra Shagrir, Sprevak, and Piccinini, there is no indeterminacy of
computational individuation caused by multiple computations being simultaneously
implemented. The indeterminacy lies at a different level, the logical one, which is
outside the purview of a theory of individuation proper.

This does not mean that individuation in terms of logical functions is uninteresting.
Quite on the contrary, it is relevant for many applications in computer science, both
in theory and in engineering. But individuation by logical function is over and above
computational individuation, and may well rely on wide functions or semantic prop-
erties. Computational individuation is more basic, and non-semantic—it is done at the
physical level of the mechanism. Therefore, the charge that Shagrir and Sprevak move
against the mechanistic view is misguided. It is true that the mechanistic view does not
distinguish AND- from OR-gates (as well as other dual gates), but this distinction is
not at the level of computational individuation, for which only the physical patterns of
transformation are relevant. Two devicesmay perform the same computation, but carry
out different logical functions depending on contextual and semantic considerations.
Computational individuation and logical individuation should be kept distinct. Non-
semantic properties suffice for the former, while they might not suffice for the latter.

Admittedly, this picture suffers from a serious shortcoming. It makes computational
equivalence impossible, thus also threatening the closely related idea that computa-

16 I thank Oron Shagrir and Nir Fresco for pointing this out to me.
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tions are multiply realisable. As Dewhurst (2016) recognises, “the physical structure
of two computing mechanisms is always going to be distinct, and it is unclear whether
we can draw any non-arbitrary boundary between the structures that are relevant or
irrelevant to computational individuation”. It thereby follows that no two computa-
tional devices are equivalent, for there will always be physical differences between
them that are difficult to rule out as computationally irrelevant in a principled way. But
even if we could distinguish the structural properties that are computationally relevant
from those that are not, computational equivalence would still be excessively fine-
grained, for the physical description of the system is too fine-grained for computational
individuation.

To illustrate, take two devicesD1 andD2. They work in an analogous way to device
D, but with one important difference: for engineering reasons, they have ‘cushion’
intervals between the voltage ranges relevant for determining the output. Voltages that
fall inside these cushion intervals have a ‘null’ value, and when the device has one
such voltage as one of the inputs, it produces a null value, or no output at all. Suppose
that D1’s cushion interval is 4–5V, while D2’s is 5–6V. It follows from Dewhurst’s
proposal that these two devices are not computationally equivalent, for in the case of
D1 the acceptable inputs and outputs are voltages in ranges 0–4 and 5–10V, while in
D2’s case these are voltages in ranges 0–5 and 6–10V.17 The two devices have different
physical descriptions, but it seems overly strong to argue that it follows from this that
they are not computationally equivalent. Indeed, they have the same number of input
and output types (even counting cushion ones), and the former are transformed into
the latter by analogous rules of transformation—despite the fact that the processors
are sensitive to different voltage ranges.

Similarly, suppose that instead of having different cushion intervals, D1 and D2
were identical if not for being subject to different degrees of noise. Noise makes D1’s
behaviour unreliable when inputs fall within the range 4.5–5.5V, say, whilst noise
interferes with the functioning of D2 when inputs fall within the 4.9–5.1V range.
Individuating computation at the physical level would have it that D1 and D2 are not
computationally equivalent, despite their striking similarity.

In sum, the physical level is too fine-grained to make computational equivalence
possible. If we want to save the notion, as we should given its explanatory importance
in computer and cognitive science, we need a coarser-grainedmethod for individuating
computation (Fresco et al. 2016).18

17 I am indebted to Jack Copeland, Nir Fresco, and Oron Shagrir for raising and discussing the points in
this and the next paragraph.
18 Fresco et al. (2016) propose a coarser-grained method for individuating computation that goes some
way in the direction I recommend. However, there are fundamental differences between our approaches:
they focus on coarse physically-individuated properties, in particular intervals of voltage values grouped
into high and low voltages, instead of medium-independent functionally-individuated properties, as in my
view; and they fail to draw the crucial distinction between computational and logical equivalence, which
leads them to claim that even such coarser-grained individuation methods, as the one I propose, fail to solve
the problem of the multiplicity of computations. As I argue, following Dewhurst (2016), once the latter
distinction is properly understood, the multiplicity of computations problem becomes considerably more
tractable.
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Table 2 Input–output table of
D1 and D2’s functional
equivalence classes

Input 1 Input 2 Output

EC1 EC1 EC1

EC1 EC2 EC1

EC2 EC1 EC1

EC2 EC2 EC2

The version of themechanistic view of concrete computation that I defend in Sect. 6
has the tools to improve over Dewhurst’s account in allowing for a meaningful notion
of computational equivalencewhile keeping to the spirit of his solution to the argument
from the multiplicity of computations.

In my view, the physical level of description is the wrong one to focus on in order to
get adequate, determinate, computational individuation—it is too fine-grained to allow
for a useful notion of computational equivalence. The physical description gives us the
implementational details, but computational individuation takes place at the functional
level, inwhich the only structural considerations at play are having appropriate degrees
of freedom. There is a meaningful notion of computational equivalence available at
this level of description.

Take once again D1 and D2 and their different cushion intervals (or noise levels).
While the physical description of the two devices differ, at the functional level their
description is identical. The devices respond to two distinct equivalence classes of
acceptable physical inputs (voltage ranges), EC1 and EC2, and produce the same
equivalence classes of physical outputs (voltage ranges) given the inputs.

The labels are fully arbitrary and introduced only for ease of exposition. How we
label the equivalence classes is irrelevant to computational individuation; what matters
is the overall functional profile that defines them. Equivalence classes are defined by
input values that lead to uniform behaviour of the whole device—the differences in
value to which the device is sensitive and which are uniformly transformed into new
values. For D1, EC1 is the range 0–4V and EC2 is the range 5–10V, whilst for D2
EC1 is the range 0–5V and EC2 is the range 6–10V.19 The input–output tables of D1
and D2, when put in terms of equivalence classes, are identical (Table 2).

The physical details of the two devices can be glossed over—structural details
come in only when we are interested in the particular implementational details of a
computational device—as it is the functional description which is of relevance for
computational individuation.20 It follows thatD1 andD2 are computationally equiva-

19 Alternatively, one could consider there to be three equivalence classes, including the cushion intervals as
an equivalence class. I believe this would be the more precise way to go, but I am ignoring this complication
for ease of exposition.
20 In consequence, devices that differ in the number of stable states (e.g. two vs. three), as in Shagrir’s
(2001) version of the argument from the multiplicity of computations, are never computationally equivalent
(Dewhurst 2016). They may nonetheless be logically equivalent, i.e. carry out the same logical function.
That is to say, a bi-stable and a tri-stable devicemay carry out the same logical function, and thus be logically
equivalent, despite not being computationally equivalent given their different functional profiles. Different
possible groupings of the devices’ stable states, as in Shagrir’s argument, are irrelevant to computational
individuation: given the different number of equivalence classes of physical states the two devices stabilise
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lent: the functional profile from input equivalence classes of physical states to output
equivalence classes of physical states is the same.

What those physical states consist in is irrelevant for computational individuation.
A hydraulic computational device D3 shares the same functional profile of D1 and
D2 if it is sensitive to—and responds uniformly and in the same way to—the same
number of equivalence classes of physical states. That those equivalence classes be of
ranges of water levels in tanks is interestingwhen it comes to implementational details,
but irrelevant for computational individuation. Thereby, computational equivalence is
possible even between systems that work by means of completely different physical
principles—and the multiple realisability of computation is preserved.

Indeterminacy of logical function computed still follows. Table 2 cannot determine
whether the devices are AND- or OR-gates (recall that the labels are purely arbitrary
and can be freely switched or changed). Computational individuation in the forego-
ing, as per Dewhurst’s account, leaves logical individuation indeterminate. This is
a welcome result, since, as Dewhurst convincingly argues, logical individuation is
at least one step above computational individuation. The mechanistic view of con-
crete computation should not therefore worry about the arguments from multiplicity
of computations put forward by Shagrir and Sprevak. What they point out is correct:
the mechanistic view does not have the tools to distinguish between dual logic gates.
However, such a feat is not something we should be asking of a theory of computa-
tional individuation, for computational individuation takes place below the level of
logical functions.

Where I part ways with Dewhurst is on what the appropriate level for computational
individuation is. He argues that it is the physical level that allows suitably to distinguish
between computational devices. But he has consequently to give up any useful notion
of computational equivalence. This is too high a price to pay. In contrast, I argue that
computational devices can be appropriately distinguished from each other, or found
to be equivalent in an informative way, by focusing on the functional level, in which
it is functional, rather than physical, structure that individuates computational states
and processes.

It may be objected that computational equivalence is impossible even when we
focus on the functional level, rather than the physical one.21 It may be argued that the
maximal functional profiles of twophysical systemswill always differ, and thereby that
they can never be computationally equivalent. I think that the foregoing account has the
means to avoid this objection. For recall that the functional decomposition of a phys-
ical system always takes place in light of a target capacity or teleological function—
in our case, the capacity to perform computations. Therefore, the functional decom-
position, and the resulting functional profiles of component computational devices,
do not include functional features that are irrelevant to the overall system’s capacity

Footnote 20 continued
on and are differentially sensitive to, they will always be functionally distinct according to the foregoing
account, and therefore not computationally equivalent. This, I take, is as it should be: given their different
functional profiles, those two devices will differ in their capacity to carry out logical and mathematical
functions—having a richer functional structure makes the tri-stable device considerably more versatile. I
thank two anonymous referees for prompting me to clarify this point.
21 I thank an anonymous referee and Nir Fresco for bringing this issue to my attention.
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to compute. Functional differences between devices which play no role in their gen-
eral computational capacities are thus excluded—e.g. because they are not relevant to
the regimented input–output transformations of equivalence classes of physical states
across the system. This makes so that devices that have different physical proper-
ties, such as D1, D2, and D3 above, are computationally equivalent, insofar as their
computationally-relevant functional profiles are the same.22

The foregoing proposal hinges on whether there are principled ways of carving
the functional structure of a computational device. This is analogous to Dewhurst’s
(2016) worry about principled ways of carving the (computationally) relevant physical
properties of a system; a worry that, he argues, runs through the whole neo-mechanist
framework, and is not a problem specific to the mechanistic view of concrete compu-
tation. Dewhurst suggests, following Piccinini, that such principles can be arrived at
only through choices dictated by our explanatory interests. Consequently, a degree of
observer-relativity must always be in place in mechanistic explanations.

While I agree that there is a crucial worry here, to which a suitable answer must be
provided, I believe that a theory of computational explanation has additional tools to
deal with it in comparison to other types of explanation tackled by New Mechanism.
For, as we have seen in Sects. 3 and 6, the mechanistic view of computation appeals to
teleofunctional mechanisms, i.e. mechanisms with teleological functions. Teleolog-
ical functions bestow, as it were, privileged, objective, capacities on teleofunctional
mechanisms and their components. Hence privileged observer-independent functional
and structural decompositions would be available for all teleofunctional mechanisms,
computational ones included.Whether this strategywill bear any fruit depends, though,
on whether there are objective teleological functions in the world—a question that lies
beyond the scope of this paper.

8 Concluding remarks

I have examined a challenge to the mutual consistency of the mechanistic view of
concrete computation and the overall neo-mechanistic framework to scientific expla-
nation. I argued that the challenge dissolves once we see the mechanistic view in
the proper way. The resulting theory of concrete computation fully deserves being
characterised as mechanistic, as it encompasses both functional individuation and
mechanistic implementational considerations. Finally, I showed that my proposal also
helps solve problems related to computational indeterminacy.

Acknowledgements I am indebted to Nicholas Shea, Nir Fresco, Oron Shagrir, two anonymous referees,
as well as Michael Pauen, Juan R. Loaiza, and the other participants of the Philosophy of Mind colloquium
at the Berlin School of Mind and Brain for helpful discussion of this material.

22 Once again, devices that differ in the number of their stable states do not count as computationally
equivalent even though theymay be able to carry out the same logical andmathematical functions. This is so
because their maximal computationally-relevant functional profiles differ, since the number of equivalence
classes of physical states they are sensitive to is different—regardless ofwhether those functional differences
are exploited or else by the overall computational system in specific computations.
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