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In the hemodialysis domain, we are implementing a case-based, closed-loop architecture aimed at configuring
temporal abstractions (TA), which will be applied to time series data. The advantage of a case-based approach
is the one of “quickly” obtaining a suitable TA parameter configuration, simply by looking at the most similar
already configured case, where configured cases are indexed by means of contextual information. The retrieved
configuration, together with the time series data, is then used as an input to a TA processing module, able to provide
a set of qualitative states, trends, and significant combinations of both as an output. TA processing results can
finally be evaluated, possibly leading to a (human-supervized) reorganization/revision of the case base content, to
ameliorate future TA configuration sessions—thus closing the loop. The work is being integrated with RHENE, a
system for case-based retrieval in hemodialysis, able to work both on raw time series data and on preprocessed (by
means of TA) ones.
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1. INTRODUCTION

Parameter configuration is a critical issue in many artificial intelligence (AI) processes,
especially when they are applied to complex domains like medical ones.

The temporal abstractions (TA) (Shahar 1997; Bellazzi, Larizza, and Riva 1998) method-
ology, in particular, is an AI process that requires a nontrivial configuration phase, because
parameter values highly influence TA output.

TA are resorted to map large amounts of temporal information, such as the ones embed-
ded in a time series, to a compact representation, able not only to summarize the original
data themselves, but also to abstract and highlight meaningful behaviors in them. The basic
principle of TA methods is to move from a point-based to an interval-based representation
of the data, where: (i) the input points are the elements of the discretized time series; (ii)
the output intervals (also called episodes henceforth) aggregate adjacent points sharing a
common behavior, persistent over time. More precisely, the method described above should
be referred to as basic TA (Bellazzi et al. 1998). Basic abstractions can be further subdi-
vided into state TA and trend TA. State TA are used to extract episodes associated with
qualitative levels of the monitored feature, e.g., low, normal, high values; trend TA are ex-
ploited to detect specific patterns, such as increase, decrease or stability, in the time series.
Complex TA (Bellazzi et al. 1998), on the other hand, aggregate two series of episodes into
a set of higher level episodes (i.e., they abstract output intervals over precalculated input
intervals). In particular, they are used to search for specific temporal relationships between
episodes that can be generated from a basic abstraction or from other complex abstrac-
tions. The relation between time intervals can be any of the temporal relations defined by
Allen (Allen 1984). This kind of TA can be exploited to extract patterns that depend on the
course of several features, or to detect patterns of complex shapes (e.g., a peak) in a single
feature.

TA configuration usually demands for domain knowledge, which could be unavailable,
or whose elicitation, exploitation and maintenance could be too time-consuming in practice.
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Michel 11 I-15121 Alessandria, Italy; e-mail: stefania.montani@unipmn.it

C© 2009 The Authors. Journal Compilation C© 2009 Wiley Periodicals, Inc.



236 COMPUTATIONAL INTELLIGENCE

In several applications, however, the use of knowledge about the contextual situation under
examination represents an appropriate means for parameter setting; the main difficulty in
these cases is the one of selecting a criterion to find the most suitable configuration from a
large number of possible ones.

If we define a case as a set of 〈feature, value〉 pairs keeping contextual information,
and store the suggested parameter configuration as the corresponding solution, case-based
reasoning (CBR) (Kolodner 1993; Aamodt and Plaza 1994) can be resorted to fulfill this
task. The main advantage of a CBR approach obviously stands in the fact that the knowledge
acquisition process for configuring parameters is made easier by the use of already configured
cases, retrieved because similar to the current input situation (Portinale et al. 2006; Montani
2008).

In this work, we propose a case-based architecture for parameter configuration of TA, to
be applied to time series data, in the domain of End-Stage Renal Disease (ESRD). ESRD is a
severe chronic condition that corresponds to the final stage of kidney failure. Without medical
intervention, ESRD leads to death. Hemodialysis is the most widely used treatment method
for ESRD; it relies on an electromechanical device, called hemodialyzer, which thanks to an
extracorporal blood circuit, is able to clear the patient’s blood from catabolites, to reestablish
acid–base equilibrium and to remove water in excess. On average, hemodialysis patients are
treated for 4 h three times a week. Each single treatment is called a hemodialysis session.
Hemodialyzers typically allow users to collect several variables during a session, most of
that are in the form of time series.

In our case-based approach, a suitable TA parameter configuration for an ESRD patient
time series is obtained by looking at the most similar already configured case, where config-
ured cases are indexed by means of contextual information (i.e., patient’s and hemodialysis
session’s characteristics). The retrieved configuration, together with the time series data,
is then used as an input to a TA processing module, able to provide a set of qualitative
states, trends, and significant combinations of both as an output. TA processing results can
finally be evaluated, possibly leading to a (human-supervized) reorganization/revision of the
case base content, to improve the output of future TA configuration sessions. The configura-
tion/processing/revision activities, are therefore, carried on within a closed-loop architecture,
and realized in a semiautomatic fashion.

In the latest years we have also developed a system, called RHENE, able to retrieve
hemodialysis cases, which can then be visually analyzed by physicians, or provided as an
input to an automatic reasoner (for additional details, see Montani and Portinale 2006).
In particular, RHENE originally worked on raw time series retrieval (just taking advan-
tage of mathematical dimensionality reduction techniques, such as the Discrete Fourier
Transform). We are currently extending it in the direction of enabling the retrieval of
preprocessed time series, where preprocessing is realized by means of TA—a step that
justifies the work described in this article (even though the methodology we present
here is general enough to be resorted to by a tool applicable to very different domains).
Actually, the closed-loop architecture introduced in this work is being integrated with
RHENE.

The remaining of the article is organized as follows. In Section 2, we describe some
related works. Section 3 represents the core of the contribution: in particular, in Section
3.1, we introduce case representation details; in Section 3.2, we sketch the tool’s closed-loop
architecture; in Section 3.3, we describe the functionality of the TA processing module, along
with an example, and in Section 3.4, we analyse case base reorganization/revision. Finally
Section 4 concludes the article.
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2. RELATED WORK

A wide number of symbolic representations of time series have been introduced in the
past decades (see Daw, Finney, and Tracy 2003 for a survey). However, most of them suffer
from three main limitations: (i) the symbolic representation does not reduce dimensionality;
(ii) even if distance measures can be defined on symbolic representations, these distance
measures have little correlation with distance measures defined over the original time series;
(iii) the conversion to symbolic representation requires to have access to all the data since
the beginning.

TAs represent a possible way of dealing with some of the three issues outlined earlier.
In particular (i) TA do reduce dimensionality because they convert the original point-based
representation of the data to a more compact and abstract one, in which the whole time series
is represented by (a few) intervals, each one describing a precise behavior (and thus easily
convertible to a corresponding symbol by means of a 1:1 mapping). Moreover, (iii) they do
not require to have access to the whole time series: the first TA intervals can be abstracted
before the rest of the time series data is provided, thus making TA exploitable also in a
context of data streaming.

It is worth citing an interesting alternative to TA, capable to deal with all issues (i)–(iii)
aforementioned (Lin et al. 2003). In particular this contribution allows distance measures to
be defined on the symbolic approach that lower bound the corresponding distance measures
defined on the original data. Such a feature permits to run some well-known data mining
algorithms on the transformed data, obtaining identical results with respect to operating on
the original data, while gaining in efficiency.

Despite these advantages, the approach in (Lin et al. 2003) is not as simple as TA, which
allow a very clear interpretation of the qualitative description of the data provided by the
abstraction process itself. As a matter of fact, such description is closer to the language of
clinicians (Stacey 2005), and easily adapts to a domain where data values that are considered
as normal at one time, or in a given context, may become dangerously abnormal in a different
situation (e.g., due to disease progression or to treatments obsolescence). The ease at which
knowledge can be adapted and understood by experts is an aspect that impacts upon the
suitability and the usefulness of intelligent data analysis systems in clinical practice. Due
to these characteristics, TA have been largely exploited to support intelligent data analysis
in different application areas (from diabetes mellitus Shahar and Musen 1996; Bellazzi
et al. 2000; Seyfang, Miksch, and Marcos 2002, to artificial ventilation of intensive care
units patients Miksch et al. 1996; Belal et al. 2005; Dojat et al. 1997; see also Stacey and
McGregor 2007 for a survey).

However, while TA output can be easily understood and analysed by end users as well,
without the support of a knowledge engineer or of an automatic interpretation process, pa-
rameter configuration still remains a complex task. As far as we know, not much has been
done in the field of (semi)automatic parameter configuration for TA (Stacey and McGregor
2007), and usually parameter values are simply set by hand, sometimes requiring a repetition
of the configuration activity until acceptable results are obtained. Remarkably, the works in
(Carrault et al. 2003; Silvent, Dojat, and Garbay 2005) use machine learning techniques for
the gathering of knowledge to aid in the data analysis process. However, they do not provide
the ability for automatic translation and integration of that knowledge into the TA mecha-
nisms. Therefore, our approach, which proposes to exploit CBR to support a semiautomatic
and quicker parameter configuration procedure, and couples a direct interaction with experts
with an automatic way of learning knowledge from data (see Section 3.4 for details), appears
to be a significant contribution in the literature panorama.
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3. CBR-BASED TEMPORAL ABSTRACTIONS CONFIGURATION

In this section, we provide the details of our approach. In particular, we start by quickly
recalling what we mean by case, and how cases are represented, a point that is preliminary to
the whole system description, and which was already presented in (Portinale et al. 2006) (see
Section 3.1). In Section 3.2, we sketch the overall closed-loop architecture of the system,
which is a revised and improved version of the one presented in (Portinale et al. 2006). Among
the three modules composing the architecture, the one for TA parameter configuration was
already described in (Portinale et al. 2006). On the other hand, the other two modules
represent the main original contributions of this article. In particular, (i) in Section 3.3, we
provide a description of the TA processing module functionality, together with a case study,
that is then used as a running example through the article; (ii) in Section 3.4, we address the
issue of case base reorganization/revision, showing how we propose to tackle two problems
that could affect the output of the TA process: missing abstractions and low-quality output.
The implementation of the reorganization/revision module is still ongoing, but the running
example is exploited to better explain how it is meant to work.

3.1. Case Representation

As anticipated in Section 1, in TA processing the configuration phase is very important
because TA output heavily depends on the chosen parameter values. In particular, for trend
TA, the following (main) parameters need to be set (Bellazzi, Larizza, and Lanzola 1999):
Minimum/Maximum Rate (i.e., the minimum and maximum slope allowed for the trend
episode); Minimum/Maximum Duration (i.e., the minimum and the maximum duration in
time for the trend episode). As regards state TA, on the other hand, we need to specify
(Bellazzi et al. 1999): Lower/Upper Bound (i.e., the lower and upper bounds of data values
allowed for the state episode); Minimum/Maximum Duration (defined earlier).

In our case-based approach for TA-configuration, a case is defined as follows (Portinale
et al. 2006): (i) problem description: the context description, composed by patient and
hemodialysis session characteristics that tend to be stable in the long/medium run (such
as patient’s age and session duration; see Section 3.3 for an example); (ii) case solution:
the configuration of the various signals (i.e., of the time series variables collected by the
hemodialyzer). In turn, the configuration of each signal consists of a list of state and trend
TA symbols to be searched for in the time series to which the configuration refers, together
with the corresponding parameter (i.e., Rate, Duration and/or Bound) values (see the example
in Section 3.3). Optionally, a list of suitable combinations of the obtained states and trends,
known as joint TA template, can be specified. A joint TA is a special case of a complex TA;
indeed if t is an instance of a trend having validity in the time interval It and s is an instance
of a state having validity in the time interval Is , then j = 〈t , s〉 is a complex TA based on
the Allen’s relation tRs in the time interval Ij = It ∩ Is , where R is any of the following:
overlaps, during, starts, finishes, equal and their inverse relations (Allen 1984). If the list of
joint TA is empty, all 〈trend , state〉 pairs will be calculated.1

The initial case base has been set up with cases derived from the medical knowledge
provided by a specialist.

An input case contains, together with the context description, a set of raw time series,
instances of the signals on which TA must be extracted.

1Joint TA would be useful also for combining patterns abstracted from different signals; this possibility will be considered
as a future work.
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3.2. System Architecture

The system is conceived as a three-module architecture, composed as follows (see the
dashed boxes in Figure 1):

• a module for TA parameter configuration;
• a module for TA processing;
• a module for TA-based case base reorganization/revision.

Given an input case, in the current implementation the TA parameter configuration
module, which was already described in (Portinale et al. 2006), retrieves the less distant (i.e.,
most similar) case,2 with respect to the input case context description.

The similarity distance is evaluated using the Heterogeneous Euclidean-Overlap Metric
(HEOM) distance function. Given two input vectors x and y, the HEOM distance is defined
as follows (Wilson and Martinez 1997):

HEOM =
√∑

f

d f (x, y)2,

where

- df (x , y) = 1, if x or y are missing
- df (x , y) = overlap(x , y) if f is a symbolic feature (i.e., 0 if x = y, 1 otherwise)
- |x−y|

range f
if f is a numeric and continuous feature.

The retrieved configuration information, corresponding to the signals present in the input
case, is extracted and passed to the TA processing module, together with the raw data. The
TA processing module, whose implementation represents one of the original contributions
of this work, provides a set of qualitative states, trends, and suitable combinations of both as
a result, and is extensively described in Section 3.3.

Processed examples are shown to the physician, who will decide whether to store them
in the positive examples database or in the negative examples ones (see Figure 1), on the
basis of the quality of the obtained TA series (see Section 3.4 for details). Such processed
examples can then be relied upon to guide case base maintenance, by suggesting how to
reorganize the configuration case library, or how to tune incorrectly defined configurations,
or also how to complete the knowledge embedded in the library itself.

As described in Figure 1, the three modules thus give birth to a closed-loop architec-
ture, where parameter configurations suggested by case-based retrieval are adopted for TA
processing, while the obtained TA series are evaluated to support case base reorganiza-
tion/revision. Revised cases will improve future TA configuration sessions. Details about
the reorganization/revision activity, whose description is the other original contribution
of this work, and whose implementation is still ongoing, are provided in Section 3.4.

2Note that it would be possible to generalize retrieval, by selecting a set of (more than one) very similar cases, and by
combining their solutions to guide TA parameter setting. In particular, we plan to evaluate different combination techniques,
such as interpolation, average, or frequency-based parameter setting.
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FIGURE 1. Case-based configuration of TA parameters, TA processing, and TA-based case base reorgani-
zation/revision. The dashed boxes on a gray background represent the already implemented modules, while the
Reorganization/Revision module and the integration between the TA tool and the RHENE system (Montani and
Portinale 2006), shown on a white background, are being realized (or will be realized as a future extension,
respectively).
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3.3. TA Processing

The aim of the TA processing module is to obtain a TA time series, given a raw time
series with its corresponding configuration, which is provided by the configuration module
(for the sake of simplicity, we are considering to deal with only one signal).

The process is articulated in three steps. In the first step, the TA Server (Figure 1)
identifies the instances of the allowed trends and states. In our architecture, the search for
predefined patterns (both trends and states) in the time series is implemented by using the
TA Web service described in (Bellazzi et al. 1999). The Web service takes as an input
the retrieved configuration, represented in XML format, together with the raw data to be
abstracted. The output is a set of XML documents, one for each searched pattern (trend or
state). Each document contains the instances of the pattern found in the data (i.e., the time
intervals in which the pattern has been found).

In the second step, the Check/Ordering submodule in Figure 1 collects all XML docu-
ments that are generated by the TA Server, and creates an ordered series of trend and state
instances. This submodule manages two kind of situations: gaps and overlaps.

A gap is a time interval (in the original data) where no instance of an allowed trend/state
has been found. The Check/Ordering submodule creates an instance of a special symbol UT
(Unknown Trend) or US (Unknown State) each time a gap is found for a trend or a state,
respectively.

On the other hand, overlaps occur when two or more instances of different trends/states
cover the same time interval. In our approach, we allow the existence of some partial
overlaps between different trends or states (e.g., between Increasing Trend and Stable Trend
intervals), but we exclude situations involving the following Allen’s relations: during, starts,
finishes, equals and their inverse relations. As a matter of fact, these cases (for instance,
an Increasing Trend during a Stable Trend), represent a nonconsistent output of the TA
extraction process, and might have been caused by a parameter misconfiguration (see Section
3.4 for details). On the other hand, the Allen’s relation overlaps (and its inverse overlapped-
by) are allowed, provided that the intersection interval length does not exceed a suitable
threshold.3

The Check/Ordering submodule completes its work by building the sequence of the
instances of the found patterns.

In the third step, the JTA Builder submodule in Figure 1 calculates joint TA. This
submodule takes as an input the ordered series of instances obtained so far and the joint
TA template of the retrieved configuration; it then builds all the pairs of trend and state
instances produced by the TA Server, which are allowed by the joint TA template. Each pair
is associated with a time interval corresponding to the intersection of the time intervals of
the two basic instances composing the joint TA.

Case study to illustrate TA configuration and processing, we will now show an example
in which we will abstract two time series describing the hematic volume (HV) behavior of
two different patients during two hemodialysis sessions.

The behavior of the HV variable is extremely important because it is strictly related to
the water reduction from the patient’s blood during the hemodialysis session. The correct
behavior of this signal is composed by two phases. In the first phase the session starts,
and the water is extracted from the blood at high speed, until the blood pressure equals the
intra-cellular pressure of the cells in the blood. In the second phase, the water passes from
the cells to the blood, and is again extracted from the blood by the hemodialyzer. During this
second phase the HV decrease is stable and constant. Therefore, the correct HV behavior is

3The threshold is defined on the basis of medical knowledge.
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composed by a first exponential decrease followed by a linear decrease until the end of the
session.

This behavior can be altered if the patient is affected by particular health problems. For
example, hypotension can cause two kinds of problems: the low pressure can alter the first
phase, slowing down the water reduction speed and generating an inefficient linear decrease;
moreover, it can cause instability and difficulties in the water extraction process. These
problems can also force the health care professional to interrupt the hemodialysis session
before the usual 4 hours duration.

A case describing the hypotensive context and the configuration of the parameters for
this kind of situation can be defined as follows (Tisler and al 2002; Cases and Coll 2002;
Lee and Marks 2005):

• Context description:
– systolic pressure: any value below 110 mmHg;
– diastolic pressure: any value below 60 mmHg;
– session duration: any value below 4 hours;
– age range: any value above 64 years;
– nurse intervention: antihypotensive drug possibly provided during hemodialysis.

• Configuration (for the HV signal):
– Expected Trends:

∗ EXD = EXponential Decrease;
∗ LD = Linear Decrease;
∗ FD = Fall Decrease;
∗ ST = Stable;
∗ INC = Increase;

– Expected States:
∗ PS = Positive State (HV increases, while in this state, which is dangerous);
∗ NS = Negative State (HV decreases, which is correct);

– Expected Joint Symbols: no symbols specified, therefore all pairs 〈trend , state〉 are
allowed.

As an example, we show the definition of the main parameters of the EXD trend and NS
state.

• EXD trend:
– Symbol = EXD
– Minimum Rate = 0.150 pts/min
– Maximum Rate = 0.250 pts/min
– Minimum Duration = 10 min
– Maximum Duration = no bound

• NS state:
– Symbol = NS
– Lower Bound = - infinite
– Upper Bound = 0
– Minimum Duration = 10 min
– Maximum Duration = no bound

We can now apply the defined configuration to analyze and compare two different
situations: a session ended with a good result and a very problematic session.
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FIGURE 2. TA processing on the HV signal: a “fast reduction” example.

The first situation reports the HV in session no. 273, patient no. 54 (Figure 2) of our
real examples database.4 The state is always negative (NS), therefore the HV decreases for
the entire session, while the sequence of trends (EXD, LD, FD, LD) is very near to the ideal
case (EXD, LD). The episode of FD does not affect the good (i.e., fast) behavior of the water
reduction.

The second case reports the HV in session no. 273, patient no. 2 (Figure 3). Here, the
patient hypotension plays an important role in the water reduction. In fact, the hemodialysis
session starts with an LD trend (instead of the expected EXD), followed by an INC trend that
leads to a PS state. This means that the HV increases instead of decreasing. After that, the
LD trend restores a NS state, but it is followed by another INC, a FD, a ST trend, then INC
again and a final ST trend. Therefore, this signal presents all the problematic characteristics
due to the hypotension disease, and water is reduced too slowly.

The intersection of trends and states generates the sequence of joint symbols shown in
this example until the symbol J5. Considering this sequence, we can see that the symbol
J1 summarizes a first interval, where the signal decreases linearly (LD), while the state is
negative (NS). J2 depicts a situation where the signal increases and the state is still negative.
During J3, the signal continues to increase, but the state changes from negative (NS) to
positive (PS). After this increasing phase, the signal decreases again, but still in the positive
state. This situation is captured by J4. The subsequent symbol U is introduced in the next
interval, where no state has been recognized because the length of the two episodes are
shorter than the minimum duration set for the states PS and NS. The last symbol shown in
Figure 3, J5, represents a long interval where the signal decreases linearly and in the negative
state.

4Real examples were collected at the Nephrology and Dialysis Unit of the Vigevano Hospital in Italy.
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FIGURE 3. TA processing on the HV signal: a “slow reduction” example.

This sequence is very useful to perform the analysis of both trends and states together.
For example, it can highlight complex episodes like the one expressed by the sequence of
symbols J2 and J3: starting from the state NS, an INC of the HV leads to a PS state.

Finally observe that the analysis of the states shows an interval where no states are
recognized. This is because the episodes of NS and PS that follow the correctly recognized
PS are shorter then the Minimum Duration parameter; therefore this interval is marked with
the symbol US (Unknown State).

3.4. Case Base Reorganization/Revision

The output of the TA processing module can be used to properly organize and possibly
revise (in a word, to maintain) the knowledge contained in the case base. Case base main-
tenance is an important process in the whole CBR cycle because it may have a significant
impact on the actual performance of a CBR-based system (see Leake et al. 2001 for a survey
on the possible policies adopted in the literature to this end).

In particular, TA processing results may be affected by two problems, which we will
call missing abstraction and low quality output, respectively. In the TA-based case base
reorganization/revision module (see Figure 1), two separate submodules (Reorganization
and Revision in the figure) are meant to deal with the two problems at hand. How they
operate is illustrated in the two sections further.

3.4.1. Missing Abstraction. This problem is considered as a minor issue in our approach,
if compared to the low-quality output one. Therefore, it is managed by suggesting fine-tuning
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of case solutions, rather than by operating a real case revision, as it happens for low-quality
output (see Section 3.4.2).5

Missing abstraction can be described as follows. Suppose that a certain abstraction,
or a set of (a few) abstractions, listed in the case retrieved for the input situation, has not
been identified (e.g., no intervals of Increasing Trend could be found in time series X for
the input case). This information can be exploited to enhance the case base organization,
by automatically learning how to further detail context and configuration definitions, thus
building a hierarchy of cases that can be resorted to realize retrieval at a finer or at a coarser
granularity.

In particular, we search for past examples having the same context as the current one,
in the positive examples database, and the Reorganization submodule (see Figure 1) verifies
whether the missing abstraction problem already occurred in them. If it did, this may suggest
that the configuration information (and its associated context in the retrieved case) currently
groups two sets of situations (e.g., the ones in which episodes of Increasing Trend actually
took place in time series X, and the ones in which they did not). The Reorganization
submodule then clusters the examples, to learn what context feature values are able to
distinguish between the missing abstraction set and its complement, and to properly pair
the context information with the right configuration (i.e., with or without the abstraction
itself). Such a distinction will allow the physician to decide whether to go in deeper detail in
analysing an input situation, or not. In particular, moving toward the refined configurations
may be of help to better interpret the input data, while, on other occasions, it might be helpful
to remain at a coarser level and to exploit the parent configuration, to have a larger pool of
comparable past examples to work with.

To illustrate how we manage the missing abstraction problem, we will resort to the
hypotensive context introduced in Section 3.3. As a matter of fact, hypotension is a very
frequent condition experienced by ESRD patients, therefore many examples characterized
by this context can typically be collected in clinical practice. Nevertheless, as suggested
by the significant differences between Figure 2 and Figure 3, a finer distinction among the
hypotensive context examples can be introduced. Actually, HV in Figure 2 decreases quickly,
thus water is fast reduced, while the HV behavior in Figure 3 is extremely instable and water
is slowly reduced. As already observed in Section 3.3, all the abstractions indicated in the
retrieved configuration are found in the “slow reduction” example, while only EXD, LD, and
FD trends take place in the “fast reduction” one, and only NS is found among the expected
states. This information is resorted to by the Reorganization submodule, which clusters the
available hypotension examples, coming out with the identification of two subcontexts, one
to be matched to the “fast reduction” configuration, and the other to be matched to the “slow
reduction” one. The results are shown further.

• “Fast reduction” context description:
– systolic pressure: any value between 88 and 110 mmHg;
– diastolic pressure: any value below 60 mmHg;
– session duration: any value between 3 hours + 10 minutes and 4 hours;
– age range: any value between 64 years and 69 years.

• “Fast reduction” configuration (for the HV signal):
– Expected Trends:

∗ EXD = EXponential Decrease;
∗ LD = Linear Decrease;
∗ FD = Fall Decrease;

5Of course we do not exclude that the evaluation results, when available, could lead us to change this policy.
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– Expected States:
∗ NS = Negative State.

• “Slow reduction” context description:
– systolic pressure: any value below 87 mmHg;
– diastolic pressure: any value below 60 mmHg;
– session duration: any value below 3 hours and 10 minutes;
– age range: any value above 70 years;
– nurse intervention: antihypotensive drug typically provided during hemodialysis.

• “Slow reduction” configuration (for the HV signal):
– Expected Trends:

∗ EXD = EXponential Decrease;
∗ LD = Linear Decrease;
∗ FD = Fall Decrease;
∗ ST = Stable;
∗ INC = Increase;

– Expected States:
∗ PS = Positive State;
∗ NS = Negative State.

The “fast reduction” and “slow reduction” 〈context , configuration〉 pairs can be sep-
arately relied upon, to perform retrieval at a finer granularity. In this way, it is possible to
explicitly distinguish between situations, which despite the fact that they belong to the same
context, show significant differences indeed. Retrieval at a coarser granularity, on the other
hand, might be resorted to when all hypotensive examples need to be taken into account (e.g.,
for a comparison with an input patient not suffering from hypotension).

3.4.2. Low-Quality Output. TA output quality is evaluated as low if a significant number
of gaps and overlaps occur.6 Whenever an output of insufficient quality is produced by TA
processing, the physician may want to accept the result as it is anyway: in this situation, the
example at hand is stored in the positive examples database, and the case base content will
not be updated.

Otherwise, two different situations may take place: (1) the input data are strongly affected
by noise, or many missing values render the time series substantially useless for analyzing
the patient’s behavior: in this case the data simply have to be discarded, and the case library
content does not need to be revised; (2) some problem in using the retrieved configuration
has indeed emerged.

In situation (2), we store the low-quality output, obtained by having applied the retrieved
case on the input data, in the negative examples database. Then, the Revision submodule
(see Figure 1) looks for similar, past negative examples, produced by the use of the same
configuration being evaluated.

If none is reported, we have identified a competence gap region in the configuration case
base. As a matter of fact, the retrieved 〈context , configuration〉 pair always worked well,
except in the present example, which is not well represented by any of the items in the library.
In this situation, even though the retrieved case is the best match given the input case, their
distance is typically relatively high, so that the retrieved context does not optimally describe
the input one, and the corresponding configuration cannot be suitably applied. The solution
is the one of acquiring a new configuration case from scratch.

6The significant number is established by the physician.
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On the other hand, if some previous negative examples (i.e., examples with a low quality
output) having applied the same configuration exist, we have discovered a case which was
incorrectly defined since the beginning, and which needs to be revised in search of conflicting
or improper parameter settings that might have been originally introduced. In this situation
the Revision submodule also retrieves past positive examples exploiting the configuration
under examination, and shows both the positive and the negative examples to the physician,
to help her in the revision process.

The presence of cases having the same configuration in the two databases testifies that
such configuration sometimes worked well, and in other occasions it did not. It is rather clear
that a finer definition of the context features could be of help in distinguishing between these
two, conflicting situations. In particular, a split of an allowed parameter range in two subsets,
or the introduction of a new parameter, could accomplish this task. The physician can be
supported in this revision activity by the Reorganization submodule clustering technique
(see above), but she will be responsible for the final decision.

After the physician has completed her revision work, the new case is validated against
the negative examples database: all the data over which low quality TA were extracted by
using the old case are reprocessed, this time by applying the newly defined configuration. If
satisfiable results are obtained, the expert will typically accept to store the new case in the
configuration case base without further adjustments.

Note that both the competence gap and the misconfiguration situations require a human
intervention, to define/revise the cases. As a matter of fact, in our approach case base
revision is conceived as a semiautomatic procedure, to be always supervised by a domain
expert. However, such a partially data-driven approach is very appealing in the hemodialysis
domain, where a well-established knowledge about 〈context , configuration〉 pairs does not
exist.

4. CONCLUSIONS

In this article, we have proposed a case-based architecture tackling the problem of config-
uring and processing TA to be applied to raw time series data, which is being implemented in
the hemodialysis domain. The CBR approach does not require an explicit domain model and
avoids the need of defining the right configuration for each possible contextual situation to
be handled. Moreover, the CBR system can learn new knowledge by acquiring new cases or
by reorganizing/revising cases which are already stored, on the basis of a detailed evaluation
of the problem solving activity (TA processing in our case), in a human-supervized fashion.
This gives birth to a closed-loop architecture, where (possibly revised) cases can improve
the output of future TA configuration sessions.

Our work appears to be innovative in the literature panorama for at least two main reasons:
(i) it is one of the very few contributions in which automatic knowledge acquisition techniques
(such as CBR) are applied (Stacey and McGregor 2007), with the aim of adopting the acquired
knowledge for TA processing; (ii) it moves in the direction of integrating TA processing
and data analysis in a more complex architecture, in which several modules/methodologies
cooperate, to better afford the challenges offered by the medical domain (Montani 2008;
Stacey and McGregor 2007).

The implementation of the TA tool described in this article (see the boxes on a white
background in Figure 1) is still ongoing, but we foresee to quickly complete it. As a subse-
quent step, we will realize the integration of the tool itself with the system RHENE, to which
we will provide the capability of retrieving cases whose features are time series preprocessed
by means of TA. The overall work will be followed by a testing phase on real patients’ data.
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To this end, we plan to provide the service to the physicians of the Nephrology and Dialysis
Unit of the Vigevano Hospital in Italy.

It is worth noting that, despite the fact that the tool has been conceived within a medical
application, and will be tested in the hemodialysis domain, our proposal of exploiting CBR for
TA parameter setting appears to be general enough for being exported in other, nonmedical
contexts. As a matter of fact, the use of knowledge about the contextual situation under
examination represents an appropriate means for parameter setting in several applications.
In the future, we plan to explore this possibility in more detail.
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