THE INTEGRALS IN GRADSHTEYN AND RHYZIK. PART 2:
ELEMENTARY LOGARITHMIC INTEGRALS

VICTOR H. MOLL

ABSTRACT. We describe methods to evaluate elementary logarithmic integrals.
The integrand is the product of a rational function and a linear polynomial in
Inz.

1. INTRODUCTION

The table of integrals by I. M. Gradshteyn and I. M. Rhyzik [3] contains a large
selection of definite integrals of the form

(1.1) /b R(z) In™ x dz,

where R(z) is a rational function, a, b € RT and m € N. We call integrals of
the form (1.1) elementary logarithmic integrals. The goal of this note is to present
methods to evaluate them. We may assume that a = 0 using

b b a
(1.2) / R(z)In™ zdx = / R(z) In™ xdx — / R(z) In™ x dx.
a 0 0

Section 2 describes the situation when R is a polynomial. Section 3 presents
the case in which the rational function has a single simple pole. Finally section 4
considers the case of multiple poles.

2. POLYNOMIALS EXAMPLES

The first example considered here is
b
(2.1) I(P;b,m) ::/ P(z) n™ z dz,
0

where P is a polynomial. This can be evaluated in elementary terms. Indeed,
I(P;b,m) is a linear combination of

b
(2.2) / 7 In™ z d,
0
and the change of variables x = bt yields
b M m 1
(2.3) / 2 In™ xdr = b”lz (k) lnm_kb/ 7 In* ¢ dt.
0 0

k=0
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The last integral evaluates to (—1)¥k!/(j+1)**! either an easy induction argument
or by the change of variables t = e~* that gives it as a value of the gamma function.

Theorem 2.1. Let P(z) be a polynomial given by

P
(2.4) P(z) = Zaja:j.
§=0
Then
(2.5)
’ S kpy (™ k i G
I(P;b,m ::/ Plz)In™ xdx = -1 k!( )lnm_ b ;.
( ) 0 ( ) kZ:O( ) k = J(]+1)k+1

This expression shows that I(P;b,m) is a linear combination of b’ In* b, with 1 <
j<1+p(=1+deg(P)) and 0 < k < m.

3. LINEAR DENOMINATORS

We now consider the integral

Inzd
(3.1) f(b;r) :z/0 xi:

for b, r > 0. This corresponds to the case in which the rational function in (1.1)
has a single simple pole.
The change of variables x = rt produces

" Inzdx /T Intdt
(3.2) /0 o :1nr1n(1—|—b/7‘)—|—/0 T
Therefore, it suffices to consider the function
b
(3.3 o= [ 157
as we have
(3.4) f;r)y=1nr In <1—|—§> +g<§> .

Before we present a discussion of the function g, we describe some elementary
consequences of (3.2).

Elementary examples. The special case r = b in (3.2) yields

b 1
d Intdt
(3.5) / < :1n21nb+/ nrar
0 X + b 0 1 —+ t
Expanding 1/(1 + t) as a geometric series, we obtain
1 2
Intdt 1 T
: = —2((2) = ——.
(36) /0 R MO A

This appears as 4.231.1 in [3]. Differentiating (3.2) with respect to r produces

(3.7) /b Inz da __1n(b+r)+1r1_r+ blnb
0

(x+7)? r ror(r+b)’
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As b, r — 1 we obtain
Y nzdx
) — = —In2.
(3.8) /O T =l

This appears as 4.231.6 in [3]. On the other hand, as b — oo we recover 4.231.5
in [3]:

(3.9) /OO dnrde ot
o (x+7r)? T
The polylogarithm function. The evaluation of the integral
b
Intdt
3.10 b) := _—
(3.10) o= [ 157

requires the transcendental function
(3.11) Lin(2) ==Y =
k=1

This is the polylogarithm function and it has also appeared in [5] in our discussion
of the family

© In"zdx
3.12 hp(a) == —_—, eR,a>0.
(3.12) (a) /0 (z —1)(x +a) " “
In the current context we have n = 2 and we are dealing with the dilogarithm
function: Lis(x).

Lemma 3.1. The function ¢(b) is given by

(3.13) g(b) =Inb In(1 + b) + Liy(-Dd).
Proof. The change of variables ¢ = bs yields
1
Insds
14 =lInbIn(1 .
(3.14) g(b) =1Inbd In( +b)+/0 T bs
Expanding the integrand in a geometric series yields the final identity. O
Theorem 3.2. Let b, » > 0. Then
b
1
(3.15) / nedr :lnbln<b+r)+Lig <—9).
0o T+r T T
Corollary 3.3. Let b > 0. Then
b 2
Inxdz ™
3.16 =In2Inb— —.
(3.16) /0 P T
Proof. Let r — b in Theorem 3.2 and use
) e (_1)11 7'(2
1 Lio(—1) = =——.
(3.17) p(-1) =) —; 5

n=1

O

The expression in Theorem 3.2 and the method of partial fractions gives the
explicit evaluation of elementary logarithmic integrals where the rational function
has simple poles. For example:
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Corollary 3.4. Let 0 < a < b and 71 # ro € RT. Then, with r = r5 — r1, we have
b

/ % = [hlbln <r2(b+r1)) +Ina In <M>} +
o (@+r)(@+r2) ri(b+12) ra(a+r1)

() () () ()

The special case a = r; and b = ry is of interest:

Sl= 3=

Corollary 3.5. Let 0 < a < b. Then

b
/ (x _ilz:(ix_,_ b) =3 i a [In(ad) In(a + b) — In21n(adb) — 21na Ind]

+ bia [—2Lig(—1)+Li2 (—Z) + Liy (—%)] :

The integral in Corollary 3.5 appears as 4.232.1 in [3]. An interesting problem
is to derive 4.232.2

(3.18)

/°° Inzdx _lngu—ln2v
0 (z4+u)(z+v)  2u—0)
directly from Corollary 3.5.
We now present an elementary evaluation of this integral and obtain from it an
identity of Euler. We prove that

/b Inzdx _ Inab 1n(a—i—b)Q
W (@+a)(z+b)  20b—a) dab

(3.19)

Proof. The partial fraction decomposition

1 B 1 11
(x+a)(z+b)  b—a\z+a x+b)’
reduces the problem to the evaluation of

b b
Inzd Inzd
11:/ nrer andIQ:/ ey
e THa o T+

The change of variables x = at gives, with ¢ = b/a,

I - /ln(at) dt
1

1+t
¢ dt ¢ Int
na 1+t+/1 1+t
¢ Int
= Ilnaln(l+c¢) — 1na1n2—|—/ Lalt
Similarly,
e Int

I, = Inbln2—-Inbln(1+1 dt.
2 nbln nbln(l + /c)—i—/1 11
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Therefore
L -1, = Inaln(l+¢)+nbln(l+1/¢c)—In2lna—1n2Ind+
° Int ' Int
Ldt_/ nt
L 1+t el tt

Let s = 1/t in the second integral to get

1 1
/ Int g - / Ins s
1 1+t . s(1+9)

Replacing in the expression for I; — I yields
IL—I, = Ina(ln(a+b)—lna—In2)—Inb(In2—In(a+b) +1Ind) +

“Int
— dt.
4 /1 t

The last integral can now be evaluated by elementary means to produced the result.
O

Now comparing the two evaluation of the integral in Corollary 3.5 produces an
identity for the dilogarithm function.

Corollary 3.6. The dilogarithm function satisfies

7T2
(3.20) Lig(—2) + Liy <—§) =% %1112(2).

This is the first of many interesting functional equations satisfied by the poly-
logarithm functions. It was established by L. Euler in 1768. The reader will find
in [4] a nice description of them.

4. A SINGLE MULTIPLE POLE

In this section we consider the evaluation of

b
Inxdx
4.1 n(b,7) = —_—
(1) fulhr) = [ 2
This corresponds to the elementary rational integrals with a single pole (at x = —r).

The change of variables x = rt yields

_ Inr (b+7r)r=t —pn-t 1
Fu(b7) = (n—1)rn—1 [ (b+r)n—1 ] + rn—1 fin(b/7),
where
b Intdt

We first establish a recurrence for h,,.

Theorem 4.1. Let n > 2 and b > 0. Then h,, satisfies the recurrence

n—2 blnb 1—(1+bn2

13) - n®) = 7 O ¥ E T e D @ o
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Proof. Start with
b b
1+1¢)—t] Intdt tIntdt
hn(b):/ [A+1)—1 :hn_l(b)—/ fntdt
0 (L+1t)» o (1+)»
Integrate by parts in the last integral, with «w = ¢ Int and dv = dt/(1 + )" to
produce the result. O

The initial condition for this recurrence is obtained from the value

(4.4) ha(b) = Inb— In(1 +b).

1+
This expression follows by a direct integration by parts in

b
(4.5) ha(b) = —lim [ Int %(1 +t)~tat.

—
60E

The first few values of h,(b) suggest the introduction of the function
(4.6) 4 () = (1 + )" ha (1),
for n > 2. For example,
(4.7) g2(b) =blnb — (1 +b) In(1 + b).

The recurrence for h,, yields one for g,.

Corollary 4.2. The recurrence

(n—2) blnb  (1+b)[(1+b)"2—1]

(4.8) gn(b) = (n—1) (14 b)gn—1(b) + n—1_ (n—1)(n—2) ’

holds for n > 2.

Corollary 4.2 establishes the existence of functions X,,(b), Y;,(b) and Z,,(b), such
that

(4.9) qn(b) = X, (b) Inb+ Y, (b) In(1 +b) + Z,(b).
The recurrence (4.8) produces explicit expression for each of these parts.

Proposition 4.3. Let n > 2 and b > 0. Then

(1+b) ' -1
4.1 Xp(b) = —F"—-—.
(110) ()=
Proof. The function X, satisfies the recurrence
n—2 b
4.11 Xn(b) = 14+0)Xn-1(b) + ——.
(111) (6) = = (14 D)X 1 (6) + ——
The initial condition is X2(b) = b. The result is now easily established by induction.
O
Proposition 4.4. Let n > 2 and b > 0. Then
(1+b)nt
4.12 Y,(b) = ———.
(112) () =

Proof. The function Y,, satisfies the recurrence
-2
(4.13) Ya(b) = =S (L4 D)Y,1 b).

This recurrence and the initial condition Y2(b) = —(1 4+ b), yield the result. O
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It remains to identify the function Z,(b). It satisfies the recurrence

n—2 (14+0) [(1+b)"2—1]
4.14 Zn(b) = 1+0)Z,-1(b) — .
(414) 0) = =g (1 D) Zna(b) ~ oL
This recurrence and the initial condition Z2(b) = 0 suggest the definition
4.1 T,(0b) = ——7F———=.
(4.15) (®) b(1+b)

Lemma 4.5. The function T, (b) is a polynomial of degree n — 3 with positive
integer coefficients.

Proof. The function T,,(b) satisfies the recurrence

1+b)" 2 -1
(4.16) To(b) = (n — 2)(1 + BT (b) + (n — 3)! [%]
Now simply observe that the right hand side is a polynomial in b. O

Properties of the polynomial T3, (b) will be described in future publications. We
now simply observe that its coefficients are unimodal. Recall that a polynomial

(4.17) P(b) = Z cpbt
k=0

is called unimodal if there is an index n*, such that c¢x < cx41 for 0 < k£ < n* and
cr > cp41 for n* < k < n. That is, the sequence of coefficients of P, has a single
peak. Unimodal polynomials appear in many different branches of Mathematics.
The reader will find in [2] and [6] information about this property. We now use the
result of [1] to establish the unimodality of T,.

Theorem 4.6. Suppose ¢, > 0 is a nondecreasing sequence. Then P(x + 1) is
unimodal.

Therefore we consider the polynomial S, (b) := T3, (b — 1). It satisfies the recur-
rence

n—3
(4.18) Sn(b) =b(n —2)S,_1(b) + (n—3)! Y _b".
r=0
Now write
n—3
(419) S’n,(b) = Z Ck,nbkv
k=0

and conclude that ¢g , = (n — 3)! and

(4.20) Chmn =N —2)cg—1,n—1+ (n—3),
from which it follows that

(4.21) Cht1n — Chn = (M — 2) [Chn—1 — Ck—1,n—1] -

We conclude that ¢, is a nondecreasing sequence.

Theorem 4.7. The polynomial T,,(b) is unimodal.
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Conclusions. We have given explicit formulas for integrals of the form

(4.22) /b R(z) Inzdx,

where R is a rational function with real poles. Future reports will describe the case
of higher powers

b
(4.23) / R(z) In™ x dx,
as well as the case of complex poles, based on integrals of the form
b
Inxdzx
4.24 w(a,r) = —_—
( ) Ch(a,r) /0 (22 + r2)n
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